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is weak and the pricing power is missing (Zhong et  al., 
2013; Gong & Lin, 2017, 2018; Liu & Gong, 2020; Li et al., 
2019). In the rare-earth industry, supply of low-cost “black 
industrial chains” with disorderly supply, poor environ-
mental protection and inadequate regulation accounts 
for nearly 50% of the total supply. Especially after a sharp 
drop in metal prices in 2015, some copper, tin and nickel 
enterprises in China have issued statements on production 
reduction (Chen et  al., 2020; Song et  al., 2019a; Zhong 
et al., 2019). However, the existing policy advices for big-
ger pricing power have neglected the objectivity of stra-
tegic value in the process of formulation. Especially for 
rare metals such as rare earths, lithium and indium, which 
have no function of price discovery in futures market, the 
price of international trade is mainly decided by bilateral 
bargaining, and the bargaining process is influenced by 
the psychological preference of the game-agents to gener-
ate strategic value (Zhong et al., 2013; Jia et al., 2017). 

In response to a series of problems existing in the re-
alities of the rare metal mineral resources, scholars have 
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Introduction

The rare metal mineral resources are an important stra-
tegic material reserve for national security and China has 
implemented a protective and inhibitory development 
policy on it for many years, expecting to transform the 
resource advantages into economic advantages through 
protective mining (Huang et al., 2014; Zhang et al., 2018). 
However, in reality, the mineral resources has continued 
to be extensively exploited and the low-end products that 
are energy-intensive, highly polluting and resource-de-
pendent have been exported in large quantities. Mineral 
resource industry policy and resource tax policy have been 
severely distorted. Furthermore, the disordered chaotic 
development and vicious competition caused by resource 
developers’ pursuit of short-term interest, low entry bar-
riers and weak technological level have undermined the 
sellers’ monopoly market structure of rare metal mineral 
resources. As a result, in the actual long-term contract 
pricing process, the bargaining power of the resources 
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carried out a slew of related researches, such as the de-
pletion study of metal mineral resources (Hartwick, 1977; 
Prior et  al., 2012; Northey et  al., 2017), the formation 
mechanism of mineral resource prices (Rubinstein, 1982; 
Adelman & Watkins, 2008) and the pricing power of rare 
metal minerals (Alexander et al., 2012). However, the key 
to solving these problem lies in the accurate analysis of the 
market structure and the behaviors of various stakehold-
ers. At the academic level, many scholars use the game 
model to study the interaction of oligopolistic firms in 
the market (Afflerbach et al., 2014; Tošović et al., 2016). 
While domestic scholars have combined the game theory 
with the reality of economy and scored abundant research 
achievements (Sarjiya et al., 2019; Wang et al., 2019) In re-
cent years, more and more scholars have applied dynamic 
oligarchic games to specific industrial researches, such as 
the studies in the electricity market (Ma & Ji, 2009; Zhang 
et al., 2009). In the field of metal mineral resources, it is 
also imperative to think about how to solve the chaos faced 
by the market with new ideas. According to the CR2, CR4 
market concentration of such rare metals as rare earths, 
lithium and indium, their market structure has oligopo-
listic nature, and each oligopoly makes the same decision 
simultaneously according to its profit maximization. For 
example, Tse believes that the rare-earth market belongs 
to a typical oligopolistic market, and there are oligopolistic 
game behaviors in the process of rare earths pricing (Tse, 
2011). And the simultaneous decision made by various 
stakeholders adds to the complexity of the market struc-
ture and dynamic processes (Chen et al., 2020; Song et al., 
2019b; Yang et al., 2017; Lima et al., 2018). Market system 
is a complex system and for the study of its complexity, 
many scholars have conducted extensive research on vari-
ous control problems of different types of control systems 
with similar structures (Clearwater, 1996). And simulation 
is a helpful and irreplaceable method for the study of com-
plex system (Begossi, 2014; Tsionas & Michaelides, 2017; 
Garnier & Solna, 2019). 

The above analysis shows that the rare metal minerals 
market is associated with huge and long-term social and 
economic benefits, and the impact on specific groups and 
specific regions is complex and far-reaching. However, 
determining efficient and fair and reasonable prices is a 
double theoretical and practical problem. This is because 
fair and reasonable prices must simultaneously achieve the 
multiple objectives of “justly protect the loss of mineral 
resources, ensure that the investment losses of various 
economic entities are included in the evaluation of the 
value of mineral resources”, and “minimize the cause of 
inefficient behavior of asset loss”. Therefore, in order to re-
flect the entire cost of the entire society for the rare metal 
minerals market game and achieve the balance of interests 
of related parties, it is necessary to redefine the complex 
value connotation of the metal minerals market game with 
a new concept and update the quantitative price formation 
mechanism. The rare metal market system is a complex 
system, and the simultaneous decision-making of various 

stakeholders increases the complexity of this market struc-
ture and dynamic process. For the purpose of exploring 
the path and process of China’s rare metal market output 
and price entering chaos, and the game model method 
and chaos control complex analysis method are drawed 
to construct a theoretical model of the rare metal min-
eral market structure, and the actual value of China’s rare 
metal related parameters is incorporated into the complex 
game model to expand an empirical analysis of the phe-
nomenon and path of chaos in the metal minerals mar-
ket, so as to solve the bottleneck problem that restricts the 
pricing power and resource security of rare metal minerals 
in China.

1. Market structure complexity analysis 
framework of rare metal mineral resources

1.1. Market structure and stakeholders of rare metal 
mineral resources

Generally, the market of rare metal mineral resources has 
more obvious oligopoly characteristics. The key issue in 
the market structure analysis is to study the market share 
that affects the market and the price, which depends on 
the conditions of competition and the probability of sub-
stitution. In terms of short-term behavior, there is a lack 
of price elasticity in the supply of the rare metal miner-
als. This means that price changes can only cause small 
linearly proportional changes in production, and that a 
relatively small market share is enough to dominate the 
market. Hence, larger producers, whose output accounts 
for 30–40% of the total supply, can lead to market mo-
nopoly.

The allocation of research resources should be based 
on the market structure. Due to the differences and un-
equal distributions of mineral resources, the exploration 
and exploitation of mineral resources are characterized as 
large in terms of investment scale with long project dura-
tion and relatively high investment risk. Also, as the owner 
of mineral resources, China can intervene in the explora-
tion and exploitation of important mineral resources that 
are related to national economy and people’s livelihood 
through political means, and promote the transformation 
from a mineral resource market into one that is monopo-
listically competitive. In recent years, due to the non-
renewability of mineral resources, many multinational 
enterprise have stepped up their control over the global 
strategic mineral resources. Take the iron ore market as 
an example. According to statistics, the international top 
three companies, Companhia Vale do Rio Doce, BHP Bil-
liton Ltd. and Rio Tinto have controlled over 80% of the 
world’s iron ore resources. 

Classical economic theory has determined that mo-
nopolistic behavior in the market has a clear restraining 
effect on the efficient allocation of resources. In the mo-
nopolistic market, monopoly producers can make or con-
trol the output and price of mineral resources by them-
selves, and greatly increase the profit of miners, especially 
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excess profits. The monopolist sets a “target rate of profit” 
that is above the average rate and uses it as a basis for 
setting the price of mineral resources while adjusting the 
rate of mining based on its marketing strategy and profit 
targets to create a more favorable optimal mining condi-
tion. There are three forms of realistic monopoly control: 
maintain the existing state of monopoly; raise the price 
of mineral resources in order to obtain higher monopoly 
profits, which, from the perspective of the trend of scar-
city, higher price force the manufacturers with lower pro-
duction efficiency to withdraw from the market. Hence, 
in terms of protecting scarce resources only, it is of more 
help to restrict resource depletion; seize market share at 
low prices. This predatory pricing that aims to crush oth-
er competitors and occupy the market requires abundant 
mineral products, whilch can only be guaranteed by accel-
erating its mining. Also, consumers may lack awareness of 
efficient resource utilization because of low prices, causing 
over-consumption and accelerating the depletion of min-
eral resources. Hence, under the circumstance of monop-
oly market, the depletion of ore is affected by many factors 
and is hard to predict. The change depends on the game 
results between monopoly developers, between monopo-
lists and consumers and between consumers themselves. 
And the general market price signals and conditions of 
supply and demand can not truly reflect the depletion of 
resources. Then under the assumption of perfectly com-
petitive market, researches on finding the best allocation 
of mineral resources or the depletion rate(mining rate) 
through spontaneous market allocation or price lever with 
value as the center, the supply-demand situation as the 
influencing factors, has lost its practical natures in the real 
market of monopolistic competition.

Cournot-Nash equilibrium means that no other manu-
facturer can choose a different strategy to achieve higher 
profits while the other manufacturer’s strategy remains 
the same. In the oligopoly market of rare metal miner-
al resources, each oligarch tends to choose the strategy 
that is most beneficial to him. The equilibrium reached 
by this non-collusion behavior between oligarchs is the 
Cournot-Nash equilibrium. Therefore, it is a better choice 
to analyze the market of rare metal mineral resources by 
establishing the Cournot-Nash Equilibrium model.

1.2. The routes to chaos of the game system in the 
rare metal mineral resources market

The market game system is transformed from determin-
istic to chaotic movements, which is to say, the routes to 
chaos in the market game system are divided into sever-
als: the period doubling bifurcation, the intermittence, the 
Ruelle-Takens route and the bifurcation caused by quasi 
market game period bifurcation, quasi-periodic attractor 
fragmentation, multiple attractor coexistence and non-
strict periodic increase. The market game chaotic system 
changes are not in chaos, but rather, in an orderly way. 
Under the condition of certain market structure, chang-
ing the game-related parameters can split the track of the 

market game system. The market game period is doubled, 
which means the period is divided into two. The market 
game parameters continue to change, so dose the split of 
the market game track. Growing from two to four to eight 
times of the period, the market game continues, until the 
game system eventually losses its periodicity and enters 
the chaos. The basic way of market game movements: 
Fixed point → 2nd period point → 4th period point → ... 
→ Infinite periodic condensation (limit point) Strange at-
tractor. The process can use logistic mapping as reference 
to illustrate the route of the period doubling bifurcation 
to chaos in the market game system:

( ) ( ) ( )1 1n n nX t rX t X t + = −  . (1)

This is called a species model, in which ( ) 0,1nX t ∈   , 
representing the percentage of a species in the market struc-
ture and this is in line with the objective reality. The 1st 
period point after an iteration is the market game pe-
riodic solution, which is ( ) ( )1 nnX t X t+ = . Because 

( ) ( ) ( )1n n nX t rX t X t = −  , the solution to the equation 
is 0 0X = , 1 1 1/X r= − . Obviously, the value of r  affects 
the evolutionary process of market game system. Aim-
ing at the different range of the value of r, changes from 
simple to complex state of market game logic mapping is 
discussed.

(1) When 0 1r< < , 1 1 1/ 0X r= − < , it does not 
meet the condition of ( ) 0,1nX t ∈   , so it has no 
practical meanings. As for the fixed point, because 
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0 0

1
1n

n X

X t
r

X t
=

∂ +
l = = <

∂
, 0 0X =  is the stable equilib-

rium point of the logic mapping in the 1- market game 
period within 0,1   .

(2) When 1 3r< < , the logic mapping of the market 
game has two period points, 0 0X =  and 1 1 1/X r= − , but 

when 0 0X = , because 
( )
( )

0 0

1
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n X

X t
r

X t
=

∂ +
l = = >

∂
, 0 0X =  

is the unstable equilibrium point of the logic mapping in 
the 1- periodic market game within 0,1   . Then, when

1 1 1/X r= − , because 
( )
( )

1 1-1/

1
2n

n X r

X t
r

X t
=

∂ +
l = = −

∂
, and 

under the condition of 2 1rl = − < , the market game 
system has only one stable 1- periodic equilibrium point. 
The evolution of market game system becomes stable at a 
balance point.

(3) When 3 1 6r< < + ,  the logic map-
ping of the market game has two period points, 

0 0X =  and 1 1/X r= − , but for 0 0X = , because 

( )
( )

0 0

1
1n

n X

X t
r

X t
=

∂ +
l = = >

∂
, 0 0X =  is the unstable 

equilibrium point in the 1- market game period. When 
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1 1 1/X r= − , because 
( )
( )

1 1-1/

1
2 1n

n X r

X t
r a

X t
=

∂ +
l = = − < −

∂
, 

we can get 2 1rl = − > . Therefore 1 1 1/X r= −  is also 
the unstable equilibrium point in the 1- market game pe-
riod. At this point the market game system does not have 
a stable periodic solution. Considering the fixed point af-
ter 2 iterations, that is, the 2- periodic solution, after two 
iterations, the market game system is mapped as:

( ) ( )
2

2 1 1 ( 1)

( ) 1 ( )(1 ( )) .
n n n

n n n

X t rX t X t

r X t rX t X t

+ = + − + =  
− −  

 
(2)

Suppose that ( 2) ( )n nX t X t+ = , then there are 4 equi-
librium points in the market game system at this mo-

ment: 0 0X = , 1 1 1/X r= − , 4
1 (1 )(3 )

2
r r r

X
+ − + +

= . 

And among the four equilibrium points, both 0 0X =  and 
1 1 1/X r= −  are the unstable equilibrium points of the 

market game system, while 3
1 (1 )(3 )

2
r r r

X
+ + + +

=
 

and 4
1 (1 )(3 )

2
r r r

X
+ − + +

= are the stable ones. There-

fore, the market game system has two 2- periodic solu-
tions.

1.3. Market game system chaos control

Market game system chaos control refers to the human in-
terference in the chaos system of the market game system, 
transforming it into a required state. Specifically speaking, 
when the chaotic movement in the market game system 
is harmful, the chaos in the market game system is sup-
pressed and avoided; when the chaotic movement in the 
market game system is conducive, various conditions that 
can generate the chaotic movement in the market game sys-
tem are created, so as to produce chaos; when the market 
game system is in the state of chaos, all kinds of outputs 
needed are generated by the chaos control. For the chaos 
control, there are the following methods: continuous feed-
back control method, adaptive control method, neural net-
work method, periodical exciting force method, parametric 
periodic perturbation method, OPF control method, state 
feedback and parameter adjustment control method and 
the method of pulse feedback of   systematic  variable. In 
this study, the chaos control method of state feedback and 
parameter adjustment is specifically disscussed. 

The state feedback and parameter adjustment control 
method of the market game system can effectively imple-
ment the delay control on the doubling period bifurcation 
of the discrete nonlinear dynamic system in the market 
game system. Taking the market game system n-dimen-
sional discrete nonlinear dynamic system as an example, 
supposing the n-dimensional discrete nonlinear system 
equation is as follows:

1 ( , )t tX g x+ Ζ= a . (3)

In the above equation, n
tx R∈ , t∈Ζ , Ra∈  are the 

bifurcation parameters of the market game system, that is, 
the state of the market game system will change as the game 
variable of the market changes. With the increase of the 
market game variable, the evolution trajectory goes through 
the doubling period bifurcation till the market game system 
reaches the state of chaos. The method of parameter adjust-
ment and the state feedback control is applied to the market 
game variables to control the output and price strategy, and 
the controlled market game system is:

( )1 , (1 )m
t t tx g x x+ = β a + −β , (4)

β  is the market game (output and price) variable ad-
justment parameter, ranging: 0 1< β < : However, when the 
adjustment parameter of the market game (output and 
price) is 1β = , the controlled ( )1 , (1 )m

t t tx g x x+ = β a + −β
degenerates to 1 ( , )t tX g x+ = a . At this point, the market 
game (output and price) system has the same positive in-
teger, the m  periodic orbit, among which, ( )mg •  is the 
m  th power complex function of function ( )g • . The pa-
rameter m  represents the m -period orbit controlled by 
the market game system: when 1m = , the market game 
system controls the equilibrium point, and the discrete 
power system of the market game system adds one control 
every iteration; when 1m > , the market game system adds 
one control every m  iterations. When 1m = , assume that 
in the original system 1 ( , )t tX g x+ = a , its market equi-
librium point is x∗ , then the Jacobian matrix at market 
equilibrium point x∗  is:

*
1

( , )

t

t

t x x

g x
J

x
=

∂ a
=

∂
. (5)

The sufficient and necessary condition for the market 
equilibrium point x∗  to be stable is that the modulus 
of all eigenvalues of the Jacobian matrix 1J  is less than 
1, that is 1( 1,2, , )i i n< = ⋅⋅⋅ . From this, the range of the 
market variable adjustment parameter a  of the original 
system 1 ( , )t tX g x+ = a  can be obtained when the mar-
ket equilibrium point x∗  is stable. The Jacobian matrix of 
controlled system ( )1 , (1 )m

t t tx g x x+ = β a + −β  at market 
equilibrium point x∗  is:

*
2

( , )
(1 )

t

t

t x x

g x
J

x
=

∂ a
= β + −β

∂
. (6)

As Jacobi’s matrix 2J  introduces a variable parameter 
β  that adjusts the market strategy, by appropriately as-
signing the market strategy variable parameter β , mar-
ket stability at the equilibrium point x∗  within a larger 
value range of the variable parameters in the strategy 
choice of the bifurcation market can be achieved. Hence, 
the market game system bifurcation and chaos will be de-
layed. The ( )1 , (1 )m

t t tx g x x+ = β a + −β  system can still 
ensure that the modulus of all eigenvalues are less than 
1 (the eigenvalues of 2J : 1( 1,2, , )i i n< = ⋅⋅⋅ ) even at the 
unstable market equilibrium point x∗  of the original 
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system 1 ( , )t tX g x+ = a  within the value range of a. That 
is to say, the market equilibrium point x∗  of system 

( )1 , (1 )m
t t tx g x x+ = β a + −β  can remain stable when it is 

unstable in the system 1 ( , )t tX g x+ = a  within the value 
range of a , thus delaying the market game system bifur-
cation and chaos.

2. Analyses of the structual complexity of rare 
metal mineral resource market

Based on structual analysis of rare metal mineral re-
source market, the Chaotic Theory and the Theory of 
Game will be combined in the following part so as to 
carry out complexity analysis to the repetitive price game 
of oligarch market featuring Cournot-Nash equilibrium. 
Also, by changing the cost and demand function of rare 
metal mineral resource market and adding factors such as 
bonded rationality, changes will be made to the Cournot-
Nash game model for the aim of finding out the relation 
between output and market phenomena such as bifurca-
tion and chaos in Cournot-Nash repetitive game.

2.1. The construction of dual oligarch Cournot-
Nash model of game theory of rare metal mineral 
resources

Given the dual oligarch Cournot model of game theory of 
rare metal mineral, 1q  stands for the supply of the prod-
ucts of the rare metal mineral resource developers, 1,2i = . 
In the oligopoly market of a rare metal mineral resources, 
developers provide rare metal mineral resources in the 
discrete time period of t ( )0,1,2,t = ⋅⋅⋅  and the output of 
the mineral resources of i  in the period t  is marked as 

1( )q t . In order to get the maximum output of the min-
eral resources in 1t + , deverlopers of rare metal minerals 
must come up with a prediction of the output of their op-
ponents in one development cycle, hence the total output 
of the metal mineral resource market is as follows:

( ) ( )1 2( )Q t q t q t= + . (7)

And the inverse demand function of metal mineral 
resources market is:

( ( )) ( )P p Q t m nQ t= = − . (8)

The assumption of the costs of two rare metal mineral 
resource developers is:

i i i ic r q= + η , (9)

( 1,2)ic i =  stands for the costs of two rare metal min-
eral resource developers and ir  is their fixed cost, then 

i iqη  is the variable costs of two developers respectively 
( )0it > .

Thus, the profits of rare metal mineral resource devel-
oper 1  in period t  are:

( ) ( ) ( ) ( )( ) ( )1 1 1 2 1 1 1 t q t m n q t q t r q π = − + − + η  . (10)

And the profits of rare metal mineral resource devel-
oper 2  in period t  are:

( ) ( ) ( ) ( )( ) ( )2 2 1 2 2 2 2t q t m n q t q t r q π = − + − + η  . (11)

By taking the first derivative with respect to the rev-
enue functions of rare metal mineral resource developers, 
the marginal profits of rare metal mineral resource devel-
opers are as follows:

( )
( ) ( ) ( )1

1 2 1
1

2
t

m nq t nq t
q t
∂π

= − − −η
∂

; (12)

( )
( ) ( ) ( )1

2 1 2
2

2
t

m nq t nq t
q t
∂π

= − − −η
∂

. (13)

In the actual market of rare metal mineral resources, 
the games between developers are perpetual, that is why 
the decision-making of developers’output policies is a dy-
namic process. Developers will put forward output and 
price policies based on the result of previous games. If 
they were satisfied with the results of last game, they might 
continue to use the previous stragegy, believing this strat-
egy will secure a good result. For all the rare metal mineral 
resource developers, the ultimate goal is the same, that 
is to say, to get the maximum of profits. Therefore, mar-
ginal profit is a key indicator of choosing game strategies 
of output and price. If the marginal profit of last round of 
game is greater than zero, developers tend to continue to 
implement the previous price strategy because the profit 
will keep on rising. Thus we have the repeated price model 
of game theory:

( 1) ( ) ( ) i
i i i i

i
q t q t q t

q
∂π

+ = +a
∂

, (14)

( 1,2)i ia =  is the intensity and speed of output adjustment, 

and by putting ( 1,2)i

i
i

q
∂π

=
∂

 into the equation above, the 

dual oligarch repeated output models of game theory are 
as follows: 

( ) ( ) ( ) ( )( )1 1 1 1 1 2 11) 2(q t q t a q t m nq t nq t+ = + − − −η
’ (15)

( ) ( ) ( ) ( )( )2 2 2 2 2 1 21) 2 .(q t q t a q t m nq t nq t+ = + − − −η  (16)

2.2. The equilibrium point and stability analysis 
in the oligarch market of rare metal minerals 
resources

The game system of rare metal mineral resouces shows 
that developers will make adjustments to their output 
based on the marginal profits in the last round of game. 
If the marginal profit in period t  is greater than zero, 
developers will continue to use the output strategy to set 
the price in period 1t + , even the adjustment intensity 
and speed of rare metal mineral output are different in 
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period 1t + , which will affect the outcome of the output 
game between rare metal mineral developers. Therefore, 
the adjustment intensity and speed of the output strategy 
of rare metal mineral developers, that is, ia  in the model 
is the main factor affecting the price game of rare metal 
mineral developers.

According to ( ) ( )1i iq t q t+ = , four system balance 
points can be obtained:

( ) 2 1
1 2 30,0 , 0, , ,0 ; 

2 2
m m

E E E
n n
−η −η   

= = =   
   

1 2 2 1
4

2 2
, .

3 3
m m

E
n n

− η + η − η + η 
=  
 

Jacobian matrix:

( ) ( )( )
( )

( )
( ) ( )( )

1 1 2 111 12

21 22 2 2

1 1

2 2 1 2

1 4

.
1 4

m nq t nq tJ J
J

J J n q t

n q t

m nq t nq t

 + a − − −η 
= =    − a  

− a

+ a − − −η 

1) For ( )1 0,0E = , the corresponding Jacobian matrix 
is:

( ) ( )
( )

1 1
1

2 2

1 0
0 1
m

J E
m

 + a −η
=   + a −η 

.

Because of 1m > η , 2m > η , ( )0 1, 2i ia > = ,the two 
characteristic roots of ( )1 J E  are ( )1 1 11 1ml = +a −η > ,

( )2 2 21 1ml = +a −η > . Therefore, the equilibrium point 
( )1 0,0E =  is an unstable point.

2) For 2
2 0,

2
m

E
n
−η 

=  
 

, the corresponding Jacobian 

matrix is:

( )
( )

( ) ( )

1 1 2

2
2 2

2 2

2
1 0

2

1
2

m

J E
m

m

 a − η + η
+ 

 =
 a −η

− −a −η 
 

.

A characteristic roots of ( )2 J E  is l1  =  1  +

( )1 1 2
1

2
1 1

2
ma − η +η

l = + > , therefore the equilibrium point 

2
2 0,

2
m

E
n
−η 

=  
 

 is an unstable point.

3) For 1
3 ,0

2
m

E
n
−η 

=  
 

, the corresponding Jacobian 
matrix is:

( )
( ) ( )

( )

1 1
1 1

3
2 1 2

1
2

2
0 1

2

m
m

J E
m

 a −η
−a −η − 

 =
 a + η − η

+ 
 

.

A characteristic roots of ( )3 J E  is 
( )2 1 2

2
2

1 1
2

ma +η − η
l = + >

( )2 1 2
2

2
1 1

2
ma +η − η

l = + > , therefore the equilibrium point 

1
3 ,0

2
m

E
n
−η 

=  
 

 is an unstable point.

4) For 1
3 ,0

2
m

E
n
−η 

=  
 

, the corresponding Jacobian 

matrix is:

( )
( )( ) ( )

( ) ( )( )
1 1 2 1 1 2

4

2 1 2 2 1 2

1 13 2 2 2
3 3

1 12 3 2 2
3 3

m m
J E

m m

 − a − η + η − a − η + η 
=  
 − a + η − η − a +η − η 
 

.

The characteristic polynomial of ( )4J E : F(l) = 
( ) 2F Tr Detl = l − l + , 2 4 0Tr Det∆ = − > . This means that the 

characteristic polynomial of the expected output E of rare 
metal minerals has real characteristic roots. Therefore, 
according to Jury’s argument for determining stability 
based on the Nash equilibrium point of discrete systems 
(Wang et al., 2019; Zhong et al., 2019), the point is lo-
cally stable if:

: 1 0.c Det − <

That is:

( )( )

( ) ( )
( )

( ) ( )
( )

1 2 1 2

2 1 2 1 2 1 2

1 2

2 1 2 1 2 1 2

1 2

2 2 0

4 3 2 4 2

2 0

2 2 2 2

2 0

m m

m m

m

m m

m

 + η − η − η + η >


    − − + a + η − η +a − +a +η − η ×   
 − η + η >


  − a + η − η +a − +a +η − η × 
 − η + η <

Let:

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2 1 2

4 3 2

4 2 2 ;

f m

m m

 a = − − +a + η − η + 
 a − + a + η − η − η + η 

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2 1 2

2 2

2 2 2 .

g m

m m

a = − a +η − η +

 a − +a + η − η − η + η 

From ( ) ( )1 10, 0f ga = a = , two roots can be obtained 
as:

( )
( )( )

2 2 1 2 2*
1

1 2 2 2 1 2 2

4 3 2
2 2 4

m
m m

− +a +a η − a η
a =

− η + η a +a η − a η −
;

( )
( )( )

2 1 2*
2

1 2 2 2 1 2 2

2 2
2 2 2

m
m m

a +η − η
a =

− η + η a +a η − a η −
;
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( )(
( ) ( ) ( )

* *
1 2

2
2 1 2

2 1 2 2 1 2 1 2

2[ 2 3) 3
.

2 4 2 2 2

m

m m m

a −a =

a + η − η − + 
   a + η − η − a +η − η − − η + η   

A s s u m e  t h a t :  ( )2 1 22 4d m= a + η − η − , 
( )2 1 22 2e m= a + η − η − . Because 1 22 0m+ η − η >  and 

1 22 0m− η + η > , 1 0Tr Det− + > .

 When 2
1 2

2
2m

a <
+ η − η

, 0d e< <  and  ** *
1 10a < < a . 

Solution condition b is *
1 1a < a , solution condition c is 

**
1 1a > a . So when ( )*

1 10,a ∈ a , the jury condition is sat-

isfied, at which point 1 2 2 1
4

2 2
,

3 3
m m

E
n n

− η + η − η + η 
=  
 

 

is a stable point. The feasible regions of 1a  and 2a  are 
shown in the black part of Figure 1.

  W h e n  2
1 2 1 2

2 3 ,
2 2m m

< a <
+ η − η + η − η

 

0d e< <  and * *
1 20 a a< < . Solution condition b is 

*
1 1a < a , solution condition c is **

1 1a < a . So when 

( )*
1 10,a ∈ a , the jury condition is satisfied, at which point 

1 2 2 1
4

2 2
,

3 3
m m

E
n n

− η + η − η + η 
=  
 

 is a stable point. The 

feasible regions of 1a  and 2a  are shown in the grey part 
of Figure 1.

  W h e n  2
1 2 1 2

3 4 ,
2 2m m

< a <
+ η − η + η − η  

 

0d e< <  and * *
1 20a a< < . Solution condition b is 

*
1 1a < a , which is contradictory, therefore at this point 

1 2 2 1
4

2 2
,

3 3
m m

E
n n

− η + η − η + η 
=  
 

 is not a stable point. 

So the feasible regions of 1a  and 2a  does not exist.

  When 2
1 2

4
2m

a >
+ η − η

,  0 d e< <  and 

* *
1 2a a> . By bringing in conditions b and c it is easy 

to prove that there is no solution, at which point 

1 2 2 1
4

2 2
,

3 3
m m

E
n n

− η + η − η + η 
=  
 

 is not a stable point. 

So the feasible regions of 1a  and 2a  does not exist.
According to the stability analysis, the value of the 

variable ia  will not affect the value of the Cournot equi-
librium point of the rare metal mineral developer, but will 
affect the stability of the Cournot equilibrium point. The 
theoretical significance of the stable area of the Cournot 
equilibrium point of the rare metal mineral developer: 
When the output adjustment variable ( 1 2, a a ) falls within 
the stable area, the Cournot equilibrium of the rare metal 
mineral developer is stable. If the output adjustment vari-
able ( 1 2, a a ) exceeds the stable domain, the rare metal 
mineral developer game system will become unstable and 
will undergo chaotic movement. This theoretical model 
reflects the practical significance of the market structure 
of rare metal mineral developers: In the actual rare metal 
minerals market game competition, before the output of 
the rare metal mineral developers has reached the Cournot 
equilibrium, the rare metal mineral developers will con-
tinue to conduct output games in order to obtain more 
economic profits, that is, constantly adjust their respective 
output. When the developers of rare metal minerals do 
not adjust the output fast and fall within the stable range, 
the market of rare metal minerals is relatively stable. If the 
output adjustment speed of any one of the developers of 
rare metal minerals is too fast and exceeds the stable area 
of the Cournot equilibrium, the entire rare metal minerals 
market will be in a chaotic state, the rare metal minerals 
market will be volatile, the price of rare metal minerals 
will fluctuate greatly, and the competition in the metal and 
mineral industry is fierce. To a certain degree of competi-
tion, the state needs macro-control to maintain the sta-
bility of the rare metal mineral market. Many countries 
will issue mining policies, resource tax policies, mineral 
development environmental policies and mineral export 
policies when the market is confined to a chaotic state to 
regulate the domestic rare metal mineral market and let 
the market operate in a stable state.

2.3. The stability analysis of Cournot-Nash 
equilibrium in the oligarch market of rare metal 
mineral resources

Considering the current status of rare metal market and 
the number of gaming oligarchs in the rare metal re-
source market (Chen et al., 2016) and the characteristics 
of Cournot-Nash equilibrium (Zhong et al., 2016; Jia et al., 
2017), this study assigns the parameters in the game sys-
tem of rare metal minerals: 1 25, 1, 0.1, 0.2m n= = η = η = , 
the results are as follows:

1 1 1 1 1 2( 1) ( ) ( )(4.9 2 ( ) ( ))q t q t q t q t q t+ = +a − − ; (17)

2 2 2 2 2 1( 1) ( ) ( )(4.8 2 ( ) ( ))q t q t q t q t q t+ = +a − − . (18)Figure 1. The stable area of Cournot-Nash Equilibrium of rare 
metal mineral development

1a

1 2

4
2m− η +η

2 2 1 2 2

1 2 2 2 1 2 2

4(–3 –2 )
( 2 –2 –4))(

m
m m

+a +a η a η
− η +η a +a η a η

1 2

2
2m−η + η 1 2

3
2m−η + η 1 2

4
2m−η + η2a
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By setting the anticipated output as ( 1) ( )i iq t q t+ = , 
we have:

1 1 1 2( )(4.9 2 ( ) ( )) 0q t q t q ta − − = ; (19)

2 2 2 1( )(4.8 2 ( ) ( )) 0q t q t q ta − − = . (20)

After solving the equation above by using Matlab, the 
non-negative real root is 1 2( 1.667, 1.567)E q q= = = . In 
order to secure the stability of the equilibrium point in the 
game of rare metal mineral resources, the author has taken 
the Jacobian Matrix (10) of the system into consideration:

1 1 2 1 1

2 2 2 2 1

1 (4.9 4 )
1 (4.8 4 )

q q q
J

q q q
+a − − −a 

=   −a +a − − 
. (21)

By putting the value of E  into the characteristic 
Eq.  (13), two characteristic modules of the equation are 
less than 1, so E  is the Cournot-Nash equilibrium of the 
system (10). The marginal profit of two developers is zero 
at the Cournot-Nash equilibrium, but it does not mean 
that the game is stabalized. If one developer changes the 
output, the process of the game can be extremely com-
plicated. So the Cournot-Nash equilibrium only suggests 
that the game is partially stable and the stable region is 
determined by 1 2( , )a a  of developers. In order to find out 
the stable region of Cournot-Nash equilibrium, the author 
put E  into (13) and get the characteristic polynomial of it: 

2( ) 0F Tr Detl = l − l + = . (22)

In this polynomial:

1 1 2 2 2 1

1 2

1 2

1 (4.9 4 ) 1 (4.8 4 )
1 (4.9 4 1.667 1.567) 1 (4.8 4 1.567 1.667)
2 3.335 3.135 ;

Tr q q q q= +a − − + +a − − =
+a − × − + +a − × − =
− a − a (23)

1 1 2 2 2 1

1 2 1 2 1 2 1 2

1 (4.9 4 ) 1 (4.8 4 )
(1 3.335 )(1 3.135 ) 2.612 .

Det q q q q
q q
= +a − − +a − − −      

a a = − a − a − a a
 

 (24)

By putting Tr  and Det  into the characteristic poly-
nomial , the ∆  is:

2 2
1 2

1 2 1 2
2

1 2 1 2

4 (2 3.335 3.135 )
4 (1 3.335 )(1 3.135 ) 2.612

(1 3.335 ) (1 3.135 ) 10.455 .

Tr Det∆ = − == − a − a −

× − a − a − a a =  

− a − − a + a a  

 

(25)

Obviously, the ∆  is greater than zero so that the char-
acteristic polynomial of E  has real characteristic root. 
Therefore, in this thesis the stable region of Cournot-Nash 
equilibrium can be determined according to the condition 
of Jury:

:1 0,
:1 0,
: 1 0.

a Tr Det
b Tr Det
c Det

− + >
+ + >

− <
 (26)

That is:

1 2

1 2 1 2

1 2

1 2 1 2

1 2 1 2

:1 (2 3.335 3.135 )
(1 3.335 3.135 10.455 ) 0;

:1 (2 3.335 3.135 )
(1 3.335 3.135 10.455 ) 0;

: (1 3.335 3.135 10.455 ) 1 0.

a

b

c

− − a − a +
− a − a + a a >
+ − a − a +

− a − a + a a >
− a − a + a a − <  (27)

By solving inequations above, we can get the stable re-
gion of Cournot-Nash equilibrium, which is determined 
by variables 1 2( , )a a , 1a  and 2a stand for horizontal and 
vertical axis respectively. According to Figure 2, the inter-
sections of the bifurcation curve and two axes are (0.6,0) 
and (0,0.638).

Figure 2. Stable region of Cournot-Nash equilibrium of rare 
metal mineral resources

According to the analysis of stability, the value of ia  
will not affect the value of Cournot-Nash equilibrium, 
but it will exert influence to the stability of developers’ 
Cournot-Nash equilibrium. The implication of the stable 
region of Cournot-Nash equilibrium of rare metal mineral 
resources is that when 1 2( , )a a , the variable of output ad-
justment, is included in the stable region, the Cournot-
Nash equilibrium is stable; when is beyond the stable 
region, the Cournot-Nash equilibrium is unstable and 
chaotic motion will occur. The practical meaning of this 
model in rare metal mineral resource market: in the actual 
game of rare metal mineral resources market, in order to 
get more profits, developers will continuously adjust their 
output until it reaches Cournot-Nash equilibrium. When 
the rate of adjustment is slow and included in the stable 
region, the market will be comperatively stable. If any one 
of those developers increases the rate of adjustment so 
fast that it goes beyond the stable region, turbulance and 
fierce competition will occure and the price of rare metal 
mineral resources will fluctuate greatly. The competition 
will be so fierce that the central government will have to 
take measures to stabalize the market by means of macro 
regulation. Next, the author will anaylze how the game 
system of the market will be affected by the change of ia .

2.4. Numerical simulation of the stability of 
Cournot-Nash equilibrium in dual oligarch market 
of rare metal mineral resources

As the 1 2( , )a a  goes beyond the stable region, the stabil-
ity of Cournot-Nash equilibrium will start to change. In 
Figure 3 and Figure 4, it is the process of Cournot-Nash 
game system entering chaotic state through double period 
bifurcation. In Figure 3, when 1 0.56a = , as 2a , the rate of 



Journal of Environmental Engineering and Landscape Management, 2021, 29(1): 73–84 81

output adjustment increases, the curve of developers’output 
changes. In this research, when 2 0.15a < , Cournot-Nash 
equilibrium is stable (in the first period). However, when 

2 0.15a > , the stability changes, and the output starts 
double period bifurcation, hence entering the second pe-
riod. As 2a  increases, the output of rare metal mineral 
resources enters chaotic state through double period bi-
furcation. Figure 4 shows the systemic bifurcation caused 
by the increase of 1a , when 2 0.12a =  when 2 0.58a < , 
Cournot-Nash equilibrium is stable (in the first period). 
However, when 2 0.58a > , the stability changes, and the 
output starts double period bifurcation, hence entering the 
second period. As 2a increases, the output of rare metal 
mineral resources enters chaotic state through double pe-
riod bifurcation. Figure 5 and Figure 6 illustrate the cha-
otic attractors provided that ( )1 20.56, 0.55a = a =  and 
( )1 20.56, 0.6a = a = .

Figure 3. 1 20.56, 0,0.6a = a ∈        

Figure 4. 1 20.12, 0,0.85a = a ∈  

Figure 5. ( )1 20.56, 0.55a = a =  

Figure 6. ( )1 20.56, 0.6a = a =

2.5. Chaos control of the stability of Cournot-Nash 
equilibrium in the dual oligarch market of rare 
metal mineral resources

Judging from the analysis of stability and chaos of 
Cournot-Nash equilibrium in the dual oligarch market of 
rare metal mineral resources, chaos will bring turbulance 
and instability to the market, so chaos is less favored in 
the market, hence calling for control of chaos. There are 
two aspects of chaos control in the market: if the chaos is 
harmful to the market, proper measures should be adopt-
ed to prevent chaos in the game system from happening; 
if the chaos is conducive to the market, lead and control 
will be taken in order to create chaos in the game system 
of rare metal mineral resource market. That is to say, for 
all the stakeholders in the market, to take control on chaos 
means that they will adopt measures to avoid chaos so 
as to maintain the equilibrium of output in the market. 
To control chaos in the game system of the rare metal 
mineral resource market, control strategies such as giv-
ing feedbacks of variables and adjusting parameters in the 
game system can be adopted based on the characteristic 
of the rare metal mineral resource market. To be specific, 
the equation of game system is:

1 1 2

2 1 2

( 1) ( ), ( ) ;

( 1) ( ), ( ) .

q t X q t q t

q t Y q t q t

+ =   
+ =   

 (28)

Controlled system of rare metal mineral resource mar-
ket:

1 1 2 1

2 1 2 2

( 1) (1 ) ( ), ( ) ( );

( 1) (1 ) ( ), ( ) ( ).

n

n

q t X q t q t q t

q t Y q t q t q t

+ = − γ + γ  
+ = − γ + γ  

 
(29)

Here, γ  is the parameter of control in the game sys-
tem ( 0,1 )γ∈   , it can postpone the occurance of bifurca-
tion in the market of rare metal mineral resources. When 

0γ = , the controlled system is the original system. In the 
original system, n  stands for the track of period n . When 

1n = , known as the Cournot-Nash equilibrium, the con-
trolled game system is:

1 1 1 1

1 2 1

2 2

2 2 2 1 2

( 1) (1 )( ( ) ( )(4.9
2 ( ) ( ))) ( );

( 1) (1 )( ( )
( )(4.8 2 ( ) ( ))) ( ).

q t q t q t
q t q t q t

q t q t
q t q t q t q t

+ = − γ + a −
− + γ

+ = − γ +
a − − + γ

 

(30)
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By giving certain value to γ , the stability of Cournot-
Nash equilibrium can be maintained in a larger value range 
of the bifurcation parameter. For the sake of research, this 
study assigns 10.25, 0.56γ = a = , and the values of other 
parameters stay consistent with ones in the numerical 
simulation, the controlled system (3–5) of market of rare 
metal mineral resources is as follows:

( ) ( ) ( ) ( ) ( )( )( )
( )

1 1 1 1 1 2

1

1 0.75 4.9 2

0.25 ;

q t q t q t q t q t

q t

+ = +a − − +

( ) ( ) ( ) ( ) ( )( )( )
( )

2 2 2 2 2 1

2

1 0.75 4.8 2

0.25 .

q t q t q t q t q t

q t

+ = +a − − +

 
(31)

Compared with Figure 3, the stable region of Cournot-
Nash equilibrium in the controlled system in Figure 7 has 
been enlarged, and 2a , the bifurcation point in controlled 
system, has increased from 0.15 in the original system to 0.55. 
That is to say, after the game system of market of rare metal 
mineral resources is controlled, the double perioed bifurca-
tion is postponed so that the chaos in the game is prevented.

Figure 7. Bifurcation in the game system of the rare metal 
mineral resources market 1 20.56, 0,0.6a = a ∈  

Based on analyses above, the decisions of developers 
definitely serve for the pursuit of maximum profit, so they 
will continuously adjust output to reach the maximum 
profit. As the rate of adjustment increases, the stability of 
the game system changes as well. In this thesis, the au-
thor found that once the rate of adjustment 1 2( , )a a  goes 
beyond the stable region of Cournot-Nash equilibrium, 
chaos will occur in the game system. This finding can 
explain the reason why intensified competition between 
developers can end up being chaotic in actual market 
theoretically. Rare metal minerals are key raw materials 
for the implementation of major national needs such as 
“Made in China 2025” and “Revolutionary Strategy of En-
ergy Production and Consumption (2016–2030)”, thus its 
fluctuation will inevitably impact the whole economy. The 
chaos in the market is what the state do not want. There-
fore, the state must influence the behavior of developers 
through resource tax, environmental tax and industrial 
policy. These developers should make proper regulation 
to the rate of price adjustment respectively so as to keep 

1 2( , )a a , the rate of change in the stable region.

Conclusions

Based on the game model of market structure and the 
theoretical analysis framework of complexity, this paper 
constructs the Cournot-Nash Game theory model of the 
rare metal mineral market. Combined with the actual situ-
ation of China’s rare metal market structure, the Cournot 
equilibrium point, Cournot equilibrium point stability 
and Cournot equilibrium stable chaos state and the path 
of chaos in China’s rare metal market are analyzed. Spe-
cific conclusions are as follows:

(1) Using the data in China, the simulated rare metal 
mineral production strategy variable 1 2( , )a a  falls 
between the interval (0.6, 0) and (0, 0.638).

(2) Only when 1 2( , )a a , variable of output adjustment, 
remains in the stable region, the Cournot-Nash 
equilibrium of developers is stable; when 1 2( , )a a  
goes beyond the stable region, the game system of 
developers will become unstable and chaotic mo-
tion will occur.

(3) When the output adjustment variable 1 2( , )a a  
of the rare metal mineral developer breaks out of 
the Cournot equilibrium stable area, the stability 
of the Cournot Nash equilibrium will change, and 
the Cournot game system will eventually enter the 
chaotic process after a period-doubling bifurcation.

(4) The chaotic phenomenon of the rare metal miner-
als market game can be suppressed. The doubling 
cycle bifurcation can be delayed by controlling the 
rare metal mineral market game system.

According to the above conclusions, the control strat-
egy of state feedback and parameter adjustment of the 
game system variables in the rare minerals market can 
control the chaos system of the game in the rare minerals 
market, and finally make the price of rare metals mineral 
developers stable at the cournot equilibrium price. The re-
sults were consistent with Du et al. (2017), He and Chen 
(2017), Zhong et al. (2016), and Jia et al. (2017). This con-
clusion will undoubtedly contribute to the healthy, stable 
and sustainable development of rare mineral market. The 
strategies for controlling the rare metals market game in 
the new era background to avoid entering chaos are as 
follows:First, the central government should gather some 
paces in terms of supply side structual reform of rare 
metal mineral resources, deal with overcapacity in the in-
dustry, and carry out M&A, transformation, relocation of 
outdated capacity in the industry using market methods. 
Second, great efforts should be made to accomplish joint 
reorganizaion of rare metal mineral resource enterprises, 
and the advantages of finance, management, technics of 
big enterprises in the industry should be brought to full 
use for the purpose of establishing big conglomorates with 
huge international competitiveness. Third, the task of joint 
merger and acquisition should goes hand in hand with 
methods of eliminating outdated capacity so as to pro-
mote the level of product structure and increase the com-
petitiveness of rare metal mineral resource enterprises. 
Last but not least, Chinese rare metal mineral resource 



Journal of Environmental Engineering and Landscape Management, 2021, 29(1): 73–84 83

industry should focus on technological innovations, so as 
to strengthen the competitiveness of products, meet the 
market demand, and optimize capacity structure from 
supply side.
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