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early design stage, decision makers can improve building 
performance at an optimum cost. Sustainable construc-
tion in addition to considering several aspects such as 
procurement, assembly, and commissioning, it addresses 
matters such as tendering, site planning and organization, 
material selection, recycling as well as wastes minimiza-
tion (Langston, 2008). 

Langston (2008) reported seven principles of sustaina-
ble construction that would ideally direct decision making 
during each phase of the design and construction process 
continuing throughout the building’s entire life cycle. The 
principles include: 1) reducing resources consumption 
(Reduce), 2) reusing resources (Reuse), 3) using recy-
clable resources (Recycle), 4) protecting nature (Nature), 
5) Eliminating toxins (Toxins), 6) applying life-cycle cost 
assessment, and 7) focusing on quality (Quality). It is com-
mon for project owners to have doubts in implementing 

FUZZY MONTE CARLO SIMULATION OPTIMIZATION FOR SELECTING 
MATERIALS IN GREEN BUILDINGS

Mohamed MARZOUK * 

Structural Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt 

Received 06 February 2019; accepted 27 December 2019

Highlights

	X Maximizing LEED credits for Construction Materials.
	X Providing decision making tool for selecting construction materials.
	X Modeling cost uncertainty of green technologies.

Abstract. Global interest in sustainable and green building design has been increasing in the last few decades. This interest 
is strengthened by the fact that sustainable measures help in reducing negative social and environmental impacts of build-
ings. For that, this paper aims to develop a mixed integer optimization model that aids architects/designers and owner rep-
resentatives during design stage in selecting building materials taking into consideration costs and risks that are involved 
in the selection process. The model is developed as a simulation optimization tool based on the Leadership in Energy and 
Environmental Design (LEED) rating system for new construction. The developed model allows deterministic and proba-
bilistic cost analysis of various design alternatives. In addition, it identifies the least possible cost to gain the LEED credits 
and the risks associated with materials’ quantities and materials’ unit prices. To illustrate the use of the proposed tool, a 
case study of an office building project constructed in Egypt is presented. An integrated Fuzzy Monte Carlo Simulation 
(FMCS) analysis is performed to account for the associated risks of using new materials in the considered case study. The 
proposed model is capable to capture the cost uncertainty of building materials and to identify the cost and sustainability 
performance of various building materials by relating the LEED rating system for new construction.
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Introduction 

There are many definitions of sustainable development 
worldwide. Clayton (1993) defines a sustainable devel-
opment as “a pattern of resource use that aims to meet 
human needs while preserving the environment so that 
these needs can be met not only in the present, but also for 
future generations”. The essence of this development is to 
reach to a balanced relationship between human activities 
and the natural environment (Clayton, 1993). Sustainable 
development aims to meet the present requirements with-
out substantially compromising the ability our descend-
ants to meet their future needs and requirements (WCED, 
1987). Several studies have been made to help designer 
and decision makers in applying sustainability standards 
in building design. These studies tried to develop models 
to optimize life cycle cost and select alternatives to achieve 
green building certification (e.g., LEED, BREEAM). In the 
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new sustainable designs that can be attributed to: 1) high 
upfront costs of most new green technologies, 2) high risk 
associated with commissioning these technologies, and 
3) uncertainties in these technologies’ cost savings claims 
throughout the buildings’ life cycle. 

Material take-off refers to a list of all the materials uti-
lized in the construction and their quantities. The mate-
rial quantity take-off represents an important part of the 
cost estimate because the material cost represents a large 
portion of the total project cost. Consequently, the un-
certainties associated with the material take-off and the 
material cost are a matter of major concern in case of fast 
track projects and adopting new technologies. Moreover, 
dealing with these uncertainties plays a very important 
role in providing an accurate cost estimate of construc-
tion projects. 

A lot of research efforts have been carried out to study 
material selection problem using different methods such 
as multi-objective optimization (Sirisalee et al., 2004; Ash-
by, 2000; Zhou et al., 2009; Marzouk et al., 2013), ranking 
methods (Jee & Kang, 2000; Chan & Tong, 2007), index-
based methods (Holloway, 1998; Giudice et al., 2005), and 
other quantitative methods (Farag, 2014; Menassa, 2011; 
Wang et al., 2005). Menassa (2011) introduced a financial 
pricing method to supplement the traditional net present 
value techniques to assess the feasibility of the sustain-
able retrofits investments for existing buildings taking into 
consideration lifecycle uncertainties of costs, and benefits 
of the undertaking. Wang et al. (2005) presented an ob-
ject-oriented framework that addresses green optimiza-
tion problems namely hierarchical variables and coupling 
with simulation programs through the implementation of 
genetic algorithms. They examined the trade-off between 
life-cycle cost and life-cycle environmental impacts for 
green designs. The criterion for optimizing sustainabil-
ity not only considers environmental impacts, economic 
impacts, and customer requirements, but also the market 
demand. Therefore, decision makers are capable of select-
ing the appropriate materials. 

Ljungberg (2007) proposed a method to capture the 
subjective factors that arise in the decision-making pro-
cess. The subjective factors used to describe the sustain-
able materials was assessed with the support of images. 
Visual features may broaden decision-making capabilities 
by allowing a process of evaluating more data without 
overloading the decision maker (Lurie & Mason, 2007). 
Through visual recognition and human’s highly developed 
skills of perceptual senses, decision makers could reduce 
large data sets to a set of simplified visuals that leads to 
an enhanced decision-making process (Heijungs et  al., 
2010). The assessment of sustainability perceptions among 
construction professionals may help in determining how 
do decision-makers actually perceive a product to be sus-
tainable and what factors are involved in the selection. 
Castro-Lacouture et al. (2009) developed a model based 
on mixed integer linear program (MILP) to improve green 
construction decision making by considering both design 

and budget constraints to address realistic scenarios ex-
perienced by the decision maker. It is reported that the 
current sustainable building literature lacks of a method 
that helps decision makers select the appropriate materials 
considering all the factors that arise in the decision-mak-
ing process in order to maximize sustainability in build-
ings (Ljungberg, 2007; Heijungs et  al., 2010; Franzoni, 
2011; Marzouk et al., 2018; Sameer & Bringezu, 2019). In 
addition, it lacks a method that could help the architects/
designers to provide the optimal selection of materials, 
while considering environmental goals via a standard and 
recognized method, and meeting design and budget re-
quirements at the same time.

The objective of this research is to develop a mixed 
integer optimization model that incorporates the selection 
of materials alternatives, cost and the cost uncertainty of 
these selections. The model is developed as a simulation 
optimization software system based on the Leadership in 
Energy and Environmental Design (LEED) rating system 
for new construction. A framework is developed for the 
purpose of guiding the decision makers, including ar-
chitects/designers and owner representatives, in the se-
lection of the optimum material alternative through the 
planning and design processes. The proposed model has 
novel aspects including: 1) trading-off between the cost 
and sustainability of building materials, 2) capturing the 
uncertainties that are associated with building materials, 
and 3) minimizing the total cost and cost uncertainty of 
the selected materials. The model allows the deterministic 
and probabilistic analysis of costs for various design alter-
natives, which makes it a tool that can identify the least 
possible cost of obtaining the LEED certification.

1. Model formulation

This section presents the formulation of the objective 
function that takes into consideration total materials cost 
and the target credits. Castro-Lacouture et al. (2009) have 
presented a model that considers nine building systems 
with a single objective function LEED credits. The pro-
posed model was based on a modified LEED rating sys-
tem for buildings in Colombia. They applied their model 
to a case study of a building in Colombia where the de-
veloped model can help decision makers to create a plan 
for the materials that they can use and the extent of their 
use. Table 1 lists the special credit name, number, intent 
and requirements of the LEED Rating System for New 
Construction and Major Renovations associated with the 
material selection of the project and the points awarded 
for fulfilling each credit. Total materials cost is calculated 
based on their direct cost using Eq. (1):

1 1
Min ,

jnm

ji ji
j i

TMC x c
= =

=∑∑
 
  (1)

where: jix  is binary decision variable that specifies the use 
of design alternative i for building component and j for 
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building system, and jic  is the cost for the material alter-
native. m represents the total no. of the building systems. 

jn  represents the no. of components within a system j. 
TMC represents total cost of the project. It worth not-
ing that the system refers to the name of the BOQ items. 
Whereas, the component refers to the utilized materials 
in the BOQ items.

The optimization problem aims at maximizing the ac-
complished LEED credits and minimizing the total mate-
rial cost. The constraint, given in Eq. (2), allows the deci-
sion makers to target specific LEED credits. 13 building 
systems are considered: 1) wood components, 2) con-
struction wood, 3) adhesives and sealants, 4) paints and 
coating, 5) carpets systems, 6) roofing systems, 7) glaz-
ing structure, 8) windows and skylight, 9) steel doors, 10) 
ceiling tiles, 11) floor finishing, 12) steel structure, and 
13) brick units.

1 1
Max ,

jnm

ji k
j i

LEED y z L
= =

= ≥∑∑   (2)

where: L is the target LEED credit point, jiy  binary vari-
able takes the value 1 if the material is used, otherwise, it 
takes 0 value; kz  is credit points) i for building component 
and j for building system. m represents the total no. of 
the building systems. n represents the no. of components 
within a system j. MaxLEED  represents number of LEED 
credit points of the project.

Furthermore, the model has several constraints that 
allow the following: 

 – Imposing lower and upper limits on the fraction of 
each building system using materials from a specific 
category.

 – Imposing a maximum number of materials that can 
be chosen to build each system.

 – Considering the LEED-based requirements as per 
Table 1. 

2. Fuzzy Monte Carlo simulation modeling 

Monte Carlo Simulation is used to model the uncertainty 
regarding the simulation model inputs (materials’ quanti-
ties and unit prices). One of the methods that can be used 
to estimate the probability of an event is the frequency of 
that event occurring in a number of experiments (Pedrycz 
& Gomide, 1998; Sadeghi et al., 2010). If the number of 
previous experiments was not large enough to conclude the 
probabilistic distributions, the need of the expert’s opinion 
will be required to fill this information’s gap. However, 
there is some difficulty in performing probabilistic analysis 
on subjective and linguistically expressed data (Goldstein, 
2006; Akadiri et al., 2013). Akadiri et al. (2013) proposed 
a model that guides the selection of sustainable building 
materials. The proposed model can be utilized in selecting 
building material, through the use of the fuzzy extended 
analytical hierarchy process (FEAHP) techniques. Their 
proposed technique focused on addressing the issues 
of sustainability-based assessments, and the process of 
prioritizing relevant assessment criteria. Their model 
is highly complex and computationally demanding, 
Furthermore, it lacks the integration with multiple criteria 
decision making (MCDM) methods. 

Zadeh (1965) introduced the fuzzy set theory to deal 
with uncertainty and vagueness of activities and problems. 
Fuzzy logic has been used successfully for representing 
such uncertainties in construction projects. In practice, 
an approach that can handle both random and fuzzy 
uncertainties is necessary. The literature is rich with research 
acknowledging the power of combining fuzzy logic with 
traditional simulation techniques (Antucheviciene et al., 
2015; Raoufi et al., 2016; Kim, 2017). Antucheviciene et al. 
(2015) examined applicable decision-making methods 
developed to deal with uncertainties of civil engineering 
problems, with a focus on MCDM by means of fuzzy logic 
and stochastic modelling. Their research focused on green 
buildings, building information modelling, health, and 
safety aspects of the built environment. They concluded 
that the combination of fuzzy logic and MCDM methods 
can greatly enhance the decision-making process in the 
area of sustainability and green construction. Raoufi et al. 
(2016) examined the advantages of integrating widely 
used simulation and fuzzy logic techniques in modeling 
construction systems. Such combination can powerfully 
deal with both systems complexities and subjective 
uncertainties. They also presented a framework for the 
suitable coupling of the two techniques. Kim (2017) 
discussed the inefficiency of Monte Carlo Simulations 
(MCS) affected by experts’ subjective uncertainties, 
through the manifestation of uncertainties in a single 
probability distribution. Accordingly, he introduced a 
fuzzy MCS approach to overcome for the previously 
mentioned inefficiencies, which produce a family of 
distributions, thus has an advantage in dealing with 

Table 1. Credits of Material Selection according to LEED 
Rating System (USGBC, 2009)

Area Credit 
Number

Credit 
Points Credit Name

Sustainable 
sites 7.2 1 Heat island effect

Materials & 
Resources

4 1–2 Recycled Content 
(10–20%)

5 1–2 Regional Materials 
(10–20%) 

6 1 Rapidly Renewable 
Materials

7 1 Certified Wood

Indoor 
Environmental 
Quality

4.1 1 Low-Emitting Materials, 
Adhesives & Sealants

4.2 1 Low-Emitting Materials, 
Paints & Coatings

4.3 1 Low-Emitting Materials, 
Carpet Systems

4.4 1
Low-Emitting Materials, 
Composite Wood & 
Agrifiber Products
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epistemic uncertainties. The proposed model represents a 
framework that can deal with both probability and fuzzy 
uncertainties. FMCS is implemented because the Monte 
Carlo Simulation fails to deal appropriately with the 
subjective and the linguistic data. FMCS is a combination 
between the fuzzy set theory and the probability theory 
in order to deal with the input uncertainties of the Monte 
Carlo simulation model (Zheng et al. 2019; Khishtandar, 
2019; Peña et al., 2018). The sources of information about 
the construction projects may differ. Consequently, some 
input parameters of the project may be in the form of the 
probability distributions while others may be in the form 
of fuzzy membership functions.

A FMCS can be used to analyze risk in problems 
that contain both fuzzy and random inputs (Sadeghi 
et  al., 2010). For random variables (Ri) and subjective 
variables as fuzzy sets (Fi), the proposed model (M) can 
be expressed as per Eq. (3):

Y = M(R1, ..., Rn, F1, ..., Fm). (3)

Fuzzy arithmetic is performed to calculate the output 
in the form of a fuzzy set as per Eq. (4):

M(r11, …., rn1, F1, …., Fm)   →  Y1  (4)

M(r12, …., rn2, F2, …., Fm)   →  Y2

M(r1w, …., rnw, Fw, …., Fm)   →  Yw,

where: M represents the model that incorporates both 
random variables and fuzzy sets, r represents the random 
variables of the model and they are represented by prob-
ability distributions. F represents the fuzzy sets and they 
are represented by membership functions. R indicates the 
probability distributions. Y represents the output of the 
model. 

The developed model uses the FMCS to simulate 
the uncertainty of the input data which are the quanti-
ties and unit prices of the materials. The materials’ unit 
prices and quantities’ uncertainties can be attributed to 
time limitations in fast track projects. The model opti-
mizes the percentage used from each system’s alternatives 
to achieve the optimization. Robati et al (2019) used the 
Monte Carlo simulation method to predict the embodied 
CO2-e emissions ranges. The simulation was applied on 
one case study which was the net-zero energy building 
at the University of Wollongong. The probability distribu-
tions of the most influential building materials was used 
to estimate the mean embodied CO2-e emissions value of 
each of the building materials. Then using MCS produced 
the function for the whole life embodied carbon emission 
of the building.

Although the effect of material selection on the sus-
tainability of buildings was highlighted by numerous pa-
pers, they are not thoroughly investigating materials se-
lection parameters. Further, few papers focused on other 
aspects like health and safety (e.g., Antucheviciene et al., 

2015). Other literature like Robati et al. (2019) were more 
of an assessment for material selection for existing build-
ings. Even the few sustainable material-selection focused 
models, such as Akadiri et al. (2013), suffered from dis-
advantages that limited their applicability, or Castro-La-
couture et al. (2009) which was a single objective function 
limiting its use as well. This highlights the need for the 
proposed sustainable materials selection aiding model that 
integrates MCDM methods to overcome the downsides of 
existing models.

3. Case study

In order to verify the performance of the developed model 
and to demonstrate its use, a case study of 21 000 m2 LEED 
Gold Certified office building constructed in Cairo is ana-
lyzed. It is a four-story building consisting of ground floor, 
three typical floors (3000 m2 each), and two underground 
parking floors (4500  m2 each). The construction of the 
building was completed in December 2009 and it started 
operation in January 2010. The building accommodates 
1200 employees and it has gold level according to LEED 
rating system for new construction. It has been reported 
that the building has saved in energy consumption cost, 
chilled water consumption cost, and domestic water 
consumption cost. Table  2 lists the 13 systems of the 
administrative building. It shows building systems, systems 
ID, quantities, and units. Probabilistic distributions are 
used to express the uncertainty regarding those variables. 

Table 3 lists the building system, material alternatives, 
unit cost distribution for each alternative, solar reflectance 

Table 2. Building systems and their respective quantitates

ID System Name Quantity Unit

1 Wood Components 
(W) Uniform (2200–2300) m

2 Construction Wood 
(CW) Uniform (11900–12000) m2

3 Adhesives and sealants 
(AS) Uniform (120–130) Gal.

4 Paints and Coatings 
(PC) Uniform (720–725) Gal.

5 Carpet System (C) Uniform (6750–6800) m2

6 Roofing System (R) Uniform (2670–2700 m2

7 Structural Glazing 
(SG) Uniform (5680–5700) m2

8 Windows and 
Skylights (WS) Uniform (3680–3700) m2

9 Steel Doors and 
Frames (SD) Uniform (205–210) m2

10 Ceiling Tiles (CT) Uniform (16100–16200) m2

11 Flooring Finish (F) Uniform (1480–1520) m2

12 Structural Steel (SS) Uniform (1,680–1,720) Ton

13 Masonry Units (MU) Uniform (10,000–
10,100) m2
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Table 3. Characteristics of materials alternatives

System Material Unit Price P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Wood 
Components 
(W)

Archi-Touch Tri. (1270,1274,1280) – 0.35 0 0 1 – – – 1500 0.2 1

Mobica Tri. (760,770,790) – 0 0 0 0 – – – 1200 0 1

Construction 
Wood (CW)

CW1 Tri. (345,350,355) – – 0 1 – – – – – 0 1

CW2 Tri. (395,400,405) – – 0 0 – – – – – 0 0

CW3 Tri. (445,450,455) – – 1 1 – – – – – 0.3 0.8

CW4 Tri. (245,250,255) – – 1 0 – – – – – 0 0

CW5 Tri. (345,350,355) – – 1 1 – – – – – 0.5 0.8

Adhesives 
and sealants 
(AS)

BASF Tri. (22,24,26) – 0 1 – – 700 750 – – 0 1

SIKA Tri. (14,16,18) – 0 1 – – 850 750 – – .4 1

CMB Tri. (8,10,12) – 0 1 – – 550 250 – – 0 1

Paints and 
Coatings 
(PC)

Juton Tri. (23,25,27) – 0.5 1 – – 0 150 – – 0.6 0.8

Terraco Tri. (16,18,20) – 0 1 – – 150 100 – – 0 1

Sipes Tri. (13,15,17) – 0 1 – – 250 150 – – 0 1

Carpet 
System (C)

Magtrad Tri. (175,177,180) – 0.06 1 – – – – 215 500 0 1

Interface Tri. (290,296,300) – 0.06 1 – – – – 180 500 0 1

Roofing 
System (R)

Big white 
gravel Tri. (20,22,24) 87.5 0.95 1 – – – – – – 0.1 0.3

Grey Gravel Tri. (12,14,16) 70 0.75 1 – – – – – – 0 1

Small white 
gravel Tri. (28,30,32) 72 0.2 1 – – – – – – 0.3 0.9

Structural 
Glazing (SG)

ALICO Tri. (1820,1826,1830) – 0.8 1 – – – – – – 0 1

ALUNILE Tri. (1970,1975,1980) – 0.65 1 – – – – – – 0 1

Windows 
and Skylights 
(WS)

ALICO Tri. (245,250,255) – 0.25 1 – – – – – – 0.3 0.3

ALUNILE Tri. (195,200,205) – 0.1 1 – – – – – – 0.5 0.9

Steel Doors 
and Frames 
(SD)

France Metal Tri. (540,550,560) – 0.45 0 – – – – – – 0.3 0.5

Marryat & 
Scott Tri. (490,500,510) – 0.4 1 – – – – – – 0.5 0.9

Ceiling Tiles 
(CT)

AL BARAKA Tri. (55,57,60) – 0.5 1 – – – – – – 0.2 .4

AL ZABY Tri. (49,51,53) – 0.7 1 – – – – – – 0 1

I.B.S Tri. (58,60,62) – 0.5 0 – – – – – – 0.6 1

AZ 
International Tri. (40,43,45) – 0.6 1 – – – – – – 0 1

Structural 
Glazing (SG)

Archi–Touch Tri. (115,120,125) – 0.55 1 – – – – – – 0.2 0.6

Mobica Tri. 75,80,85) – 0.75 1 – – – – – – 0.2 0.8

Structural 
Steel (SS)

AZZ Tri. (3645,3650,3655) – 0.1 1 – – – – – – 0.2 0.5

Bashy Tri. (3745,3750,3755) – 0.2 1 – – – – – – 0 1

Masonry 
Units (MU)

Camenta Tri. (73,75,77) – 0.5 1 – – – – – – 0 1

Toblat Tri. (83,85,87) – 0.4 1 – – – – – – 0.2 0.4

Samcret Tri. (63,65,67) – 0.7 1 – – – – – – 0 1

Notes: P1 is Solar reflectance index, P2 is Recycled content, P3 is  Regional material,  P4 is  Rapidly renewable material,  P5 is  
Urea-formaldehyde,  P6 is  VOC content for AD & S,  P7 is  VOC emission factor Carpet,  P8 is  Max VOC Content,  P9 is  Max 
VOC Emission,  P10 is  Lower Limit, and  P11 is  Upper Limit.
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index, recycled content, regional materials percentage, 
content of volatile organic compounds, the lower limit 
of the material, and the upper limit of materials for each 
system. The uncertainty in the unit cost may be a result 
of uncertainty associated with labor productivity due to 
unexpected weather conditions (Ahuja et al., 1994). The 
table lists the characteristics of the alternative material of 
the building systems that could be used to achieve points 
for the special credits of the LEED rating system for new 
constructions and major renovations. The solar reflectance 
index is used to indicate the amount of sunlight reflected 
by the surface of the roofing material.

The percentage of the recycled content is based on the 
cost of the value of the material of the whole project. If 
10% of the project is made of recycled material, then, the 
project earns 1 point in the rating system, and for an ad-
ditional 10% another point is awarded. The percentage of 
the regional material is based on the cost of the value of 
the material of the whole project. If 10% of the project is 
made of material extracted, harvested, recovered, or man-
ufactured regionally within 500 miles radius of the project 
site then the project earns 1 point in the rating system, 
and for an additional 10% another point is awarded. Rap-
idly renewable material or products helps to earn another 
point when 2.5% of the project‘s value is made of material 
or products that are manufactured from plants that have 
a ten-year re-harvest cycle or shorter, one or two credits 
are acquired in case of 30% or 40% of the used furniture 
conform to the limitations of containing certain chemical 
groups, most notably the urea formaldehyde group. Up to 
3 credit points are acquired for conforming to the limita-
tions of volatile organic compounds (VOC) emissions and 
content. There are 7 categories to conform to; one point, 
two points, and 3 points are acquired if the new construc-
tion is compliant with the criteria of two, 4 and 5 of the 7 
categories respectively. P6 to P11 of Table 3 lists the VOC 
characteristics of each of the construction’s systems.

Figure  1 represents the transformation of the trian-
gular distribution for the unit cost of the wood compo-
nent (W) from Mobica in Table  3 to a fuzzy member-
ship function based on Dubois et al. (2004). The FMCS 
model provides the mean quantities and their standard 
deviation for each material and their corresponding total 
cost distribution. Table 4 lists the fraction of each system 
to be utilized from the selected materials. The FMCS 
optimization performance chart is shown in Figure 2.

Figure 2. FMCS optimization performance

Table 4. Selected materials percent for each system

System ID
Alternative

1 2 3 4 5

W 0.377 0.623 – – –
CW 0.0 0.0 0.3 0.0 0.7
AS 0.0 0.4 0.6 – –
PC 0.6 0.4 0.0 – –
C 0.0 1 – – –
R 0.4 0.3 0.3 – –

SG 1 0 – – –
WS 0.3 0.7 – – –
SD 0.3 0.7 – – –
CT 0.2 0.0 0.6 0.2 –
SG 0.6 0.4 – – –
SS 0.0 1 – – –

MU 0.0 0.4 0.6 0.0 0.0

Table  5 lists the material alternatives that the model 
selected to optimize total materials cost, their quantities, 
and unit prices. This illustrates the model ability to se-
lect more than one alternative for the same system. For 
example, in the Construction wood (CW), the model se-
lected 3589.8 m from alternative CW-3 and 8376.2 m from 
CW-5. Based on the materials costs, shown in Table  5, 
the mean total cost is calculated to be L.E 33,577,447 
as shown in Figure  3. Although the solution shown in 
Table  5 satisfies design constraints, it achieved 9 out of 
the 11 LEED-based constraints. Therefore, further analysis 
is required to determine how to gain more points will 
add value to the decision-making process. Given the 

Figure 1. Transformation of the triangular distribution for the 
unit cost of One Wood Component (W) Materials
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uncertainty in material cost that ranges from 10% to 20%, 
the model simulates several random scenarios for the cost. 
Out of such scenarios, the decision maker determines the 
probabilistic cost with the acceptable precision. In the 
herein case study, the probabilistic cost of 38,550,350 L.E. 
was obtained at (90% precision) as shown in Figure 4.

A further analysis is conducted to illustrate the 
proposed model effectiveness; the cost of a traditional 
concrete office building of similar features of the present 
case study is L.E 33,600,000. Meanwhile, the cost of 
the optimum solution taking into consideration the 
LEED credits and total cost as objective functions is L.E 
33,577,447. This demonstrates that there is no significant 

escalation in the cost of the building. Nevertheless, there 
is a substantial increase in the earned LEED credits. Thus, 
the present case study is considered environmental and 
economical-effective, and consequently this demonstrates 
the distinct capabilities of the proposed model.

4. Results and discussion

The proposed methodology is capable to account for the 
associated risks of using new building materials using an 
integrated Fuzzy Monte Carlo Simulation (FMCS) analy-
sis. Figure 5 illustrates the fuzzy CDFs graphs that depict 
how the fuzziness of the output increases in a proportional 

Figure 3. Total cost distribution obtained from simulation Figure 4. Probabilistic Material Cost Curve
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manner with the number of fuzzy inputs (k). A Group of 
scenarios is presented in Figure 5 where in each scenario 
some of the variables are fuzzified while the remaining 
variables are probabilistic. The output of the traditional 
Monte Carlo is shown in Figure 5 (K = 0) where there is 
no fuzziness associated with the constructed cumulative 
density function (CDF) curve. The x-axis represents the 
total cost of the project while the y-axis represents the 
probability. As the number of fuzzy inputs decreases, 
the bounds of CDF become smaller. Figure  5 helps the 
decision maker to determine the probability that the total 
project cost exceeds a certain number, and consequently, 
the decision maker can calculate the mark-up and final 
bid price. These curves are of great importance to decision 
making to make their decision with respect to the problem 
under consideration (Zheng et  al., 2019; Wang & Ran, 
2019; Kim, 2017).

The model shows the points that represent an alterna-
tive for each level of LEED-based score as per Figure 6. 
A comparison between 9 and 10 credit point achieving 
solutions have been made; the 10 points score case comes 
with a substantial increase in costs, relative to the cost of 
achieving 9 points score. Therefore, based on cost, the 9 
points solution dominates 10 points solutions. In this case, 
the cost criterion determined the optimum alternative. 
This ensures obtaining sustainable materials at minimum 
costs as proposed in literature (Teng et  al., 2019; Chen 
et al. 2019; Marzouk et al., 2018).

However, material availability and delivery time should 
be considered when a set of alternatives would have the 
same number of LEED credit point. Material constraints 
limiting the choice of alternatives result in restricting the 
capacity of the model to awarded points. The Sensitivity 
Analysis of the FMCS optimization was conducted for dif-
ferent uncertain variables selected from the quantities and 
material prices.

Conclusions

This paper presented the implementation of a model dedi-
cated for sustainable materials selection. The target was to 
achieve LEED credits taking into consideration minimiz-
ing the cost of materials. Several material alternatives have 
been selected and cost thereof introduced to the model 
as an input. In fact, the materials selected by the model 
proved to be more economic than those that were actu-
ally selected by the project. The proposed model helps 
decision makers select the most suitable materials in the 
design phase by optimizing project cost to achieve a speci-
fied LEED credit point. Also, it accounts for the associated 
uncertainties, specifically for newly introduced materials. 
An integrated Fuzzy Monte Carlo Simulation (FMCS) 
analysis was performed to account for the associated risks 
of using new materials. The proposed FMCS analysis is 
capable to represent both fuzzy and probabilistic uncer-
tainties simultaneously. Monte Carlo simulation has been 
used to address probabilistic uncertainties in range esti-
mating as well as fuzzy sets which have used to address the 

Table 5. Case study selected materials

System 
Name

Material 
Alternative

Quan- 
 tity

Unit 
price Amount

Wood 
Com po-
nents (W)

Archi-Touch 843.986 1274 1,075,238.16

Mobica 1396.414 770 1,075,238.78

Cons truc-
tion Wood 
(CW)

CW-3 3589.8 450 1,615,410.00

CW-5 8376.2 350 2,931,670.00

Adhe sives 
and sea lants 
(AS)

SKIA 50.4 16 806.40

CMB 75.6 10 756.00

Paints and 
Coatings 
(PC)

Jotun 433.2 304 131,692.80

Terraco 288.8 202 58,337.60

Carpet 
System (C)

Style De sign 
(In terface) 6792 177 1,202,184.00

Roofing 
System (R)

Big white 
gravel 1070 28 29,960.00

Grey gravel 802.5 14 11,235.00
Small white 
gravel 802.5 30 24,075.00

Structural 
Glazing 
(SG)

ALICO 5685 1826 10,380,810.00

Windows 
and 
Skylights 
(WS)

ALICO 1105.5 1826 2,018,643.00

ALUNILE 2579.5 1979 5,104,830.50

Steel Doors 
and Frames 
(SD)

France Metal 62.7 550 34,485.00
Marryot& 
Scott 146.3 500 73,150.00

Ceiling 
Tiles (CT)

AL 
BARAKA 3232.4 57 184,246.80

I.B.S 9697.2 61 591,529.20
AZ Inter-
national 3232.4 43 138,993.20

Flooring 
Finish (F)

Archi-Touch 895.2 121 108,319.20
Mobica 596.8 121 72,212.80

Structural 
Steel (SS) Bashy 1696 3650 6,190,400.00

Masonry 
Units (MU)

Toblat 4024.8 46 185,140.80
Samcret 6037.2 56 338,083.20

Total Cost 33,577,447.0

Figure 6. LEED Credits vs. Cost
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imprecise information. As such, it is considered a novel 
way to represent uncertainties with cost estimating of the 
materials that is used in construction.

Disclosure statement 

The author declares he doesn’t have any competing finan-
cial, professional, or personal interests from other parties.

Future research perspectives 

The present study can be extended in the future to in-
corporate minimizing carbon dioxide emissions as a third 
objective function in selecting the optimum sustainable 
materials. This can be developed using Building Informa-
tion Modeling to retrieve materials’ data in an automated 
manner. Also, further criteria can be investigated such as 
the use of raw materials as well as the considered con-
struction project type since each type has its own require-
ments. Further studies can cover the recent editions of 
rating systems such as LEED V4-US, BREEAM-UK, and 
GPRS-Egypt.
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