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(Li et al., 2016; Li et al., 2017). These problems have been 
largely studied from the perspective of landscape patterns 
(Li et al., 2017; Zhang & Su, 2016) and are often described 
using landscape metrics (Dadashpoor et  al., 2019; Jiao 
et al., 2019; Shen et al., 2019; Yang et al., 2019).

However, the landscape pattern is scale-dependent 
(Wu et  al., 2002). For the studies of landscape ecology, 
the choice of scale is an indispensable and important link 
(Feng et al., 2018; Li et al., 2017; Zhou & Cao, 2020). Large 
scale often ignores some subtle features, while small scale 
would be lack of global perspective. Numerous studies 
have investigated various scale effects on landscape pat-
terns using contrived and real data (Tian et al., 2019; Wu, 
2004; Wu et al., 2002). These spatial scales can be classi-
fied into two types: a change in grain size, and a change 
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	X This study quantifies the block scale effect on landscape patterns and GWR models.
	X Finer block scale can exhibit more landscape pattern details of urbanization.
	X Odd-numbered block has stronger explanatory power than adjacent numbered block.
	X The driving factors have the lowest explanatory power on PD than others. 
	X The local parameters of GWR models are scale-dependent. 

Abstract. Spatial scale is an eternal topic in landscape pattern related analysis. This paper examined the spatial scale effect 
of landscape pattern changes and their relationships with urbanization indicators in Qingdao using a series of sampling 
blocks. The results indicated that, with the increasing block scale, the mean patch density and aggregation within a block 
decreased, whereas the diversity increased. Furthermore, the expanding scale amplified the mean change ratio of landscape 
metrics and eliminated local drastic changes and regional variation trends along an urban-to-rural gradient, which would 
be obvious at a finer block scale. Meanwhile, the adjusted R2 of GWR (Geographically Weighted Regression) models in-
creased with an increasing block size, especially when the block scale changed from 1 km to 5 km. Odd-numbered block 
scales performed better than even-numbered block scales.
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Introduction

People living in urban areas worldwide has reached 50% 
and this will increase to 65% by 2050 (Ali et al., 2019). The 
aggregation of population has caused tremendous urban 
land extension (Yang et  al., 2019) and accompanied so-
cial and economic activities (Marull et al., 2015). At the 
same time, this rural-urban process can lead to many en-
vironmental issues (Sun et al., 2018). For example, trans-
formation from forest or cultivated land to impervious 
land, which occurs under urbanization, will affect climate 
regulation and cause an urban heat island effect (Zhou 
& Cao, 2020). Expansion of built-up land and a more 
concentrated population can also cause resource crises, 
atmospheric contamination, traffic jams, noise pollution, 
food supply reductions and carbon sequestration declines 
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in extent. Grain is the spatial resolution of the data (i.e., 
the area represented by each cell). When analyzing this 
effect on landscape patterns, the original spatial resolu-
tion is resampled at multiple scales. For example, Wu 
et al. systematically changed four landscapes’ grain sizes 
from 1×1 to 100×100 pixels following the majority rule 
and investigated the influence of changing the spatial 
resolution on 19 commonly used landscape metrics (Wu 
et al., 2002). Meanwhile, regular grids or blocks generat-
ed from GIS fishnets have been adopted to study spatial 
heterogeneity of landscape patterns (Du et al., 2014; Li 
et al., 2017; Su et al., 2011). Feng et al. compared land-
scape metrics measured in moving windows with differ-
ent sizes (Feng et al., 2018), which takes cells into con-
sideration repeatedly during the metric calculation pro-
cess and finally generates maps of metrics with a spatial 
resolution that is the same as that of the original map. 
In addition to these regularly changing extents, irregular 
boundaries, such as political, metropolitan, ecological 
and watershed boundaries, have been used to evaluate 
the effect of the extent on landscape patterns (Su et al., 
2014; Torres et al., 2016).

The scale effect of landscape pattern will be introduced 
to spatial relationships between landscape metrics and 
various ecological indicators which was often explored by 
geographically weighted regression (GWR) (Alibakhshi 
et al., 2019; Li & Zhao, 2019; Li et al., 2017; Luo & Peng, 

2016; Yang et al., 2019). Studies have demonstrated that 
three aspects of scale effects existed in GWR models (Yang 
et al., 2019): (1) the kernel bandwidth, which determines 
the weight; (2) the block scale selected when calculating 
the landscape metrics; and (3) selection of the window 
size when analyzing local variance. Although these scale 
effects have been taken into consideration in most of the 
works related to GWR, a systematic understanding of the 
block scale effect in GWR modeling is still lacking. There-
fore, further research should be conducted to clarify the 
block scale effect on GWR results. 

In order to check the effect of block scale on GWR 
models, we built relationships between landscape metrics 
and urbanization indicators. Qingdao city was taken as a 
case study because of its rapid economic development and 
the succedent land use changes. When building models, 
the change in landscape metrics is taken as an induced 
variable, and the independent variables include socio-
economic data (gross domestic product and population 
density) and the human activity intensity (nighttime light 
data). Specifically, the primary goals of this study are to 
(1) recognize the land-use and landscape pattern changes 
between 1995 and 2010 in Qingdao, (2) investigate the 
effects of the block scale on landscape patterns systemati-
cally and (3) check the influences of a series of block scale 
on GWR models between landscape pattern changes and 
urbanization.

Figure 1. Location of Qingdao and its land-use map from 1995 to 2010
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1. Study area and data sources

1.1. Study area

Qingdao is a city with quick economic development in 
Shandong province, which lies on the east coast of China 
with latitude stretches from 35°35′ to 37°09′ N and lon-
gitude from 119°30′ to 121°00′ E (Figure  1). The city 
encompasses a total land area of 11, 282 km2 and had a 
population of 9 million in 2017. Situated on the Yellow 
Sea in the east and south, Qingdao possesses a representa-
tive marine climate with an annual average temperature 
of 12.4 °C and an average precipitation of 662 mm (Peng 
et  al., 2018). From 1995 to 2010, the total residential 
population of Qingdao increased from 6.78 million to 
8.71 million. Gross domestic product and its per capita in 
Qingdao have experienced rapid growth since 1990, with 
the growth rates exceeding one digit from 1998 to 2009 
apart from the global financial crisis years (2007–2008) 
(Zhang & Rasiah, 2013). Qingdao has 6 districts (Shinan, 
Shibei, Licang, Laoshan, Huangdao and Chengyang) and 
comprises five county-level cities (Jiaonan, Jiaozhou, Jimo, 
Pingdu and Laixi) (Figure 1).

1.2. Data sources

Three datasets were used in our study: land-use/cover 
(LUCC) dataset, spatial socioeconomic dataset and night-
time light (NTL) dataset. The LUCC data were used to cal-
culate landscape metrics and analyze landscape patterns in 
Qingdao. The socioeconomic and NTL data were taken as 
indicators of urbanization. The acquisition methods and 
related details for these data are listed below.

The LUCC and the socioeconomic data for Qingdao 
in1995 and 2010 were collected from the Resource and 
Environment Data cloud platform, Chinese Academy of 
Sciences (Xu et  al., 2018). Their spatial resolutions are 
30  m and 1  km, respectively. The original LUCC types 
were reclassified into eight categories (Figure 1). Among 
these land types, the water body type includes the origi-
nal secondary type of rivers, lakes, reservoirs and ponds, 
whereas the wetland type is composed of mud flat, bot-
tomland and marshland. 

The values of each socioeconomic raster are the gross 
domestic product (GDP) and population per km2 (POP), 
which were calculated through interpolation considering 
the county’s differentiation of GDP and demographic data.

The version 4 NTL datasets in 1995 and 2010 were de-
rived from the US Government’s Defense Meteorological 
Satellite Program Operational Line Scan System (DMSP-
OLS) Nighttime Lights remote sensing imagery (Defense 
Meteorological Satellite Program, n.d.). These data were 
provided in 30-arc-second grids with pixel values varying 
from 0 to 63. The NTL data have been effectively applied 
to estimate the dynamics of urban sprawl because the av-
erage pixel values are mainly from lights in cities, towns 
and places with lasting illumination (Baugh et al., 2010; 
Zhang & Seto, 2011). Thus, we designated this dataset an 
indicator of the human activity intensity. However, some 

calibrations must be adopted before using the time series 
of these data due to the lack of on-board calibration and 
inter calibration, which will result in non-continuity and 
non-comparability (Elvidge et al., 2009; Liu et al., 2012). 
To improve the continuity and comparability between 
different years and different satellite data, we adopted the 
methods developed by Liu et al. (2012) to preprocess the 
NTL datasets in this study. First, a second-order regres-
sion model for inter calibration was used to improve the 
comparability of NTL data between different years; sec-
ond, information from two satellites in the same year was 
utilized to eliminate as table pixels in that year; and fi-
nally, inconsistencies in pixels in the multi-year dataset 
were corrected through an inter-annual series correction 
method. After the above steps, the preprocessed global 
NTL datasets from 1995 and 2010 were projected onto 
a Universal Transverse Mercator projection (UTM zone 
51N) and resampled to a 1 km spatial resolution. Then, 
the administrative boundaries of Qingdao were used to 
extract the NTL datasets.

2. Methods

2.1. Calculation of landscape metrics

When analyzing landscape patterns, the selection of ap-
propriate metrics is very important. To allow comparisons 
with previous studies and avoid autocorrelation between 
variables (Li et al., 2017; Riitters et al., 1995), four land-
scape-level metrics were used in this study: 1) the patch 
density (PD),which is the patch number per square kilo-
meter and is an indicator of fragmentation and aggrega-
tion of a landscape; 2) the edge density (ED), which is 
calculated as the summation of all edge lengths per hec-
tare and indicates a more irregular shape of patches with 
a larger value; 3) Shannon’s diversity index (SHDI), which 
can reflect the heterogeneity of the landscape with a value 
equal to zero when only one patch exists; the value will 
increase when the patch type number increases and/or 
when different patch types becomes more equitably dis-
tributed; and 4) the aggregation index (AI), which can 
provide knowledge of landscape structure and is helpful 
for guiding the urbanization process toward sustainability.

2.2. Generating of the series of blocks

To systematically investigate the effects of changing scale 
on the landscape patterns and GWR models, several steps 
were conducted. First, a series of fishnets with pixel sizes 
of 0.9 km (hereafter 1 km, the round method is the same 
with other decimal scales), 2.1 km, 3 km, 3.9 km, 5.1 km, 
6 km, 6.9 km, 8.1 km and 9 km were created by the Fish-
net tool in ArcGIS 10.3. The reason for using the deci-
mal scale was that these sizes were integral multiple of 30 
which is the spatial resolution of the LUCC. The scale was 
restricted to 9 km because a scale larger than 9 km would 
contain too few blocks to conduct the analysis. Blocks 
with less than half of their land located in the boundary 
of Qingdao were deleted.
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Second, nine fishnets were intersected with the LUCC 
maps in 1995 and 2010 to split the raster into tiles associ-
ated with each block. This step was conducted using the 
Split Raster tool in ArcGIS 10.3.

Third, four landscape-level metrics for each tile of the 
nine fishnets were computed in the Fragstats 4.2 software 
using the batch method. Then, the results were exported 
and joined to the attribute table of each fishnet dataset by 
tile names.

Finally, the differentiation between the 1995 and 2010 
changes was computed as a new attribute field for each 
block scale through Eq. (1):
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where: iR  is the change ratio of the landscape metrics in 
block i, and 1995iM  and 2010iM  respectively represent the 
value of the metrics of location i in 1995 and 2010.

2.3. Processing of urbanization indicator

The three urbanization indicators (GDP, POP and NTL) 
were handled based on the following process: 1) First, the 
original datasets were resampled to a resolution of 100 m, 
which could be divided evenly into nine block sizes; 
2) Second, 9 fishnets were intersected with 3 datasets to 
extract the exact boundaries of the fishnets; 3) Third, the 
average values of the pixels within each block were calcu-
lated and normalized based on the min-max standardized 
method; 4) Finally, the normalized urbanization indica-
tors in 1995 and 2010 were extracted and joined to the 
attribute tables of the 9 fishnet datasets.

2.4. Building of GWR model

In this study, the GWR model was adopted in the regres-
sion analysis to identify the spatial variation of the rela-
tionships between landscape patterns and urbanization 
indicators. GWR is a local linear regression method that 
calculates the regression coefficients at each location and 
outputs a series of location-specific coefficients, including 
residuals, estimates and local coefficients (Fotheringham 
et al., 2002; Yang et al., 2019). Under the assumption that 
closer observations exert more significant influences, the 
GWR model restricts the spatial scope of dependence by 
using the kernel bandwidth and then calculates weights 
for all observations via a distance decay function. The for-
mulation of the GWR model can be presented as Eq. (2):
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where: ju  and jv
 
are respectively the abscissa and ordi-

nate of location j, ( )0 ,j ju vβ  and ( ),i j ju vβ  respectively, 
represent the intercept and the regression coefficient ijx , 
and jε  represents the deviation.

The Gaussian distance decay function was used to cal-
culate the spatial weight matrix through Eq. (3):
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In the above equation, ijw  denotes the weight of ob-
servation i with respect to neighborhood location j, ijd  
represents the Euclidean distance between two locations, 
and b represents the kernel bandwidth. The kernel band-
width is the decay distance for the weight of observation 
points, which represents on intrinsic scale (Gao & Li, 
2011). A greater kernel band width will make the rela-
tionships more global and cause the spatially estimated 
coefficients to be more stationary (Li et al., 2010).

When observations i and j are located in the same 
place, then the weight coefficient equals 1; conversely, 
the weight value decays close to zero when the distance 
between them increases toward the spatial scope of the 
kernel bandwidth. A coarser kernel bandwidth leads to 
slower weight decreases with distance and generates more 
global relationships (Li et al., 2010). The kernel function of 
the GWR model includes two types: fixed and adaptive. In 
this study, we adopted the fixed type of kernel bandwidth 
as the density of the sampling points because the grid data 
used in this study were uniform.

All regression models were performed using the GWR 
tool in ArcGIS 10.3 (Environmental Systems Research In-
stitute, Redlands, CA, USA). The change in each landscape 
metric was used as dependent variable, and one of the ur-
banization indicators (GDP, POP and NTL) was used as 
independent variable. We selected only one indicator as 
an explanatory variable because the urbanization indica-
tors might present multicollinearity, which would impact 
the analysis of scale effects (Dormann et al., 2013, 2007).

3. Results

3.1. Land-use changes from 1995 to 2010

Qingdao experienced significant urban expansion, which 
caused fundamental land-use changes from 1995 to 2010. 
Revealed from the LUCC conversion matrix (Table 1), the 
area for the changed land was 95, 675.7 ha. This indicated 
that over 8.59% of the land changed, with a yearly changed 
ratio of 0.57%. The mostly changed land-use types were 
cultivated land, grassland, construction land and water-
body, which accounted for 79.62% of the total changes. 
Specifically, the construction land expanded by 84, 011 ha 
which was 66.51% of the changes during this period. 
However, other land-use types declined differently, with 
the area of the cultivated land declined by 59, 266.5  ha 
(7.98%), the grassland decreased by 15, 524.6 ha (1.39%) 
and the wetland area decreased by 6, 889.1 ha (0.62%). The 
results also showed that the cultivated land and grassland 
had greater contributions to urban land than other types, 
contributing up to approximately 64.73% and 15.47%, 
respectively. This result was consistent with our previous 
study (Yang et  al., 2019). Among the increments of 84, 
011 ha of built-up land, 54, 623 ha came from cultivated 
land and 13, 059 ha were converted from grassland. Some 
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research in the eastern China also resulted that the farm-
land play a great role in transformation to construction 
land (Deng et al., 2009; Shen et al., 2019; Su et al., 2011), 
which indicated that the sprawl of urban areas embezzled 
large amount of agricultural land.

3.2. Synopticanalysis of landscape patterns

Refer to Figure 2, the landscape level metrics of Qingdao 
changed slightly from 1995 to 2010. The combination ef-
fect of a decrease in the PD and increase in SHDI indi-
cated that the average patch numbers increased and the 
distribution became more equitable among the different 
land types. These landscape changes were the result of 
conversion from the predominantly cultivated land to an 
urban landscape, which made the numbers and distribu-
tions of the different patch types more even. The PD and 
ED decreased by 2.6% and 3.2, respectively, indicated a 
fragmentation which was the most common result due to 
urbanization (Dadashpoor et al., 2019; Yang et al., 2019). 

3.3. Spatial-temporal changes in the landscape 
pattern at different block scales

The spatial patterns of the change ratios for the four 
metrics between 1995 and 2010 in Qingdao were dem-
onstrated at each block scale in Figure 3. In general, the 
value of landscape metrics for most of the blocks remain 
unchanged (the yellow regions shown in Figure 3) at the 
1 km scale. The PD significantly decreased in the Shinan, 
Shibei, Licang and Chengyang districts. Most patches in 
these places were already built up in 1995. Under the ur-
banization process, the isolated patches were connected. 
Consequently, the number of patches decreased, and thus 
the PD decreased. The increase in the PD, especially those 
that increased by more than 40%, was mainly distributed 
in Jiaozhou city, eastern Chengyang district and dotted 
around villages. The main reason for these was that a large 
amount of cultivated land was transformed to construc-
tion land, creating a more fragmented landscape in the 

Table 1. Land-use/cover conversion matrix from 1995 to 2010 in Qingdao (in ha)

1995
2010 1995  

TotalCultivated Forest Shrubland Wetland Grassland Waterbody Construction Bareland

Cultivated 682, 656.4 372.2 1 1, 173.2 15.4 3, 705.9 54, 623 0.9 742, 548
Forest 4.3 55, 108.1 19.8 0.9 78.8 1, 336.9 0.1 56, 548.9
Shrubland 0.8 11, 517 0.1 0.1 44.9 825.9 12, 388.8
Wetland 12.3 0.6 0.6 14, 609.6 3.2 2, 445.2 5, 839.6 0.2 22, 911.3
Grassland 392.7 32 0.3 26.1 87, 593.7 2, 038.1 13, 059 103, 141.9
Water body 138.6 0.3 0.2 174.7 1.4 37, 551.4 8, 495.6 46, 362.2
Construction 75 5.4 5 2.6 289.6 125, 927.8 0.3 126, 305.7
Bareland 1.4 0.2 13.7 208.7 208.9 3, 322.6 3, 755.5

2010 Total 683, 281.5 55, 518.8 11, 519.1 16, 022.2 87, 617.3 46, 362.6 210, 316.7 3, 324.1 1, 113, 
962.3

Figure 2. Changes in landscape level metrics of PD (patch 
density), SHDI (Shannon’s diversity index), ED (edge density) 

and AI (aggregation index) at the whole region scale

block. The fragmentation in the urban-rural fringe areas 
caused by urbanization were also found in other areas, like 
Xi’an (Hou et  al., 2020), Beijing (Li et  al., 2019), North 
America (Koch et al., 2019), and Leiria City (Barros et al., 
2018).

The evolutionary characteristics of the ED and SHDI 
in space from 1995 to 2010 coincided with PD. Driven 
by urbanization, the built-up areas became further devel-
oped and formed larger patches. As a result, the ED and 
SHDI significantly decreased in these areas. In northern 
Jiaozhou city, eastern Chengyang district and the circum-
jacent built-up areas, the ED and SHDI increased signifi-
cantly. These regions witnessed severe urbanization, and 
other land types were transformed to construction land. 
The changes in AI behavior were in the opposite direc-
tions as those of the other metrics. In Shinan, Shibei, Li-
cang and the rural towns of Pingdu, Jimo, Jiaozhou and 
Jiaonan district, the AI increased significantly. This in-
crease was caused by replacing the initial cultivated land 
and forest land with built-up land. A significant decrease 
was observed in the surrounding areas, and no obvious 
changes occurred in the remaining areas.
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The influence of the block scale on the spatial changes 
of all landscape metrics was obvious. With the expansion 
of block scale, the proportion of changed blocks increased 
and the number of blocks with great changes decreased. As 
shown in Figure 3A, the percentage of blocks with drastic 
changes (decreased or increased by more than 40%) de-
creased with the increase of scale. Specifically, compared 
with 1 km block scale, blocks with PD changed from 0% 
to 40% occupied most of the region, whereas only 7 of 140 
blocks changed greater than 40%. Larger blocks contained 
more spatial areas; therefore, the landscape metrics for the 
entire block area changed when tiny land cover changes 
occurred. In addition, great landscape metric changes in 
local areas were equilibrated by places with lower changes 
that predominated in one block area. A similar trend was 
found for other landscape metrics (Figure 3 B-3D).

The mean value of landscape metrics for different 
block scale was calculated and shown in Figure 4. With 

the increase of block scale, the averaged PD constantly de-
clined approximately 76% from 3.9 to 0.9. The mean value 
of AI decreased by 0.94% and 0.89% for 1995 and 2010, 
respectively, and the difference became larger. However, 
the averaged SHDI continuously increased from approxi-
mately 0.44 to 0.86, and the mean value of ED exhibited 
a saddle shape in response to the increase of block size. 
Furthermore, the slope of curves for PD, SHDI and AI 
showed a constant decline.

3.4. Effects of the spatial scale on the adjusted R2 
and local parameters ofthe GWR model

In this study, a total of 216 GWR models between land-
scape metrics and urbanization indicators at different 
block scales were obtained (Figure 5). There into, the ad-
justed R2 for 161 models (74.5%) exceeded 0.4, indicating 
that GWR had great power in explaining the influences of 
the urbanization indicators on landscape patterns.

Figure 3. Spatial patterns of change ratios for landscape metrics in Qingdao at different block scales from  
1995 to 2010. A, B, C and Drepresent maps of changes in the PD, ED, SHDI and AI, respectively.  

Here, 1 km represents 0.9 km of the block size (i.e., the pixel size). Further details are provided in Section 2.1
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Figure 4. Averaged landscape metric changes in response to the block scale  
in Qingdao in 1995 and 2010

Figure 5. The effects of block scale on the performance (adjusted R2) of the GWR models  
between landscape metrics and urbanization indicators (GDP, NTL and POP).  

GDP, NTL and POP represent the gross domestic product, nighttime lights and population, respectively
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Block scale had a strong influence on the GWR mod-
els, especially those explored with metrics of ED and 
SHDI. When the block size enlarged from 1 to 5 km, the 
adjusted R2 significantly increased for the models ob-
tained from ED and SHDI and slightly increased for the 
models explored with PD and AI. But, when the block 
scale continuously expanded to 9 km, the adjusted R2 for 
most of the GWR models showed a slight wave-like trend 
with a sharp decrease at the 6 km block. Furthermore, the 
odd-numbered block scales seemed to have better perfor-
mance than the even-numbered block scales. The reason 
may be that the odd-numbered scales were not integral 
multiples of the socioeconomic dataset which was 1 km 
spatial resolutions. So, it will borrow in 0.1 km to fill up a 
2.1 km or some other block, and this added space could 
give more details referred to land-use changes and hence 
landscape changes. Among the landscape metrics, PD per-
formed worse than the other metrics.

Due to space limitations, we only took models ex-
plored by the AI and GDP in 1995 as an example to illus-
trate the spatial patterns of the GWR parameters and the 
scale effects on local variance. As shown in Figure 6, both 
the coefficient and intercept have spatial heterogeneity and 
aggregative effects at each block scale. The larger values of 
coefficients mainly distributed in the settlements of Ping-
du, Laixi and Jimo district. The block scale had an obvi-
ous impact on the GWR results (Figure 6). The GDP had 
significant positive effects on landscape pattern changes at 
the urban fringes of Pingdu, Laixi, Jimo, Jiaozhoucity and 
Laoshan district and negative effects on cultivated land 
in most of the regions at the 1 km block scale. However, 
with the block size increased, the spatial difference of the 
coefficients and intercepts decreased, some negative values 
transformed to positive or on the contrary especially in 
those places of Jiaozhou Bay and Pingdu district.

4. Discussion

4.1. How does rapid urbanization impact landscape 
patterns?

Aggregation of population and wealth leads to a large de-
mand for land for housing, commerce, public infrastruc-
ture and industry. Then, the consequent construction pro-
jects progressively transform open land to built-up land. 
This process is known as “urban sprawl” or urbanization 
(Mann, 2009). Conversion between land-use types results 
in recombination of the environment and thus changes the 
landscape pattern (Dadashpoor et al., 2019). When urban-
ization intensified in Qingdao from 1995 to 2010, much 
of the cultivated land and grassland were transformed to 
urban land, causing the landscape pattern to become frag-
mented and isolated. This phenomenon was prominent in 
the eastern cities of China (Xiao et al., 2018). For example, 
in the Jing-Jin-Tang metropolitan areas, a great amount of 
agricultural land was transformed to built-up land, con-
tributing approximately 74% of the newly added urban 
land (Tan et al., 2005). During this process, the original 
large patches become fragmented, and the connected cor-
ridors were destroyed (Yang et al., 2019). These landscapes 
will cause the biological diversity of ecosystems to descend 
and become fragile and unstable, which is considered un-
suitable for sustainable development (Wang et al., 2019). 
Therefore, to balance the fused relationship between con-
struction land and other landscapes and achieve sustain-
able development, landscape fragmentation issues should 
be considered under the process of urbanization.

4.2. How does the landscape pattern change with 
the block scale?

The scale effects of extent on landscape metrics have been 
well studied using artificial and real land-use datasets 

Figure 6. Scale effects on the spatial distribution of coefficients and intercepts of  
GWR models between the AI change ratios and GDP in 1995
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(Shen et  al., 2004; Wu, 2004; Wu et  al., 2002). Accord-
ing to these studies, three general types of responses exist 
with changes in extent: Type I, metrics have predictable 
responses with simple scaling relationships (coincide with 
power exponent or linear functions); Type II, metrics re-
spond as a staircase; and Type III, metrics show erratic re-
sponses. Zhou et al. also claimed that changing spatial ex-
tent have significant impacts on the relationship between 
spatial pattern of urban forested areas and land surface 
temperature (Zhou & Cao, 2020). What types of responses 
for landscape metrics with respect to block scale belong 
to? According to our study, SHDI, PD and AI belongs 
to Type I, which is in accordance with previous findings 
(Feng & Liu, 2015; Wu et al., 2002). But it isn’t consistent 
with the study of Xu et al., who demonstrated that SHDI 
is unpredictable across scales (Xu et al., 2019). ED is in-
cluded in Type III, which has unpredictable behavior. PD, 
SHDI and AI are more sensitive to block scale than ED. 

What block scale can better explain changes of land-
scape pattern? Studies have proved that different land-
scapes have different characteristics of pattern and re-
spond unlikely to scale changes (Su et al., 2011; Wu et al., 
2002; Xu et al., 2019; Zhou & Cao, 2020). Therefore, spe-
cific landscape pattern, exhibited as landscape metrics, has 
its own appropriate scale. However, the proper block scale 
for GWR models under urbanization still lack of reports. 
As shown in our study, ED and SHDI are more sensitive 
to block scale than PD and AI (Figure 5). Block scale of 
7 km is more suitable for GWR analysis associated with 
the landscape metrics of ED, SHDI and AI, whereas 9 km 
or greater is the most fitting scale for GWR analysis of PD. 
Our result is not consistent with Zhou et al. who suggested 
that 90 m was the optimal spatial scale for studying the 
cooling effect of forest vegetation in Shanghai’s urban area 
(Zhou & Cao, 2020). However, they used moving window 
method which is some different with our study. Another 
interesting result in our study is that the odd-numbered 
block scales performed better than even-numbered block 
scales (Figure  5). These characteristics can be used as 
GWR performance predicts when exploring the relation-
ship between landscape metrics and urbanization indica-
tors.

Also, previous studies have analyzed spatial changes in 
landscape patterns along the gradient from cities to rural 
areas using landscape metrics (Herold et al., 2003, 2002; 
Luck & Wu, 2002; Weng, 2007). Some general trends re-
vealed by these case studies were confirmed in our study 
(Figure 4). The landscape at the urban center became less 
diverse and fragmented due to aggregation of built-up 
and residential lands (i.e., there were lower PD and SHDI 
values, and the AI value was higher (Herold et al., 2002). 
Compared to those of urban centers and rural areas, the 
landscape diversity and fragmentation were highest at the 
urban fringes (Weng, 2007). Similarly, the urbanization 
process will also fragment urban green space (Li et  al., 
2019). The general trends of spatial and temporal changes 
in landscape patterns along the urban-to-rural gradient 

were obvious at finer block scales, such as the 1 km, 2 km 
and 3 km block scales. However, generally the trends dis-
appeared when the block scale exceeded the area of the ur-
ban center and urban fringes. Therefore, the spatial scale 
is a key issue that should not be ignored when analyzing 
changes in landscape patterns impacted by urbanization.

4.3. How does GWR model performedwith respect 
to block scale, and what are the implications?

The scale-dependent characteristics of landscape pattern 
will transform to their relationships with spatial factors 
like urbanization indicators. We explored relationships be-
tween landscape pattern changes and urbanization using 
GWR method at a series of block scale to answer the ques-
tion of how the block scale will affect GWR performance. 
The results showed that both the explaining power and 
the estimated parameters of these models were changing 
with respect to the block size (Figure 5 and 6). With the 
block size changing from 1 km to 9 km, the adjusted R2 
of models for the four metrics generally increased. Similar 
results were reported in the study by Gao and Li (Gao 
& Li, 2011), in which spatial non-stationary and scale-
dependent relationships were found between urban land-
scape patterns and urban expansion. Su et al. employed 
local indicators to evaluate the spatial dependence of rela-
tionships between agricultural landscape changes and ur-
banization at two grid scales and found scale-dependent 
relationships too (Su et al., 2011). These findings can offer 
scientific references for urban planning to coordinate the 
relationship between urban development and landscape.

The results from this study could provide a clear com-
prehending of how the block scale will affect GWR model 
building. When studying the relationships between land-
scape pattern and urbanization, a proper block size could 
be easily determined based on our study. However, many 
factors play a role in the exploring of GWR, such as the 
quality of the geographic data source, temporal scale, se-
lection of landscape metrics, urbanization indicators and 
the changing method of spatial extent. Therefore, some 
research work should be further done. (1) The block scale 
effect on GWR performance should be verified in other 
regions or bigger cities and to check the effect of block size 
that was greater than 9 km. (2) Besides the block method 
of changing spatial extent, the moving windows method 
which also have the scale effect of extent should be studied 
too. (3) The scale effect on other landscape metrics and 
their relationships with urbanization indicators or other 
ecological factors should also be addressed. 

The scale effect could help policy makers to check out 
in what spatial scales human activities could evidently 
change landscape pattern and do policy making accord-
ingly. For example, the GDP, POP, and NTL could explain 
the landscape changes in Qingdao when the block size is 
greater than 4 km in this study. Therefore, urban develop-
ment managers should have a perspective of large scale 
while do urban planning. Make sure that in each great 
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block size avoid fragmentation of landscape especially 
in the urban fringe area. Large patches of forest land or 
grass land should be preserved during the urban sprawl. 
Some green belts or large parks containing large forest 
land, grass land and water body could also be planned. 
These efforts should be conducted at every specific block 
size to avoid excessive aggregation of built-up lands. After 
all, the aggregation of impervious surface and population 
could bring many environmental problems affecting hu-
man heath, such as urban heat island effect, loss of bio-
diversity and enhanced CO2 emission (Ali et  al., 2019; 
Bihamta et al., 2014; Dadashpoor & Salarian, 2018; Min 
et al., 2019).

Conclusions

The major findings are as follows. (1) The landscape in 
Qingdao became less fragmented, less isolated and more 
aggregated under the urbanization from 1995 to 2010, evi-
denced by decreased PD, ED and SHDI and increased AI 
in urban core areas. This was due to the transformation 
from cultivated land, forest land and other land types to 
built-up land, which made land patches connected and 
more evenness. (2) The expanding block scale could re-
duce spatial differences of landscape metrics, decrease the 
total averaged patch density and aggregation and increase 
landscape diversity. (3) With the enlarging of block size, 
the explanatory ability of GWR models between land-
scape metrics and urbanization indicators generally in-
creased, especially when it changed from 1 km to 5 km 
scale. When the block size was greater than 5 km, GWR 
mostly performed well at the scale of odd-numbered than 
neighboring even-numbered. Furthermore, the metrics of 
PD, ED, SHDI and AI were all suitable for exploring spa-
tial relationships between landscape pattern and land-use 
change. 

Based on our study, some suggestions could be given 
when exploring spatial relationships between landscape 
pattern and urbanization using GWR. First, when the spa-
tial resolution is 30 m, block scale greater than 3 km could 
explore preferable models, especially those odd-numbered 
scale like 5  km, 7  km or 9  km. Second, besides model 
performance improve, larger block scale could also re-
duce spatial difference of landscape metrics, so a tradeoff 
should be made between model performance and detailed 
landscape pattern exhibition. Finally, all of the four met-
rics and urbanization indicators used in this study were 
ideal for spatial relationship building. 
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