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Abstract. Accurate determination of the ultimate bearing capacity (UBC) of shallow foundations is vital for the safety of 
structures and buildings. Due to the inherent spatial variability characteristics of soil properties, some new approaches are 
needed to accurately determine the UBC of shallow foundations. The objective of this study is to develop a hybrid least 
squares support vector machine (LSSVM) and an improved particle swarm optimization (IPSO) algorithm for determin-
ing the UBC of shallow foundations. To validate the hybrid IPSO-LSSVM model, a comparison of the predictions was 
carried out among different models and theoretical methods. Three statistical indexes, namely the root-mean-square error 
(RMSE), the mean absolute error (MAE) and the correlation coefficient (R) were employed to measure and evaluate the 
performance of these models. The results showed that the developed hybrid IPSO-LSSVM model can be used for deter-
mining the UBC of shallow foundations with high accuracy. 
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Introduction 

It is vital to accurately determine the ultimate bearing ca-
pacity (UBC) of shallow foundations for the reason that it 
is directly related to the safety of structures and buildings 
(Shahnazari & Tutunchian, 2012; Sadrossadat, Soltani, 
Mousavi, Marandi, & Alavi, 2013; Cicek & Guler, 2015). 
In 1943 Terzaghi suggested a general bearing capacity the-
ory which can be applied for a strip foundation (Terzaghi, 
1943). Afterwards, Meyerhof (1963), Hansen (1970) and 
Vesic (1973) have also developed many theories of UBC 
of shallow foundations. Althouth there are many different 
theories of UBC, they have the same basic form and can 
be written as follows: 
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where qu – UBC of footing; B  – foundation width (m); 
D – foundation depth (m); L – foundation length (m); g = 
soil unit weight (kN/m3); j – internal friction angle (°). Nq 
and Ng are the surcharge and density factors, respectively. 
Sq and Sg are the nondimensional shape factors; dq and dg 
are the nondimensional depth factors. 

As can be seen from Eqns (1a)–(1e), there are many 
factors that can potentially affect the accurate determina-
tion of UBC of shallow foundations, such as the founda-
tion geometry and physical properties of the soil beneath 
it. These factors have the inherent characteristics of un-
certainty and spatial variability. Furthermore, the estab-
lishment of these classical formulae needs to meet some 
simplifying assumptions, which always provides inaccu-
rate determination of UBC. Therefore, it is necessary to 
develop some new methods to accurately determine the 
UBC of shallow foundations. The objective of this study is 
to develop a hybrid least squares support vector machine 
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(LSSVM) and an improved particle swarm optimization 
(IPSO) algorithm for determining the UBC of shallow 
foundations. To validate the hybrid IPSO-LSSVM model, 
a comparison of the predictions was conducted among 
different models and theoretical methods. Three statisti-
cal indexes, namely the root-mean-square error (RMSE), 
the mean absolute error (MAE) and the correlation co-
efficient (R) were employed to measure and evaluate the 
performance of these models. The research of this study 
can provide reference for determining the UBC of shallow 
foundations. 

1. Literature review

As stated above, the complexity of analysis of UBC of shal-
low foundations calls for new and innovative approaches. 
With the vast developments in computational software and 
hardware recently, several alternative artificial intelligence 
(AI) approaches such as artificial neural networks (ANNs) 
have emerged and been used widely in many regards (Sha-
hin, Maier, & Jaksa, 2001). For example, Neaupane and 
Achet (2004) investigated the slope movements by utiliz-
ing back-propagation neural network (BPNN). They con-
cluded that the BPNN model can provide a satisfactory 
result for landslide monitoring. Das and Basudhar (2006) 
proposed an ANN model to estimate the lateral load ca-
pacity of piles in clay. They concluded that the proposed 
ANN model outperforms the available empirical methods. 
Lin, Chang, Wu, and Juang (2009) investigated the failure 
potential of highway slopes by utilizing ANN model. They 
concluded that the ANN model can be employed for pre-
diction of the stability of slopes. Kalinli, Acar, and Gun-
duz (2011) proposed two methods to estimate the UBC of 
shallow foundations. They concluded that the ANN model 
outperforms the other models. Khanlari, Heidari, Mome-
ni, and Abdilor (2012) investigated the shear strength pa-
rameters of soils by utilizing ANN and multivariate regres-
sion (MR) methods. They concluded that these methods 
can be used for estimation of shear strength parameters of 
soils. Baziar, Kashkooli, and Azizkandi (2012) developed 
two ANN and nonlinear multi regression models to pre-
dict the pile shaft resistance by utilizing cone penetration 
tests (CPT) results. They concluded that the ANN and 
nonlinear multi regression models have superiority over 
traditional approaches in predicting pile shaft resistance. 
Alkroosh and Nikraz (2012) investigated pile capacity un-
der axial loads by utilizing soft computing methods. They 
concluded that the developed intelligent model has high 
accuracy for prediction of pile capacity. Mustafa, Rezaur, 
Rahardjo, and Isa (2012) estimated the pore-water pres-
sure by utilizing radial basis function (RBF) neural net-
work. They concluded that the developed RBF neural 
network model is suitable for estimation of pore-water 
pressure responses to rainfall. Shoaei, Alkarni, Noorzaei, 
Jaafar, and Huat (2012) reviewed and discussed three ap-
proaches including the classical method, finite element 
method (FEM) and ANN for prediction of UBC of two-
layered soils. They concluded that there is still plenty of 

room for the application of ANN in predicting the UBC of 
two-layered soils. Alkroosh and Nikraz (2014) developed 
a new evolutionary model to predict the pile dynamic ca-
pacity. They concluded that the developed evolutionary 
model outperforms the traditional models in estimating 
the pile capacity. Esamaldeen, Wu, and Abdelazim (2014) 
modeled the uniaxial compressive strength (UCS) of 
anisotropic amphibolite rocks by utilizing several intelli-
gent technologies, i.e., ANN, fuzzy inference system (FIS) 
and multivariate regression (MR). They concluded that the 
ANN outperforms the other two models, namely FIS and 
MR. Momeni, Nazir, Jahed Armaghani, and Maizir (2014) 
developed a genetic algorithm (GA) based ANN model to 
determine the pile bearing capacity. They concluded that 
the GA-ANN model can be used for estimating the pile 
bearing capacity. Ng, Yuen, and Lau (2015) developed a 
predictive model for estimation of UCS of rocks. They 
concluded that the proposed model shows satisfactory 
performance. Armaghani, Shoib, Faizi, and Rashid (2017) 
proposed a hybrid particle swarm optimization (PSO) 
based ANN model to estimate the UBC of rock socketed 
piles. They concluded that the proposed PSO-ANN model 
outperforms conventional ANN model. Nejad and Jaksa 
(2017) presented an ANN model to estimate pile behavior 
by utilizing the CPT data. They concluded that the ANN 
model has superiority than other traditional methods. Yil-
mazkaya, Dagdelenler, Ozcelik, and Sonmez (2018) inves-
tigated the performance parameters of mono-wire cutting 
machine by utilizing ANN models. They concluded that 
the ANN models can be a feasible tool for predicting the 
parameters of mono-wire cutting operations. 

Although the ANN is successful in many regards, it 
may have some disadvantages (e.g. difficulty in conver-
gence, less generalizing performance, etc.) (Park & Rilett, 
1999). Except for ANNs, the least squares support vector 
machine (LSSVM) is also one of the widely used machine 
learning techniques presently (Suykens, Vandewalle, &  
De Moor, 2001; Pardo & Sberveglieri, 2005; Ren & Bai, 
2011). In this study, an improved particle swarm optimi-
zation (IPSO) based LSSVM algorithm was developed for 
determining the UBC of shallow foundations. To validate 
the hybrid IPSO-LSSVM model, a comparison of the pre-
dictions is conducted among different models and theo-
retical methods. The research of this study can provide ref-
erence for determining the UBC of shallow foundations. 

2. Methodology

2.1. LSSVM

Consider a given data sets ,i ix y   ( )1,2, ,i N=  , the 
optimization problem of LSSVM can be formulated as 
(Suykens et al., 2001): 
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points to a high dimensional feature space; w  – weight 
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matrix; g > 0 denotes a regularization constant; ei – error; 
b – bias. 

The optimization problem of LSSVM can be resolved 
by introducing the Lagrange function as follows:
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where ai denotes the multiplier. 
The final form of the LSSVM can be obtained as fol-

lows:
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where ( ), iK x x  denotes the kernel function. Herein, the 
radial basis function (RBF) is employed and expressed as 
follows:
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where s – the Kernel parameter.

2.2. IPSO

The PSO was first developed by Kennedy and Eberhart 
(1995). In traditional PSO algorithm, the velocity ( ),i jv  
and position ( ),i jx  of each particle is updated through 
the following formula (Yamagami & Jiang, 1997; Dibike, 
Velickov, Solomatine, & Abbott, 2001; Sakthivel, Bhuvane-
swari, & Subramanian, 2010; Xu & Chen, 2013):
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where r1 and r2 – random numbers; c1 and c2 – accelera-
tion coefficients; ,i jp and gj – the best location found by 
the individual particle and the whole swarm, respectively. 
k denotes the inertia weight. 

In this study, an improved inertia weight k was em-
ployed and written as follows:
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where kmin and kmax – the minimum and maximum in-
ertia weights, respectively; ni – the ith iteration number; 
nmax – the maximum number of iterations. 

2.3. Hybrid algorithms 

Based on the improved PSO algorithm, a hybrid IPSO-
LSSVM model was developed and the flowchart of IPSO-
LSSVM is illustrated in Figure 1.

2.4. Performance evaluation

In this study, three statistical indexes, namely the root-
mean-square error (RMSE), the mean absolute error 
(MAE) and the correlation coefficient (R) were employed 
to measure and evaluate the predicted results. The detailed 
definition of these three statistical indexes is summarized 
in Table 1. 

Table 1. Statistical criteria used for the evaluation of models
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Notes:
 iy – the actual value for the ith output; ˆiy – the predicted 

value for the ith output; n  – the number of samples; iy – the 
average value of the actual outputs; ˆiy – the average value of the 
predicted outputs. 

3. Case study

3.1. Data collection

To develop the hybrid IPSO-LSSVM model, the following 
five parameters, i.e., footing width (B), footing depth (D), 
length to width ratio of footing (L/B), soil unit weight (g) 
and internal friction angle (j) were employed as inputs, 
while the UBC of shallow foundations (qu) was the output. 
This study uses the database collected by Padmini, Ilampa-
ruthi, and Sudheer (2008), as shown in Table 2. 

Figure 1. Flowchart of the IPSO-LSSVM algorithm
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Data  
sets No. B (m) D (m) L/B gd or g′  

(kN/m3)  j (°) qu (kPa)

Tr
ai

ni
ng

1 0.6 0.3 2 9.85 34.9 270
2 0.6 0 2 10.2 37.7 200
3 0.6 0.3 2 10.2 37.7 570
4 0.6 0 2 10.85 44.8 860
5 0.5 0 1 10.2 37.7 154
6 0.5 0 1 10.2 37.7 165
7 0.5 0 2 10.2 37.7 203
8 0.5 0 2 10.2 37.7 195
9 0.52 0 3.85 10.2 37.7 186

10 0.5 0.3 2 10.2 37.7 542
11 0.5 0.3 2 10.2 37.7 530
12 0.5 0.3 3 10.2 37.7 402
13 0.52 0.3 3.85 10.2 37.7 413
14 0.5 0 1 11.7 37 111
15 0.5 0 1 11.7 37 132
16 0.5 0 2 11.7 37 143
17 0.5 0.029 4 11.7 37 109
18 0.5 0.127 4 11.7 37 187
19 0.5 0.3 1 11.7 37 406
20 0.5 0.3 1 11.7 37 446
21 0.5 0.5 2 11.7 37 565
22 0.5 0.5 4 11.7 37 425
23 0.5 0 1 12.41 44 782
24 0.5 0 4 12.41 44 797
25 0.5 0.3 1 12.41 44 1940
26 0.5 0.3 1 12.41 44 2266
27 0.5 0.5 2 12.41 44 2847
28 0.5 0.49 4 12.27 42 1492
29 0.5 0 1 11.77 37 123
30 0.5 0 2 11.77 37 134
31 0.5 0.3 1 11.77 37 370
32 1 0.2 3 11.97 39 710
33 0.991 0.711 1 15.8 32 1773.7
34 3.004 0.762 1 15.8 32 1019.4
35 2.489 0.762 1 15.8 32 1158
36 3.016 0.889 1 15.8 32 1161.2
37 0.0585 0.029 5.95 15.7 34 58.5
38 0.0585 0.058 5.95 15.7 34 70.91
39 0.0585 0.029 5.95 16.1 37 82.5
40 0.0585 0.058 5.95 16.1 37 98.93
41 0.0585 0.029 5.95 16.5 39.5 121.5
42 0.0585 0.058 5.95 16.5 39.5 142.9
43 0.0585 0.029 5.95 16.8 41.5 157.5
44 0.0585 0.058 5.95 16.8 41.5 184.9
45 0.0585 0.058 5.95 17.1 42.5 211
46 0.094 0.047 6 15.7 34 74.7
47 0.094 0.047 6 16.1 37 104.8
48 0.094 0.094 6 16.1 37 127.5
49 0.094 0.047 6 16.5 39.5 155.8

Data  
sets No. B (m) D (m) L/B gd or g′  

(kN/m3)  j (°) qu (kPa)

Tr
ai

ni
ng

50 0.094 0.094 6 16.5 39.5 185.6
51 0.094 0.047 6 16.8 41.5 206.8
52 0.094 0.047 6 17.1 42.5 235.6
53 0.094 0.094 6 17.1 42.5 279.6
54 0.152 0.075 5.95 15.7 34 98.2
55 0.152 0.15 5.95 15.7 34 122.3
56 0.152 0.15 5.95 16.1 37 176.4
57 0.152 0.075 5.95 16.5 39.5 211.2
58 0.152 0.15 5.95 16.5 39.5 254.5
59 0.152 0.075 5.95 16.8 41.5 285.3
60 0.152 0.15 5.95 16.8 41.5 342.5
61 0.152 0.075 5.95 17.1 42.5 335.3
62 0.152 0.15 5.95 17.1 42.5 400.6
63 0.094 0.047 1 15.7 34 67.7
64 0.094 0.094 1 15.7 34 90.5
65 0.094 0.047 1 16.1 37 98.8
66 0.094 0.047 1 16.5 39.5 147.8
67 0.094 0.094 1 16.5 39.5 191.6
68 0.094 0.047 1 16.8 41.5 196.8
69 0.094 0.047 1 17.1 42.5 228.8
70 0.094 0.094 1 17.1 42.5 295.6
71 0.152 0.075 1 15.7 34 91.2
72 0.152 0.15 1 15.7 34 124.4
73 0.152 0.15 1 16.1 37 182.4
74 0.152 0.075 1 16.5 39.5 201.2
75 0.152 0.075 1 16.8 41.5 276.3
76 0.152 0.15 1 16.8 41.5 361.5
77 0.152 0.075 1 17.1 42.5 325.3
78 0.152 0.15 1 17.1 42.5 423.6

Te
st

in
g

79 0.6 0.3 2 10.85 44.8 1760
80 0.5 0 3 10.2 37.7 214
81 0.5 0.3 1 10.2 37.7 681
82 0.5 0.013 1 11.7 37 137
83 0.5 0.3 4 11.7 37 322
84 0.5 0.5 4 12.41 44 2033
85 0.5 0.5 2 11.77 37 464
86 0.5 0 4 12 40 461
87 0.5 0.55 4 12 40 1140
88 1 0 3 11.93 40 630
89 1.492 0.762 1 15.8 32 1540
90 0.0585 0.029 5.95 17.1 42.5 180.5
91 0.094 0.094 6 15.7 34 91.5
92 0.094 0.094 6 16.8 41.5 244.6
93 0.152 0.075 5.95 16.1 37 143.3
94 0.094 0.094 1 16.1 37 131.5
95 0.094 0.094 1 16.8 41.5 253.6
96 0.152 0.075 1 16.1 37 135.2
97 0.152 0.15 1 16.5 39.5 264.5

Table 2. Data used for developing the model (data from Padmini, Ilamparuthi & Sudheer (2008))
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3.2. Parametric determination of IPSO

It is vital to tune the parameters of IPSO to guarantee the 
fast convergence of the algorithm (Li & Kong, 2014). After 
many trials, it was observed that the performance of IPSO 
can achieve ideal results when the acceleration coefficients 
c1 = 2.0 and c2 = 1.5. Therefore, we can fix c1 = 2.0 and c2 = 
1.5 in this study. In order to obtain the optimal values of 
swarm size and the maximum number of iterations, two 
sensitivity analysis tests are performed and illustrated in 
Figure 2.

According to the results of sensitivity analysis, the op-
timal parameters of IPSO can be obtained as follows: the 
swarm size  = 25, the maximum number of iterations  = 
800, and the acceleration coefficients c1 = 2.0, c2 = 1.5.

3.3. Results and discussion

After performing five independent runs, the performances 
of training and testing of these five runs are listed in Ta-
ble 3. From Table 3, it can be seen that the performance 
of run 3 outperforms other runs. For instance, in run 3, 
the root-mean-square error (RMSE) for training datasets 
and testing datasets are 26.3946 and 39.8242, respectively. 

While the corresponding root-mean-square error (RMSE) 
values for training datasets and testing datasets in run 1, 
run 2, run 4 and run 5 are 26.3960 and 39.9875, 26.3963 
and 39.8761, 26.4890 and 39.9127, 26.4238 and 39.8976, 
respectively. Therefore, the regularization constant g and 
kernel parameter s in run 3 are employed in this study, 
that is, s = 0.0779, g = 682.9488. Figure 3 shows the run 3 
convergence procedure of IPSO. The whole training time 
of IPSO-LSSVM needs about 15 seconds in this study.

Table 3. Training and testing performance of 5 runs 

Run #
RMSE (kPa)

g s
Training Testing

1 26.3960 39.9875 909.3306 0.0239
2 26.3963 39.8761 781.4162 0.01
3 26.3946 39.8242 682.9488 0.0779
4 26.4890 39.9127 404.3915 0.0989
5 26.4238 39.8976 913.4256 0.109

To validate the performance of the developed IPSO-
LSSVM model, a comparison of the predictions is con-
ducted among different models and theoretical methods, 
i.e., adaptive neuro fuzzy inference system (ANFIS) (Pad-
mini et al., 2008), fuzzy inference system (FIS) (Padmini 
et al., 2008), back-propagation (BP) neural network model 
(Padmini et al., 2008), Meyerhof ’s (1963) method, Han-
sen’s (1960) method and Vesic’s (1973) method. In this 
study, three statistical indexes, namely the root-mean-
square error (RMSE), the mean absolute error (MAE) and 
the correlation coefficient (R) were employed to measure 
and evaluate the predicted results, as shown in Figure 4 
and Table 4. From Figure 4 and Table 4, it can be seen that 
the performance of IPSO-LSSVM model outperforms oth-
er models and traditional theories. For example, the corre-

Figure 2. Results of sensitivity analysis tests: (a) swarm size;  
(b) the maximum iterations
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Figure 3. Convergence procedure of IPSO
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Table 4. Prediction performance statistics of all the models & theories

Performance index
Models & theories

ANFIS BP FIS IPSO-LSSVM Meyerhof Vesic Hansen
R 0.9968 0.9920 0.9899 0.9984 0.9412 0.9496 0.9457
RMSE (kPa) 52.3 77.2 98.0 39.8242 207.3 251.3 305.3
MAE (kPa) 35.758 47.177 75.997 27.474 123.423 156.951 193.771



456 X. Xue, X. Chen. Determination of ultimate bearing capacity of shallow foundations using LSSVM algorithm

lation coefficient (R) of the IPSO-LSSVM model is 0.9984, 
while the corresponding R values calculated by the other 
six models, i.e., ANFIS, BP, FIS, Meyerhof ’s (1963), Ve-
sic’s (1973) and Hansen’s (1960) are 0.9968, 0.9920, 0.9899, 
0.9412, 0.9496 and 0.9457, respectively. It can be seen that 
the correlation coefficient (R) of the IPSO-LSSVM model 
is the highest among these models and theoretical meth-
ods. Clearly, the higher the correlation coefficient (R) val-

Figure 4. Prediction performance statistics of all the models & theories: (a) ANFIS; (b) FIS; (c) Meyerhof;  
(d) Vesic; (e) Hansen; (f) BP; (g) IPSO-LSSVM

ues, the better the prediction accuracy, and vice versa. The 
other two statistical indexes, that is, the mean absolute er-
ror (MAE) and the root-mean-square error (RMSE), also 
confirm it. Table 5 and Figure 5 show the comparison of 
the UBC of shallow foundations among these models and 
theoretical methods. From Figure 5 and Table 5, it can be 
observed that the proposed IPSO-LSSVM model outper-
forms the other models and theoretical methods. 
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Figure 5. Comparison of the UBC of shallow foundations among all the models & theories

Table 5. Comparison of the UBC of shallow foundations among different models and theoretical methods

No. Actual 
(kPa)

ANFIS
(kPa)

FIS
(kPa)

Meyerhof
(kPa)

Vesic
(kPa)

Hansen
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BP
(kPa)

IPSO-LSSVM
(kPa)
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80 214 189.7281 195.1252 174.6454 163.0466 117.165 221.113 234
81 681 773.8407 651.3084 470.3667 401.9943 370.2597 579.728 754.2
82 137 119.1311 100.6128 227.1323 126.9031 94.0779 161.646 126
83 322 308.1959 150.2774 375.3876 376.7078 327.474 226.623 342.1
84 2033 2023.892 2164.129 1913.256 1662.994 1499.338 2047.19 2043.8
85 464 536.0546 657.024 586.496 583.48 539.4 475.066 512.2
86 461 383.3031 274.1106 310.9906 293.4265 213.2586 348.004 425.3
87 1140 1067.222 1097.022 895.584 855.684 775.542 1064.874 1085
88 630 710.7471 541.044 639.513 561.771 408.303 512.1459 684.2
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90 180.5 179.9386 241.4368 135.5194 136.0609 115.0688 269.234 174.3
91 91.5 89.02493 107.0916 78.47955 88.81905 80.3919 99.845 107.7
92 244.6 242.7361 230.3643 272.6801 275.7865 247.7798 233.397 246.5
93 143.3 140.2019 151.7547 127.7663 139.9898 118.6381 108.421 144.1
94 131.5 128.586 156.5113 175.9733 170.1742 161.6793 130.612 133.2
95 253.6 256.1816 275.0038 406.673 348.8775 330.8973 226.109 254.6
96 135.2 131.2332 178.5992 179.0318 149.2878 135.565 128.832 137.7
97 264.5 272.2842 347.2885 443.4607 401.7755 381.1551 198.718 263.4
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Conclusions

In this study, a hybrid IPSO-LSSVM model was developed 
to determine the UBC of shallow foundations. To con-
struct the proposed IPSO-LSSVM model, five parameters, 
namely footing width, footing depth, length to width ratio 
of footing, soil unit weight and internal friction angle were 
employed as inputs, while the UBC of shallow founda-
tions was the output. To validate the hybrid IPSO-LSSVM 
algorithm, a comparison of the predictions was conducted 
among different models and theoretical methods in terms 
of three statistical indexes. From the comparison results, 
it can be seen that the correlation coefficient of the IPSO-
LSSVM model is the highest among these models and the-
oretical methods, while the other two statistical indexes, 
namely the mean absolute error and the root-mean-square 
error of the IPSO-LSSVM model are the smallest among 
these models and theoretical methods. The results con-
firmed that the developed hybrid IPSO-LSSVM model can 
be used for the determination of UBC of shallow founda-
tions with high accuracy. 
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