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Abstract. This paper presents an application of two advanced approaches, Artificial Neural Networks (ANN) and Princi-
pal Component Analysis (PCA) in predicting the axial pile capacity. The combination of these two approaches allowed 
the development of an ANN model that provides more accurate axial capacity predictions. The model makes use of 
Back-Propagation Multi-Layer Perceptron (BPMLP) with Bayesian Regularization (BR), and it is established through 
the incorporation of approximately 415 data sets obtained from data published in the literature for a wide range of un-
cemented soils and pile configurations. The compiled database includes, respectively 247 and 168 loading tests on large- 
and low-displacement driven piles. The contributions of the soil above and below pile toe to the pile base resistance 
are pre-evaluated using separate finite element (FE) analyses. The assessment of the predictive performance of the new 
method against a number of traditional SPT-based approaches indicates that the developed model has attractive capabili-
ties and advantages that render it a promising tool. To facilitate its use, the developed model is translated into simple 
design equations based on statistical approaches.
Keywords: neural networks, principal components analysis, failure zone, ultimate capacity, pile load tests, FE, SPT.

Introduction

Pilling has been used for many years as a common foun-
dation solution for different types of civil structures. A 
large number of design approaches, therefore, have been 
proposed to predict the ultimate capacities of piles. These 
approaches range from simple empirical formulations to 
more sophisticated finite element (FE) analyses, with new 
methods introduced every few years (Iskander 2011). In 
practice, the ultimate pile capacity has been customary 
estimated based on correlations with other in situ tests 
such as the standard (SPT) and the cone (CPT) penetra-
tion tests (Bandini, Salgado 1998; Shariatmadari et al. 
2006). However, the interdependency of the factors in-
volved such as soil stratifications, soil-pile interaction, 
and distribution of soil resistance along the pile shaft im-
plicate a considerable level of uncertainty and may obsta-
cle the implementation of simple regression analyses, and 
demands more extensive and sophisticated approaches to 
ensure an appropriate structural and serviceability per-
formance. 

Alternatively, artificial neural networks (ANNs) 
have been used recently to predict the ultimate capacity 
of driven piles based on in situ tests (e.g., Shahin 2014; 

Kordjazi et al. 2014; Azizkandi et al. 2014; Mohammad 
et al. 2015). However, most of ANNs models available 
in the literature generally used a limited number of data 
sets and fewer models were developed based on more ac-
curate measurements of soils properties from the SPT or 
CPT results. Moreover, the applicability of most of these 
models was limited to large-displacement driven piles. 
Yet, little work has been devoted to predict the capacity 
of low-displacement piles.

On the other hand, several researchers used the ANN 
approach for the development of more sophisticated and 
integrated systems in conjunction with other techniques 
such as evolutionary computation and probabilistic tech-
niques (e.g., Boukhatem et al. 2011; Alkroosh, Nikraz 
2012; Ismail et al. 2013; Ahangar-Asr et al. 2014). Nev-
ertheless, only a few investigations were carried out on 
the application of a practical technique and intelligible 
manipulation for data analysis before learning an ANN 
model which may contain redundancies and correlations 
between them. This represents a very important step be-
fore designing a model. The Principal Component Analy-
sis (PCA) is then used and considered as a statistical tool 
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for the elimination of correlations between the data as 
well as reducing the representation size of these data or 
data compression (Bellamine, Elkamel 2008; Boukhatem 
et al. 2012).

In this study, two techniques, the ANN and PCA are 
compiled to develop a new model that would be able to 
predict the ultimate capacity of both low- and large-dis-
placement driven piles embedded in un-cemented soils 
based on SPT data. Separate Finite Element (FE) analyses 
were also conducted to examine the relative contribution 
of the soil above and below the pile toe to its ultimate 
capacity. The performance parameters of the developed 
model are compared successfully with those obtained 
from field tests as well as from reliable approaches. In 
addition, a sensitivity analysis or generalization ability of 
the developed model is carried out to evaluate the influ-
ence of input parameters on the model outputs.

1. Contribution of N-SPT above and below the pile 
tip to the end-bearing pile resistance

1.1. Basic state of knowledge on SPT
The Standard Penetration Test (SPT) is one of the oldest 
and most common in situ tests used for soil exploration, 
because of its simplicity, low cost, and versatility. The 
recorded SPT count blows, N value is widely accepted to 
be corrected to a standard dynamic energy of 60% of the 
hammer potential energy (Skempton 1986) using:

 60 0.60
m B S RE C C C

N N
⋅ ⋅ ⋅

= ⋅ , (1)

where: N60 
is the SPT N-value corrected for field proce-

dures and apparatus; Em is the hammer efficiency; CB is 
the borehole diameter correction; CS 

is the sample barrel 
correction; and CR 

is the rod length correction. The effect 
of overburden pressure, v′σ  on N60 value is commonly 
corrected as:

 
0.25

1(60) ( / )a vN N P ′= σ , (2)

where: Pa is a 100-kPa reference effective pressure. 

Estimating the end-bearing pile resistance from SPT 
data requires the definition of the failure zone around the 
pile tip as it specifies the range in which the N trace con-
sidered in estimating the average bN  value. In this con-
text, many investigators proposed failure mechanisms to 
estimate the ultimate point resistance of single driven 
piles in sand (e.g., Das 1984; Nguyen et al. 1991 among 
others). In particular, Eslami and Fellenius (1997) pro-
posed a model in which the local failure is defined as 
a spiral logarithmic surface starting at the pile tip, and 
ending at a point on the pile shaft (Fig. 1). For simplicity, 
Eslami and Fellenius (1997) adopted an influence zone 
extending from 4B below the pile base to a height of 
8B above. This influence zone is, in fact, consistent with 
experimental studies by Meyerhof (1976), Shariatmadari 
et al. (2006), and Faizi et al. (2015). 

In fact, the error in evaluating the contributions of 
these zones is one of the major sources of the inconsist-
ency of the capacity values obtained from different tradi-
tional methods. To investigate the relative contribution of 
these zones (Fig. 2, where α and β represent, respectively, 
the range of the zones above and below the pile toe), it 
was found advisable to adopt the concept of 8B above, 
and 4B below the pile base suggested by Eslami and Fel-
lenius (1997). Then, it will be interesting if we combine 
each part with its relative contribution (i.e, the upper re-
gion (a) with its relative contribution,  Wα  and the lower 
(β) with its relative contribution, Wβ ).  The average blow 
counts over the failure zone will be written as:

 bN W N W Nα α β β= ⋅ + ⋅ , (3)

where: Nβ  is the corrected average blow counts within 
the lower zone;  Nα  is the corrected average blow counts 
within the upper zone. To determine the contribution of 
these zones,  Wα  and Wβ , separate FE analyses are car-
ried out in this study; the details are given below.  

1.2. Finite element modelling
The commercial Software PLAXIS 2D (2011) is em-
ployed to evaluate the relative contribution of the zones 

Fig. 1. Schematic view of spiral logarithmic failure surface 
around the base according to Eslami and Fellenius (1997)

Fig. 2. Influence zone for averaging blows number near the pile 
base
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above and below the pile tip to the pile end-bearing ca-
pacity. The numerical model has been calibrated against 
Salgado and Lee (1999) model. To simulate Salgado and 
Lee model, an axisymmetric FE model is used to predict 
the behaviour of an axially loaded single vertical pile em-
bedded in Tocino sand. The boundaries are selected at 
large distance such that there is minimal effect on the 
results (Azizi 2000) (Fig. 3). 15-node triangular elements, 
giving a fourth-order interpolation for displacements, are 
used for both the soil and pile clusters. The soil is mod-
elled as an isotropic elastic perfectly plastic continuum 
with failure described by the Mohr Coulomb yield cri-
terion. Material properties of the soil model are listed in 
in Table 1. The pile material was modelled as nonpo-
rous material with a linear elastic constitutive relationship 
requiring only two input parameters: young’s modulus 
(EP) and Poisson’s ratio (υp) (Table 2). An elastic-plastic 
model based on the Coulomb criterion is used to describe 
the soil-pile interface behaviour with an interface friction 
angle of 0.7f (Stas, Kulhawy 1984).

The base resistance-base settlement curve obtained 
from the current study is compared to the corresponding 
curve of Salgado and Lee as shown in Figure 4. Although 

the initial slope of the present load-settlement curve is 
larger than that of Salgado and Lee (1999), the present 
FE prediction seems to match reasonably well with the 
previous study up to a 0.11B base settlement. However, 
with further increase in the base settlement, the present 
analysis underestimates the pile end-bearing resistance. 
The difference in the initial slopes may be attributed to 
the difference in soil modelling between the two studies. 
It worth noting that the ultimate load is defined in the 
current study as the pile load corresponding to a 0.1B 
vertical settlement (Eurocode 7 2004). This settlement 
is, in fact, close to 0.11B at which there is an agreement 
between the two load-settlement curves. In other words, 
the ultimate pile capacity adopted in the current study is 
in accordance with that obtained from Salgado and Lee 
(1999) results.

1.3. Parametric study
A comprehensive parametric study is performed to evalu-
ate the contribution of the zones above and below the 
pile tip to its end-bearing resistance. The pile embedment 
depth (D) and diameter (B) were selected at 20 m and 
0.6 m, respectively. These properties refer to typical pile 
geometry. To model the soil profile, two homogenous 
sand layers (above and below pile tip) were considered. 
The effect of changing the mechanical properties (i.e, N) 
of the sand layers on the magnitude of the end-bearing 

Table 1. Material properties of the sand layer

Soil properties
Drained state Drained
Relative density/soil state 35% / medium
Soil unit weight in kN/m3 18
Poisson’s ratio 0.33
Internal friction angle in degree 34.8
Dilatation angle in degree 3
Young’s modulus in kPa 50×103

Friction angle of interface in degree 23

Table 2. Material properties of the pile

Pile properties
Pile model Linear elastic
Pile type Non porous
Pile diameter in m 0.6
Pile embedment in m 20
Young’s modulus in kPa 30×106

Poisson’s ratio 0.3
Unit weight in kN/m3 25

Fig. 3. Geometry and boundary conditions of the used numeri-
cal model

Fig. 4. Calibrated numerical model against Salgado and Lee 
(1999) model
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resistance is investigated to reflect the relative contribu-
tion of the zones above and below the pile toe. Different 
values of the uncorrected standard penetration number, 
N ranging from 5 to 40 for both sand layers was consid-
ered. The sand modulus of elasticity is estimated from the 
standard penetration number N as follows:

 – The uncorrected N is first corrected according to 
Eqn (1) and then normalized with respect to overbur-
den pressure according to Eqn (2) to obtain N1(60).

 – Shear wave velocity, Vs that is directly related to 
the soil shear modulus ( 2

sG V= ρ , where r is the 
soil mass density), is evaluated from N1(60) based on 
Karray and Éthier (2012) relationship (D50 = 1 mm):

 

1
0.25
1

108.5sV
N

= , (4)

where Vs1 is the normalized shear wave velocity: 
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Finally, the modulus of elasticity Es can be calcu-
lated using:

 2 (1 )sE G= + υ . (6)

Es of all cases studied varies from 100 to 350 MPa, 
and υ was set at 0.33. 

1.4. Evaluation of the contribution values of the zones 
above and below the pile tip 
Statistica Software v.10 is employed to analyse the results 
of the parametric study described above. Statistica has the 
opportunity to create a statistical model that represents 
the variability of the tip resistance, qb as a function of Wβ, 
Wα, Nβ, Nα and the base resistance factor (x) as indicated 
in Eqn (7) and, further allows us to numerically evaluate 
the coefficient of resistance at pile base (x). The analysis 
results are given in Table 3.

 
. .( . . )b bq x N x W N W Nβ β α α= = + . (7)

The obtained weights confirm that previous studies 
that neglect the contribution of the upper zone can lead 

to non-compliant estimates of the pile tip resistance. Ac-
cording to the current study, the upper zone contributes 
about 40% in mobilizing the pile end-bearing resistance. 
Eqn (3) can then be written as:

 
0.6 0.4bN N Nβ α= +  (8)

and therefore (see Table 3):

 0.457b bq N=  in MPa. (9)

It worth mentioning that the base resistance fac-
tor (x) in Eqn (9) and Table 3 that equals to 0.457 MPa 
is consistent with those found in the literature (e.g.,  
Decourt 1982; Meyerhof 1976).

2. Neural networks 

A neural network is a system composed of a set of neu-
rons interconnected with each other. A certain disposi-
tion of the connection of these neurons produced a neu-
ral network model suitable for certain tasks. The Back 
Propagation Multilayer Perceptron (BPMLP) is the most 
popular neural network model often used, consisting of 
three adjacent layers, input, hidden and output (Dreyfus 
et al. 1994). To obtain some desired outputs, weights, 
which represent connection strength between neurons and 
biases, are adjusted using a number of training inputs and 
the corresponding target values. The network error, that is 
the difference between calculated and expected target pat-
terns, then back propagated from the output layer to the 
input layer to update the network weights and biases. It 
arises during the learning process and it can be expressed 
in terms of mean square error (MSE) using:

 
( )

2
1

j j
j

MSE t o
p

 
 = ⋅ −
 
 
∑ ,  (10)

where: tj is the target value of jth pattern, Oj is the out-
put value of jth pattern, and P is the number of patterns.  
In addition, the absolute fraction of variance (R2) is also 
calculated using:
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(11)

The performance of a BPMLP relies heavily on its 
ability of generalization, which, in turn, depends on the 
data representation. An important feature of data rep-
resentation is the de-correlation of these data. In other 
words, a set of data presented at a BPMLP should not 
consist of correlations between them because the corre-
lated data reduce the distinctiveness of the representation 
of data, and therefore, introduce confusion to the model 
during the learning process and, thus, produces a BPMLP 
with a low ability to generalization for new data (Bishop 
1994). This suggests the need to eliminate the correla-

Table 3. Estimation of the relative contribution of the zones to 
the pile end-bearing capacity

Model is: ( ) ( ). . .qb MPa x W N W Nβ β α α= +
Level of confidence 95% (alpha = 0.05)   R² = 0.76

Estimate Standard 
error

t-value  
df = 46 p-level

Wβ 0.60 0.017 17.83 0.0001

Wα 0.40 0.013 14.56 0.0001

x  
(MPa)

0.457 0.015 15.80 0.0001
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tion of data before they are presented at a BPMLP. This 
can be achieved by the application of PCA technique on 
all input data before training the BPMLP (Jolliffe 2002). 
This technique was utilized in this study and will be de-
scribed in details below.

3. Principal component analysis (PCA) 

The technique of PCA is a descriptive technique to study 
the dependencies between variables, for a description or a 
compact representation of these variables. Since 70 years, 
many researchers have used the PCA method as a tool 
for processes modelling from which a model can be ob-
tained (e.g., Kresta et al. 1991; MacGregor, Kourti 1995). 
It was also successfully applied as a technique for reduc-
ing the dimensionality of ANN inputs in a variety of en-
gineering applications (e.g., Harkat 2003; Kuniar, Waszc-
zyszyn 2006; Shin et al. 2008; Boukhatem et al. 2012). 
Mathematically, PCA is an orthogonal projection tech-
nique that projects multidimensional observations repre-
sented in a subspace of dimension m (m is the number 
of observed variables) in a subspace of lower dimension  
(L < m) by maximizing the variance of the projections. 
The estimation of PCA parameters can be summarized in 
the calculus of eigenvalues and eigenvectors of the ma-
trix Σ. From the spectral decomposition of this matrix it 
can be written as follows:

 1 . .mT T
i i iip p p p== ∧ = λ∑ ∑ , (12)

where: ip  is the thi  eigenvector of Σ and iλ  is the cor-
responding eigenvalue.

The determination of the number L which repre-
sents the number of eigenvectors corresponding to the 
dominant eigenvalues is very important. Many rules are 
proposed in the literature to determine the number of  
L components to retain (Valle et al. 1999). In this study, 
we used the cumulative percentages of the total variance 
method. The percentage of variance is explained by the 
first L components and is given by:   

 

( ) 1

1

100. %
l
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m
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PCV L =

=
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 
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∑

. (13)

4. Development of the artificial neural network 
model 

4.1. Database construction
In this study, one ANN model, that deals with the two 
different types of pile installation, namely large- and low-
displacement piles, is developed. The data used to cali-
brate and validate the ANN model are obtained from the 
literature and includes, respectively 247 and 168 static 
load tests on large- and low-displacement driven piles re-
ported by different authors (Appendix 1). The conducted 
tests were performed at different non-cohesive sites. The 

large- and low-displacement tests include compression 
loading of steel, concrete and aluminium piles, driven 
statically (jacked-in) or dynamically into the ground.

4.2. Model inputs and outputs
 – Nine factors affecting the pile capacity are present-
ed in the ANN as potential model input variables. 
These include the embedment length (D), two cor-
rected blows numbers (NShaft,  bN ), pile or shaft ma-
terial (concrete, steel, and aluminium) (SM), and 
two pile classification (low- and large-displacement) 
(PC). To accurately account the wide variety of pile 
shapes, four diameters are considered which are; 
Bext (external or shaft diameter), Bbase (pile base di-
ameter), Bint (internal diameter) and Bhead (pile head 
diameter). Table 4 presents the ranges of the data-
base constituents.

 – It is fair to mention that the adopted averaging zone 
of the pile tip resistance described in Sections 1.3 
and 1.4 would be unsatisfactory if the pile has large 
diameter compared to its embedment depth. How-
ever, as presented in Table 4, all the considered case 
has greater embedment compared to their diameters.
It should be noted that the following conditions are 

applied to the input and output variables used in the cur-
rent model:

 – The considered driven piles are divided into two 
types and are translated from the text format into 
arbitrary numeric values (i.e., 2 for large-displace-
ment and 3 for low-displacement piles). As shown 
in Table 4, the piles have different sizes and shapes 
with diameters ranging from 90 mm to 1800 mm. 
This wide range in pile diameter may affect the be-
haviour of the pile accordingly they were classified 
into: small-diameter (diameter < 600 mm) and large-
diameter piles (diameter > 600 mm).

 – The ultimate pile capacity (Qt) is defined in this 
study as the load corresponding to the plunging fail-
ure for the well-defined failure cases. For the cases 
where the failure load is not clearly defined, it is 
required to determine the failure load from the re-
sults of pile load tests through a unique criterion. 
According to Eurocode 7 (2004), Geotechnical De-
sign-General rules, a small-diameter pile is consid-
ered to be failed if it experiences a settlement equal 
to 10% of its nominal dimension. On the other hand, 
the ultimate capacity of a large-diameter pile is ac-
cessed, following the recommendations of AASHTO 
(2000) and FHWA (1996), when the pile settlement 
(S) equals to: 

 
( ) ( ). / . / 30p pS Q L E A B= + , (14)

where: Q  is the test load; L  is the pile length; pA  is 
the cross sectional area of pile and pE  is the modulus 
of elasticity of the pile material. Figures 5 and 6 present 
the definition of the failure load for two recorded cases 



398 A. Benali et al. Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach

selected from the database presented in Appendix 1.
 – Finally, and as the precedent, the pile materials is 
translated as, 1 for steel, 2 for concrete and 3 for 
aluminium.

4.3. Data division

There is no acceptable generalized rule to determine the 
size of the training and testing data for suitable train-
ing. In fact, this problem is network-dependent. In the 
majority of engineering applications, data division is 
customarily carried out on an arbitrary basis. To achieve 
the optimum division in this study, all the data sets were 
combined and shuffled using a cross validation method 
in which the data are be divided into three sets; training, 
testing and validation. The training set is used to adjust 
the connection weights, whereas the testing set is used to 
check the performance of the model at various stages of 
training and to determine when to stop training to avoid 
over-fitting. The validation set is used to estimate the per-
formance of the trained network in the deployed environ-
ment. In total, 60% of the data (249 cases) are used for 
training, 20% (83 cases) for testing and 20% (83 cases) 
for validation.   

4.4. Methodology of implementation of PCA and ANN
This section describes the steps taken to implement the 
PCA and the ANN approaches. The methodology is de-
scribed in Figure 7. Two types of PCA data processing 
were implemented in two phases. The first phase is called 
Pre-PCA, which is responsible for pre-processing the 
training data matrix and eliminates correlations between 
them. The second is called Post-PCA, which is used to 
transform testing and validation data matrix according to 
its principal components. The implementation and simu-
lation were performed using the MATLAB 7.5 (The Math 
Works 2007) functions of the neural networks toolbox.

4.4.1. Pre-PCA phase
According to Figure 7, the input data (Matrix C) were 

Fig. 5. Determining capacity of a driven concrete large-
diameter pile for the St. Georges Island Bridge Replacement 
Project (Bext = 1.35 m; Bint = 1.15 m; sandy soil) (McVay 
et al. 2004)

Fig. 6. Determining capacity of a driven concrete small-
diameter pile (B = 0.5 m; sandy soil) (Reiffsteck 2009)

Table 4. Ranges of the database constituents b
bN

Pile types
Large 

displacement Low displacement

Min Max Min Max
Bext (m) 0.09 1.80 0.10 1.80
Bint (m) 0.00 1.75 0.00 1.75
Bbase (m) 0.09 1.80 0.10 1.80
Bhead (m) 0.09 1.80 0.10 1.80
D (m) 3.00 61.00 2.00 86.00
NShaft

a 2.62 64.36 2.00 35.57

b
bN 5.35 101.00 2.00 71.50

Shaft material
1 : Steel
2 : Concrete
3 : Aluminum

1 3 1 3

Qt (MN) 0.08 33.74 0.08 31.00
Case number 247 168
Total number 415

Fig. 7. Methodology of implementation of PCA and ANN
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first normalized, so that they had zero and unity vari-
ances. Then, the PCA parameters (eigenvalues and eigen-
vectors) were estimated to calculate the principal com-
ponents (PC) using the normalized data (Matrix N), the 
mean and variance values. This generates a transforma-
tion matrix (TransMat) and produces a transformed data 
(Ntrans) composed of orthogonal uncorrelated compo-
nent (principal components). The matrix TransMat was 
then stored for later use during the phase of post-PCA. 
The uncorrelated components of matrix Ntrans were clas-
sified according to their variances. They were then passed 
to the ANN together with their corresponding target out-
put values for a network training process based on a se-
lected PC variance value. A representation of eigenvalues 
in terms of principal components for the model and the 
relative contribution of each component to the total vari-
ance of data are presented in Figure 8. 

The nine (9) parameters of the row input matrix can 
be replaced by seven (7) first principal components based 
on a chosen PCV value. They were then introduced to the 
ANN inputs with their desired output. Many ANN were 
trained using different PCV values to determine the op-
timal percentage of this value of the total variance in the 
database. The best model is with PCV equal to 2% and 
seven principal components.

4.4.2. Post-PCA phase
During each training process of an ANN, validation and 

generalization performance on testing and validation data 
sets were evaluated. Each vector of validation or test data 
was post-processed with the post-PCA before it can be 
used an ANN to estimate or predict the output (Fig. 7). As 
in the pre-processing procedure, the validation or test data 
Cval/test were normalized (mean 0 and variance 1). Then, 
the normalized data, Nval/test were post-processed based 
on the correlation matrix TransMat (obtained during the 
pre-processing phase) to produce a new transformed data 
matrix Ntranval/test composed of reduced and uncorrelated 
data. The trained network used these reduced and uncor-
related data with its optimal weights obtained from train-
ing process to predict total pile capacity (ultimate load). 

4.4.3. Training, testing and network selection 
The developed model presented in Figure 9 was trained 
and tested with its data set for training, testing, and vali-
dation using the Bayesian regularization algorithm (Mac-
Kay 1992).

Once the desired errors have occurred, the output 
results obtained for the model was compared with the 
corresponding actual results. The comparison was made 
in terms of calculating the coefficient of determination 
MSE, R2 and Pvalue. Generally, the calculation of Pvalue 
was used to justify the significance of the studied relation 
(MacKay 1992). Training performances adopted in this 
application are summarized in Table 5. Figure 10 rep-
resents, respectively the training, as well as testing and 
validation results of the developed model. 

Fig. 9. Architecture of the developed ANN model for predicting 
the pile capacityFig. 8. Eigenvalues and contributions of components to the 

total variation

Fig. 10. Measured versus predicted pile capacity of the ANN model: (a) Training, (b) Testing, (c) Validation
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4.4.4. Design formula of the ANN model
The mathematical expression of the ANN model devel-
oped in this study can be written as:

'

0 ' ' ' '
' 1 1

. .  
h h

Tansig k Tansig h k k k k
k k

Y f b w f b w y
= =

    = + +         
∑ ∑ ;  

  
  (15)

 k
1

y  .  
m
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=

 
= +  

 
∑ , (16)

where: Y is the output of the model (the ultimate pile ca-
pacity Qt); Xi is the model inputs; 'kw is the connection 
weight between k’th neuron of a hidden layer and the 
single output neuron; hkb  is the bias at the kth neuron of 
the first hidden layer; ' 'h kb  is the bias at k’th neuron of 
the second hidden layer; h is the number of neurons in 
the first hidden layer; h’ is the number of neurons in the 
second hidden layer; kiw  is the connection weight be-
tween ith input variable and kth neuron of the first hidden 
layer; kkw '  is the connection weight between k’th neuron 
of the second hidden layer and kth neuron of the first hid-
den layer; b0 is the bias at the output layer and Tansigf  
is the Tan sigmoid transfer function. More details of the 
weights and biases based on the trained ANN model are 
given in Appendix 2.

5. Comparison of ANN model with available  
SPT-based methods

To examine the accuracy of the low- and large- displace-
ment pile model against available methods, the model is 
compared with four SPT-based methods currently used in 
practice. In fact, those current methods for calculating the 
pile capacity do not distinguish between low- and large- 
displacement piles except Meyerhof’s method (1976). 
The calculation results are displayed in Table 6. The de-
veloped model is compared with the Meyerhof’s method 
(1976), Shioi and Fukui’s method (1982), Robert’s meth-
od (1997) and the PHRI Standard’s method (PHRI 1980). 
Optimal performance of a pile capacity prediction model 
is indicated three criteria: 

 – The first criterion is determined by carrying out a 
regression analysis to obtain the best fit line of pre-
dicted versus measured pile capacities. The neural 
network model has respectively, Qfit/Qm equal to 
0.93 and 0.95 with R² = 0.94 and 0.95 for large- 
and low-displacement piles, which implies that the 
developed model gives the better values comparing 
with the others methods.

 – The second criterion is determined by carrying out 
arithmetic calculations of mean (µ) and standard de-
viation (σ). It can be seen that the developed model 
for large-displacement pile tends to underestimate 

Table 5. Architecture and parameters of the developed model

Input 
(X)

PCA 
Parameters

ANN 
Architecture ANN Parameters Output 

(Y)With PCA Without PCA

9
PCC PCV N.PC N.HL N.NHL Mu MSE/N.ITR R² P Mu MSE/N.ITR R² P Ultimate 

Capacity 
(MN)95.3 0.02 7 2 6/3 0.005 0.009/30 0.94 10-4 0.005 0.01/250 0.89 10-4

Notes: PCC: Principal Component Contribution.   N.HL: Number of Hidden Layers.   N.NHL: Number of Neurons in each Hidden Layer.  Mu: 
Momentum value.   N.ITR: Number of Iterations or cycles.   MSE: the training error of the network;   R²: Coefficient of determination.   P: Pvalue.

Table 6. Performance of ANN model against available SPT-based methods and some computing intelligent models

Best fit calculations Arithmetic calculations Accuracy ±25%
Methods Qfit/Qm R² µ(Qp/Qm) σ(Qp/Qm) Lognormal
Large-displacement pile
Neural network model 0.93 0.95 0.94 0.28 78
Meyerhof (1976) 0.92 0.84 0.90 0.30 58
PHRI Standard (1980) 0.88 0.78 1.14 0.35 54
Shioi and Fukui (1982) 0.51 0.26 0.78 0.27 39
Robert (1997) 0.91 0.82 0.87 0.27 46
Abu Kiefa (1998) (ANN model) – 0.91 – – –
Low-displacement pile
Neural network model 0.94 0.95 1.05 0.15 83
Meyerhof (1976) 0.91 0.83 0.89 0.43 54

Note: Qfit – pile capacity of the best fit of predicted versus measured pile capacity; Qp – predicted pile capacity; Qm – measured pile 
capacity; µ – mean; σ – standard deviation.
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the measured pile capacity by an average value of 
6%. For low-displacement pile, the model tends to 
overestimate the measured pile capacity by an av-
erage value of 5%. This gives better performance 
when comparing with Meyerhof’s (1976) method 
that tends to underestimate respectively the pile ca-
pacity with an average value of 10% and 11% for 
large-and low-displacement piles.

 – The third criterion is evaluated by plotting the log-
normal distributions of Qp/Qm ratio of the remaining 
data for all methods (Fig. 11). The probability of 
predicting the pile capacity within ±25% accuracy 
(P) is then obtained by calculating the area beneath 
the lognormal distribution within a range equal to 
0.75Qm ≤ Qp ≤ 1.25Qm. Based on this criterion, the 
high probability implies a higher accuracy of the 
predict method. It can be seen that, the developed 
model is again ranked with the highest lognormal 
distribution probability values of 78% for large-dis-
placement piles and of 89% for the low-displace-
ment piles (Table 6).

6. Parametric analysis based on the ANN results

To examine the generalization ability of the developed 
ANN model, sensitivity analysis was carried out. A set 
of a hypothetical input that lies within the range of the 
training data was used to verify the response of the model 
to the variations of the input variables. The robustness of 
the model was determined by examining how well the 

predictions compare with available geotechnical knowl-
edge and experimental data. The results of the sensitivity 
analysis are shown in Figures 12–14. It can be seen that 
the predictions of the pile capacity from the model agree 
well with what one would expect and with published ex-
perimental results in the sense that the pile capacity in-
creases with the increase of the pile diameter (B), embed-
ment length (D) and blows number (N). 

It can also be seen that for large-displacement 
piles, the concrete pile have a higher capacity than the 
closed-ended steel pipe pile and then, the aluminium 
pile (Figs 12a–14a). This can be attributed to the higher 
shaft resistance developed in the concrete pile as it has 
more roughness than the steel shaft (Alkroosh, Nikraz 
2012). On the other hand, for low-displacement cases, 
the steel pile has a higher capacity than the concrete pile 
(Figs 12b–14b) as the majorities of the cases incorpo-
rated in this type (low-displacement) are H or open-ended 
steel pipe piles in addition to some concrete piles. The 
developed shaft resistance in these types of steel piles 
are generally higher than that of the concrete piles. It is 
worth to mention that the results of the sensitivity analy-
ses presented in Figures 12–14 provide an additional con-
firmation of the reliability of the developed ANN model.

7. Statistical models based on neural network result

To facilitate the use of the developed neural network mod-
el, it is translated into a relatively simple design equations 
based on statistical models. The best statistical models  

Fig. 11. Performance of ANN model against available SPT-based methods: (a) large-displacement piles, (b) low-displacement piles 

Fig. 12. Effect of pile diameter on pile capacity: (a) Large-displacement pile, (b) Low-displacement pile
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retained to predict the pile capacity for both pile types 
based on neural network results were written according to 
the following functions:

a. For large-displacement piles (steel and concrete 
piles) with; Bint= 0; Bext = Bbase = Bhead:

1 2 3 4( ) bShaft baseQt  b .N .As b .Exp b .B b .D .N .Ab = + + ; (17)

b. For low-displacement piles:
 – Concrete piles with; Bint= 0; Bext= Bbase= Bhead, the 
equation takes the following form:

1 2 3 4( ) bShaft baseQt  b .N .As b .Exp b .B b .D .N .Ab= + + ; (18)

 – Steel piles with:  Bint ¹ 0; Bext ¹ Bbase, Bext = Bhead, the 
equation takes the following form:

 
1 2 3 4 int

5 6

(

) .
Shaft ext

bbase

Qt  b .N .As b .Exp b .B b .B

b .B b D .N .Ab

= + + +

+
 (19)

The parameters (b1, b2, b3, b4, b5 and b6) of these 
functions are adjusted and computed using the STATIS-
TICA 7.1 software (Table 7). 

Conclusions

In this paper, a comprehensive set of in-situ pile load test 
results collected from the literature has been utilized to 
develop an ANN model for capacity predictions of large- 
and low-displacement piles. In order to improve the pre-
dictive ability of the developed ANN model, the principal 

component analyses (PCA) approach was applied. The 
incorporation of this technique led to the compression of 
the input data and the elimination of the correlation be-
tween them to predict effectively the pile capacity. The 
performance of the ANN model was examined against 
the most practically used SPT-based pile capacity pre-
diction methods and some intelligent computing models. 
The results indicate that the developed model was capa-
ble of accurately predicting the ultimate capacity of both 
large- and low-displacement piles with high performance 
parameters (R² = 0.95, Mean = 1.05, SD = 0.28). The 
results suggest also that applying PCA method for data 
processing is very useful for improving the prediction 
performance of the ANN model. Moreover, the current 
study has confirmed that previous studies that neglect the 

Fig. 13. Effect of pile embedment on pile capacity: (a) Large-displacement pile, (b) Low-displacement pile

Fig. 14. Effect of blows number on pile capacity: (a) Large-displacement pile, (b) Low-displacement pile

Table 7. Parameters of the statistical models based on neural 
network results

Large-displacement 
piles

Low-displacement 
piles

Coefficients Concrete Steel Concrete Steel
b1 0.0026 0.0015 0.0039 6.10–5

b2 0.7000 0.7800 3.10–6 6.1900
b3 –3.0200 –3.0200 7.3700 0.0670
b4 0.0460 0.0460 0.1860 0.2400
b5 – – – –4.9200
b6 – – – 0.0200
R² 0.86 0.90 0.92 0.96

P value 10–5 10–5 10–5 10–3
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contribution of the zone above the pile toe can lead to 
non-compliant estimates of the pile tip resistance.

References
AASHTO. 2000. LRFD bridge design specification. 2nd ed. 

Washington, D.C., USA.
Abu Kiefa, M. A. 1998. General regression neural networks 

for driven piles on cohesionless soil, Journal of Geo-
technical and Geoenvironmental Engineering 124(12): 
1177–1185. https://doi.org/10.1061/(ASCE)1090-
0241(1998)124:12(1177)

Ahangar-Asr, A.; Javadi, A. A.; Johari, A.; Chen, Y. 2014. Later-
al load capacity modelling of piles in cohesive soils in un-
drained conditions: an intelligent evolutionary approach, 
Applied Soft Computing 24: 822–828. 

 https://doi.org/10.1016/j.asoc.2014.07.027   
Alkroosh, I.; Nikraz, H. 2012. Predicting axial capacity of 

driven piles in cohesive soils using intelligent computing, 
Journal of Engineering Application of Artificial Intelli-
gence 25(3): 618–627. 

 https://doi.org/10.1016/j.engappai.2011.08.009
Altaee, A.; Fellenius, B. H.; Evgin, E. 1992. Load transfer for 

piles in sand and the critical depth, Canadian Geotechni-
cal Journal 30(3): 455–463. 

 https://doi.org/10.1139/t93-039
Amini, A.; Fellenius, B. H.; Sabbagh, M.; Naesgaard, E.; Bue-

hler, M. 2008. Pile loading tests at Golden Ears Bridge, in 
61st Canadian Geotechnical Conference, 21–24 Septem-
ber 2008, Edmonton. 8 p.

Azizi, F. 2000. Applied analyses in geotechnics. CRC Press. 
776 p. https://doi.org/10.4324/9780203478738

Azizkandi, S. A.; Kashkooli, A.; Baziar, M. H. 2014.  Prediction 
of uplift pile displacement based on cone penetration tests 
(CPT), Geotechnical and Geological Engineering 32(4): 
1043–1052. https://doi.org/10.1007/s10706-014-9779-y

Bandini, P.; Salgado, R. 1998. Methods of pile design based on 
CPT and SPT results, in Proceedings of the 1st Interna-
tional Conference on Site Characterization, 1998, Balke-
ma, Rotterdam, 967–976.

Bellamine, F. H.; Elkamel, A. 2008. Model order reduction neu-
ral using network principal component analysis and gener-
alized dimensional analysis, Engineering and Computer: 
International Journal of Computation Aid Engineering 
Software 25(5): 443–463. 

 https://doi.org/10.1108/02644400810881383
Bishop, C. M. 1994. Neural networks and their applications, 

Revision of Scientific Instruments 65(6): l803–1832. 
 https://doi.org/10.1063/1.1144830
Boukhatem, B.; Kenai, S.; Tagnit-Hamou, A.; Ghrici, M. 2011. 

Application of new information technology on concrete: 
an overview, Journal of Civil Engineering and Manage-
ment 17(2): 248–258. 

 https://doi.org/10.3846/13923730.2011.574343
Boukhatem, B.; Kenai, S.; Tagnit Hamou, A.; Ziou, D.; Ghri-

ci, M. 2012. A system for predicting concrete properties 
using neural networks (NN) with Principal Component 
analysis (PCA) technique, Computer and Concrete 10(6): 
557–574. https://doi.org/10.12989/cac.2012.10.6.557

Bullock, P. J.; Schmertmann, J. H.; McVay, M. C.; Townsend, 
F. C. 2005. Side shear setup. I: test piles driven in Flor-
ida, Journal of Geotechnical and Geoenvironmental 
Engineering 131(3): 301–310. https://doi.org/10.1061/
(ASCE)1090-0241(2005)131:3(301)

Bustamante, M.; Christoulas, S.; Gianéselli, L.; Yannaros, H. 
1985. Essais de chargement de pieux battus moulés sur le 
site de Kaminia (Athènes), Bulletin de Liaison du Labo-
ratoire des Ponts et Chaussées 137: 5–15.

Byrne, B. 2005. Driven pipe piles in dense sand. Geomechanics 
Group, University of Western, Australia.

Campanella, R. G.; Sy, A.; Davies, M. P.; Roberston, P. K. 1989. 
Pile capacity prediction Event, in Symposium on Predicted 
and Observed Axial Behavior of piles. ASCE Geotechnical 
Special Publications Northwestern University of Illinois, 
USA, Vol. 23.

Carpentier, R. 1985. Pile foundation problems: recent devel-
opments, Belgian Geotechnical Volume Published for the 
1985 Golden Jubilee of the International Society for Soil 
Mechanics and Foundation Engineering, 9–58.

Combarieu, O. 1976. Essais de chargement de pieux de grande 
longueur battus dans de la grave et de l’argile raide, Bul-
letin de  Liaison du Laboratoire des Ponts et Chaussées 
82: 5–15.

Coyle, H. M.; Castello, R. R. 1981. New design correlations 
for piles in sand, Journal of the Geotechnical Engineering 
Division 127(GT7): 965–986.

Dan Brown, M. 2002. Effect of construction on axial capac-
ity of drilled foundations in piedmont soils, Journal of 
Geotechnical and Geoenvironmental Engineering 128: 
967–973. 

https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(967)
Das, B. M. 1984. Principal of foundation engineering. PWS 

Engineering Boston, Massachusetts.
De Nicola, A.; Randolph, M. F. 1999. Centrifuge modeling of 

pipe piles in sand under axial loads, Géotechnique 49(3): 
295–318. https://doi.org/10.1680/geot.1999.49.3.295

Decourt, L. 1982. Prediction of the bearing capacity of piles 
based exclusively on N-value of the SPT, in Proceedings 
of the 2nd European Symposium on Penetration Testing, 
1982, Amsterdam, Netherlands, 29–34.

Deeks, A. D.; White, D. J.; Bolton, M. D. 2006. A comparison 
of Jacked, driven and bored piles in sand, in Proceedings 
of The 16th International Conference on Soil Mechanics 
and Geotechnical Engineering (16ICSMGE), 13–16 Sep-
tember 2005, Osaka, Japan, 1685–1688. 

Dreyfus, G.; Martinez, J. M.; Samuelides, M.; Gordon, M. B.; 
Badran, F.; Thiria, S.; Hérault, L. 1994. Réseaux de neu-
rones – Méthodologie et application. Edition Eyrolles.

Durgunoglu, H. T.; Kulaç, H. F.; Ikiz, S.; Karadayilar, T.; 
Oge, C. E.; Olgun, C. G. 1996. A case study on determi-
nation of pile capacity using CPT. Foundation Engineer-
ing Consulting Report, Istanbul, Turkey.

Engin, H. K.; Binkgreve, R. B. J. 2009. Investigation of pile 
behavior using embedded piles, in Proceedings of The 17th 
International Conference on Soil Mechanics and Geotech-
nical Engineering, 5–9 October 2009, Alexandria, Egypt, 
1189–1192.

Eslami, A.; Fellenius, B. H. 1997. Pile capacity by direct CPT 
and CPTu methods applied to 102 cases histories, Cana-
dian Geotechnical Journal 34(6): 886–904. 

 https://doi.org/10.1139/t97-056
Eurocode 7. 2004. Geotechnical design – general rules. Thomas 

Telford, London.
Faizi, K.; Kalatehjari, R.; Nazir, A. S.; Rashid, A. 2015. De-

termination of pile failure mechanism under pullout test 
in loose sand, Journal of Central South University 22(4): 
1490–1501. https://doi.org/10.1007/s11771-015-2666-8

Fellenius, B. H. 1989. Prediction of pile capacity, in Proceed-
ings of the American Society of Civil Engineers, ASCE, 
Geotechnical Engineering Division, the 1989 Foundation 
Engineering Congress, Symposium on Predicted and Ob-
served Behavior of Piles 23: 293–302.

FHWA.1996. Design and construction of driven pile founda-
tions. Report No. FHWA-HI-97-013, US Department of 
Transportation, Federal Highway Administration, Florida.



404 A. Benali et al. Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach

Gavin, K.; Cadogan, D.; Twomey, L. 2008. Axial resistance 
of CFA piles in Dublin Boulder Clay, Geotechnical  
Engineering, Proceedings of the Institutions of Civil  
Engineers 6(GE4): 171–180. 

 https://doi.org/10.1680/geng.2008.161.4.171
Goulet, G.; Jezequel, J. 1964. Comparaison entre les résultats 

de chargement statique d’un pieu et un groupe de pieux 
induits des essais géotechniques, Sols-Soils 11: 21–28.

Harkat, M. F. 2003. Détection et localisation de défauts par 
analyse en composantes principales: PhD dissertation. 
Institut National Polytechnique de Lorraine, Centre de 
Recherche en Automatique de Nancy.

Holeyman, A.; Debacher, P.; Dupont, E.; Legrand, C.; Menge, 
P.; Simon, G. 1997. Design of axially loaded piles – Bel-
gian practice: design of axially loaded piles, in European 
practice. Editions De Cock & Legrand & Balkema, Rot-
terdam, 57–82.

Hsu, S. T. 2009. Axially loaded behavior of driven PC piles, in 
AIP Conference Proceedings, 30 November – 3 December 
2009, Hong Kong – Macau, China, 1233.

Hussein, M. H.; Rausche, G.; Likins, G. E. 1993. Driving long 
precast concrete piles, in 14th International Congress of 
the Precast Concrete Industry, 10–15 September 1993, 
Washington, D. C., USA. 8 p.

Hussein, M. H.; Woerner, W. A.; Sharp, M.; Hwang, H. 2006. 
Pile driveability and bearing capacity in high-rebound 
soils, in GeoCongress 2006: Geotechnical Engineering in 
the Information Technology Age, 26 February – 1 March 
2006, Atlanta, Georgia, US, 1–4.

Ibrahim, A. M.; Atneisha, A.; Malik, I. 2013. Comparison 
study of pile foundation using EUROCODE 7 and work-
ing stress design approach, IOSR Journal of Engineering 
3(8): 4–10. https://doi.org/10.9790/3021-03810410

Igoe, D. J. P.; Gavin, K. G. 2008. Field measurements of pipe 
pile base resistance in medium dense sand, in Proceedings 
of the 2nd BGA International Conference on Foundations 
(ICOF), 24–27 June 2008, Dundee, Scotland, 149–158.

Igoe, D. J. P.; Gavin, K. G.; O’Kelly,  B. C.; Byrne, B. 2013. 
The use of in-situ site investigation techniques for the ax-
ial design of       offshore pile, Proceedings of the Fourth 
International Conference on Geotechnical and Geophysi-
cal Site Characterization (ISC 4), 18–21 September 2012, 
Pernambuco, Brazil. CRC Press, Taylor & Francis Group, 
1123–1129.

 Ishihara, K. 2010. Recent advances in pile testing and dia-
phragm wall construction in Japan, Geotechnical Engi-
neering Journal of the SEAGS and AGSSEA 41(3): 1–43.

Iskander, M. 2011. Behavior of pipe piles in sand: plugging 
and pore-water pressure generation during installation 
and loading. Springer Series of Geomechanics and Geo-
engineering. Springer Berlin Heidelberg Edition. 250 p. 
https://doi.org/10.1007/978-3-642-13108-0

Ismael, N. F. 1999. Analysis of load tests on piles driven 
through calcareous desert sands, Journal of Geotechnical 
and Geoenvironmental Engineering 125(10): 1177–1185. 

https://doi.org/10.1061/(ASCE)1090-0241(1999)125:10(905)  
Ismail, A.; Jeng, D. S.; Zhang, L. L. 2013. An optimized prod-

uct- unit neural network with a novel PSOBP hybrid train-
ing algorithm: applications to load-deformation analysis of 
axially loaded piles, Engineering Application of Artificial 
Intelligence 26(10): 2305–2314. 

 https://doi.org/10.1016/j.engappai.2013.04.007
Jardine, R. J.; Chow, F. C.; Matsumoto, T.; Lehane, B. M. 1998. 

A new design procedure of driven piles and its applica-
tion to two Japanese clays, Soils and Foundations 38(1): 
207–219. https://doi.org/10.3208/sandf.38.207

Jolliffe, I. T. 2002. Principal component analysis. 2nd ed. New 
York: Springer. 488 p.

Karray, M.; Éthier, Y. 2012. Reply to the discussion by P. K. Rob-
ertson on “Influence of particle size on the correlation 
between shear wave velocity and cone tip resistance”,  
Canadian Geotechnical Journal 49(1): 121–123. 

 https://doi.org/10.1139/t11-101
Kate, J. 2005. Load-deformation behaviour of foundations un-

der vertical and oblique loads: PhD thesis. James Cook 
University. 

Kordjazi, A.; Pooya Nejad, F.; Jaksa, M. B. 2014. Prediction 
of ultimate axial load carrying of piles using vector ma-
chine based on CPT data, Computer and Geotechnics 55: 
91–102. https://doi.org/10.1016/j.compgeo.2013.08.001

Kresta, J. V.; MacGregor, J. F.; Marlin, T. E. 1991. Multivariate 
statistical monitoring of process operating performance, 
Canadian Journal of Chemistry Engineering 69(1): 35–47. 
https://doi.org/10.1002/cjce.5450690105

Kulesza, R. L.; Fellenius, B. H. 2012. Design and testing of 
piles on a telecommunications project in Morocco: full 
scale testing in foundation design, in Proceedings of  
GeoCongress, 25–29 March 2012, Oakland, California, 
452–470.

Kumpala, A.; Horpibulsuk, S. 2008. Prediction of undrained 
shear strength for hard silty clay Nakhon Ratchasima, 
Journal of Science and Technology 27(4): 348–355.

Kuniar, K.; Waszczyszyn, Z. 2006. Neural networks and princi-
pal component analysis for identification of building natu-
ral periods, Journal of Computation in Civil Engineering 
20(6): 431–436. 

 https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(431)
MacGregor, J. F.; Kourti, T. 1995. Statistical process control of 

multivariate process, Control Engineering Practice 3(3): 
403–414. https://doi.org/10.1016/0967-0661(95)00014-L

MacKay, D. J. C. 1992. Bayesian interpolation, Neural Compu-
tation 4(3): 415–447. 

 https://doi.org/10.1162/neco.1992.4.3.415
McCammon, N. R.; Golder, H. Q. 1970. Some loading tests on 

long pipe piles, Géotechnique 20(2): 171–184. 
 https://doi.org/10.1680/geot.1970.20.2.171
McVay, M. C.; Badri, D.; Hu, Z. 2004. Determination of axial 

pile capacity of prestressed concrete cylinder piles. Final 
Report No. 4910450487712. University of Florida, Civil 
and Coastal Engineering Department, Florida, USA.

Meyerhof, G. G.1976. Bearing capacity and settlement of pile 
foundations, Journal of Geotechnical Engineering 102(3): 
1–19.

Mohammad, H. B.; Azizkandi, S. A.; Kashkooli, A. 2015. Pre-
diction of pile settlement based on cone penetration test 
results: an ANN approach, KSCE Journal of Civil Engi-
neering 19(1): 98–106. 

 https://doi.org/10.1007/s12205-012-0628-3
Mostafa, Y. E. 2011. Onshore and offshore pile installation 

in dense sand soils, Journal of American Science 7(7): 
549–563.

Nguyen, T.; Hanna, A. M. 1991. A three dimensional model for 
single piles in sand, in Proceedings of the 4th International 
Conference on Piling and Deep Foundations, 7–12 April 
1991, Stresa, Italy, 421–429.  

Norlund, R. L. 1963. Bearing capacity of piles in cohesion-
less soils, Journal of the Soil Mechanics and Foundations  
Division 89(3): 1–36.

Omer, J. R.; Delpak, R.; Robinson, R. B. 2010. A new com-
puter program for pile capacity prediction using CPT data,  
Geotechnical and Geological Engineering 24: 399–426. 

 https://doi.org/10.1007/s10706-005-2010-4
Omer, J. R.; Robinson, R. B.; Delpak, R.; Shih, J. K. C. 2003. 

Large scale pile tests in Mercia mudstone: data analysis 
and evaluation of current design methods, Geotechnical 
and Geological Engineering 21: 167–200. 

 https://doi.org/10.1023/A:1024901730231



Journal of Civil Engineering and Management, 2017, 23(23): 393–408 405

Paik, K.; Salagado, R.; Lee, J.; Kim, B. 2003. Behavior of open 
and closed ended piles driven into sand, Geotechnical and 
Geoenvironmental Journal 129(4): 296–306. 

https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(296)
PHRI. 1980. Technical standards for port and harbor facili-

ties in Japan. Bureau of Ports and Harbors, Ministry of 
Transport, Japan.

Software PLAXIS 2D. 2011. PLAXIS, Finite element code for 
soil and rock analysis, Version 2011, Balkema.

Poulos, H. G. 1989. Pile behaviour – theory and application, 
Géotechnique 39(3): 365–415. 

 https://doi.org/10.1680/geot.1989.39.3.365
Randolph, M. F.; Dolwin, J.; Beck, R. 1994. Design of driven 

piles in sand, Géotechnique 44(3): 427–448. 
 https://doi.org/10.1680/geot.1994.44.3.427   
Reiffsteck, P. 2009. Foundation design with Menard Pres-

sumeter tests, in International Foundation Congress & 
Equipment Expo’09 IFCEE, ASCE. Geotechnical Special  
Publication 186: 19–34.

Robert, Y. 1997. A few comments on pile design, Canadian 
Geotechnical Journal 34(4): 560–567. 

 https://doi.org/10.1139/t97-024
Sakr, M. 2011. Installation and performance and characteristics 

of high capacity helical piles in cohesionless soils, Journal 
of the Deep Foundation Institute 5(1): 39–57. 

 https://doi.org/10.1179/dfi.2011.004
Salgado, R.; Lee, J. 1999. Pile design based on cone penetra-

tion test results. Joint Transportation Research Program, 
Indiana Department of Transportation, Purdue University. 
242 p. https://doi.org/10.5703/1288284313293 

Salgado, R.; Zhang, Y. 2012. Use of pile driving analysis for 
assessment of axial load capacity of piles. Technical Re-
ports, Purdue University (JTRP), Purdue e-Publication. 
https://doi.org/10.5703/1288284314671

Schneider, J. A.; Harmon, I. A. 2010. Analyzing drivability of 
open ended piles in very dense sands, Journal of the Deep 
Foundation Institute 4(1): 32–44. 

 https://doi.org/10.1179/dfi.2010.003
Selby, K. G. 1970. Pile tests at Beech River, Canadian Geotech-

nical Journal 7(4): 470–493. 
 https://doi.org/10.1139/t70-058
Shahin, M. A. 2014. Load settlement modeling of axially loaded 

drilled shafts using CPT based recurrent neural network, 
Soils and Foundations 54(3): 515–522. 

 https://doi.org/10.1016/j.sandf.2014.04.015
Shariatmadari, N.; Eslami, A.; Karimpour-Fard, M. 2006. A new 

method for estimation the bearing capacity of piles based 
on SPT results, in 31st DFI Annual Conference on Deep 
Foundations, 4–6 October 2006, Washington, DC., USA.

Shin, S. W.; Yun, C. B.; Futura, H.; Popovics, J. S. 2008. Non-
destructive evaluation of crack depth in concrete using 
PCA-compressed wave transmission function and neural 
networks, Experimental Mechanics 48(2): 225–231. 

 https://doi.org/10.1007/s11340-007-9083-3
Shioi, Y.; Fukui, J. 1982. Application of N-value to design of 

foundation in Japan, in Proceeding of the 2nd ESOPT, 
24–27 May  1982, Amsterdam, Netherlands, 1: 159–164.

Skempton, A. W. 1986. Standard penetration test procedures 
and the effects in sands of overburden pressure, relative 
density, particle size, aging and over consolidation, Géo-
technique 36(3): 425–447. 

 https://doi.org/10.1680/geot.1986.36.3.425
Stas, C. V.; Kulhawy, F. H. 1984. Critical evaluation of design 

methods for foundations under axial uplift and compres-
sion loading. Electrical Power Research Institute, Palo 
Alto California, Report EI-3771.

Tavenas, F. 1971. Load tests results on friction piles in sand, 
Canadian Geotechnical Journal 8(7): 8–22. 

 https://doi.org/10.1139/t71-002
The Math Works. 2007. Neural Network for user with MATLAB 

7.5. Prentice Hall.
Thompson, W. R. L.; Held, M.; Saye, S. 2009. Test pile program 

to determine axial capacity and pile setup for the Bioloxi 
Bay Bridge, Journal of the Deep Foundation Institute 
3(1): 13–22. https://doi.org/10.1179/dfi.2009.002

Valle, S.; Weihua, L.; and Qin, S. J. 1999. Selection of the 
number of principal components: the variance of the re-
construction error criterion with a comparison to other 
methods, Industrial and Engineering Chemistry Research 
38(11): 4389–4401. https://doi.org/10.1021/ie990110i 

Viana da Fonseca, A. 2004. International prediction event on the 
behaviour of Bored, CFA, and Driven Piles in CEFEUP/
ISC’2 experimental site- 2003, in International Confer-
ence on Pile Behaviour, 2004, Porto, Portugal, 1–65.

White, D. J. 2003. Field measurements of SPT and pile base 
resistance in sand. Technical Report CUED /D- soils, 
TR327. University of Cambridge, UK.

White, D. J.; Sidhu, H. K.; Finlay, T. C. R.; Bolton, M. D.; Na-
gayama, T. 2000. Press- in piling: the influence of plug-
ging on driveability, in 8th International Conference of 
the Deep Foundations Institute, 2000, New York, USA, 
299–310.

Xu, X.; Schneider, J. A.;  Lehane, B. M. 2008. Cone penetra-
tion test methods for end bearing assessment of open and 
closed ended driven piles in siliceous sand, Canadian  
Geotechnical Journal 45(8): 1130–1141. 

 https://doi.org/10.1139/T08-035
Yang, J.; Tham, L. G.; Lee, P. K. K.; Chan, S. T.; Yu, F. 2006. 

Behaviour of jacked and driven piles in sandy soil, Géo-
technique 56(4): 245–259. 

 https://doi.org/10.1680/geot.2006.56.4.245
Yu, F.; Yang, J. 2012. Base capacity of open ended steel pipe 

piles in sand, Journal of Geotechnical and Geoenviron-
mental Engineering 138(9): 1116–1128. 

 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000667
Zhang, L. M.; Ng, C. W. W.; Chan, F.; Pang, H. W. 2006. Ter-

mination criteria for jacked pile construction and load 
transfer in weathered soils, Journal of Geotechnical and 
Geoenvironmental Engineering 132(7): 819–829. 

https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(819)
Zhussupbekov, A. Z.; Ashkey, A.; Bazilov, R.; Bazarbaev, D.; 

Alibekova, N. 2009. Geotechnical problems of new capi-
tal Astana (Kazakhstan), Proceeding of the International 
Geotechnical – Symposium, 2009, Russia.



406 A. Benali et al. Prediction of axial capacity of piles driven in non-cohesive soils based on neural networks approach

Appendix 1  
Summary of recorded cases

Table A1. Summary of recorded cases (415 cases)

Reference Site location Soil profile Pile type, 
material

Abu Kiefa (1998)

Canada, Tokyo, Norway, 
Sweden,  The Netherlands, 
Belgium, USA, Spain, 
Scotland, Yugoslavia, China

Sandy soils A, C; A, S

Holeyman et al. (1997) Belgium Clay, Sand, Sandy loam A, S; B, S
Carpentier (1985) Belgium Clay, Sand, Sandy loam A, S; B, S
Combarieu (1976) French Limon, Sand, Gravel A, S
Amini et al. (2008) Canada Sand, Silty sand A, C
Deeks et al. (2006) Japan Silt, Sand and gravel, Silty sand B, S
Bustamante et al. (1985) Greece Heterogeneous Remblai, Sand A, C
Yang et al. (2006) Hong Kong Sand B, C
Tavenas (1971) Canada Sand A, C ; A, S; B, S

Gavin et al. (2008) Dublin City Fill, Alluvial gravel, Boulder clay, 
Limestone B, C

Ismael (1999) Kuwait Calcareous silty sand, Coarse sand A, C
Combarieu (1976) French Limon, Sand, Gravel, Clay A, C
Kumpala and Horpibulsuk 
(2008) Thailand Clayey sand, Silty sand A, C

Omer et al. (2003) USA Silty sand, Clay, sand and gravel, Mercia 
mudstone A, S; B, S

Viana da Fonseca (2004) Portugal Heterogeneous residual 
granite(Saprolitic),Weathered granite soil A, C; A, S; B, S

Fellenius (1989) Canada Sand, Clay A, C; A, S; B, S
Campanella et al. (1989) Illinois, USA Sand, Clay, Silt A, S; B, S
McVay et al. (2004) USA Clay, Sand B, C; B, S
Eslami and Fellenius (1997) III.USA Sand B, S; A, S
McCammon and Golder (1970) Finno, USA Sand B, S; B, C

Randolph et al. (1994) Canada Clay, Sand, Silt A, S; A, C; B, S; 
B, C

White (2003) Canada Sand A, C
Omer et al. (2010) Belgium Sandy silt, Ledian sand B, C
De Nicola and Randolph (1999) Australia Sand B, Al
Mostafa (2011) Different countries Sand, Gravel, Silt B, S
Xu et al. (2008) Different countries Sand A, S; B, S
Dan Brown (2002) USA Silty sand B, C
Sakr (2011) Canada Sand A, C
Kate (2005) USA Sand A, C
Coyle and Castello (1981) Canada Sand A, S; A, C
Engin and Binkgreve (2009) South Surra Sand A, C
Hussein et al. (2006) Florida, USA Sand, Silty sand, Clayey sand A, C
Bullock et al. (2005) Florida, USA Sand, Silty sand, Clayey sand A, C
Schneider and Harmon (2010) USA Sand B, S
Salgado and Zhang (2012) Indiana, USA Gravelly sand, Clay and Sand B, S
Byrne (2005) Australia Sand B, S
Kulesza and Fellenius (2012) Morocco, USA Clay, Sand A, S
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Reference Site location Soil profile Pile type, 
material

Igoe and Gavin (2008) County, Ireland Gravelly clayey silt, Sand, Graval B, S
Igoe et al. (2013) County, Ireland Gravelly clayey silt, Sand, Graval B, S
Goulet and Jezequel (1964) Belgium Limon argileux, Clayey sand A, C
Yu and Yang (2012) USA Clay, Sandy gravel, Sand B, S

Jardine et al. (1998) Japan Site1: Clay, Mudstone, 
Site2: Clay, Gravel, Sand B, S

Norlund (1963) USA Cohesionless soils A, S; B, S
Hsu (2009) Taipei Sand, Silty sand A, C
White et al. (2000) Japan Silt, Sand and Gravel, Silty sand, Sand B, S
Altaee et al. (1992) Bagdad Clayey silty sand, Sand and Silt A, C

Hussein et al. (1993) USA
Site1: Silty sand, Clay, Silt, Sand,
Site2: Sand, Clayey sand, Sand, 
site3: Sand, Clayey sand

A, C

Selby (1970) Canada Sand, Silt, Sandy silt A, S
Durgunoglu et al. (1996) Istanbul, Turkey Clay, Sand A, C
Zhussupbekov et al. (2009) Astana, Kazakhstan Silty sand, Gravel, Sandstone B, S
Reiffsteck (2009) France Clay and sand A, C
Paik et al. (2003) Indiana, USA Gravelly sand, Clay and Silt A, S; B, S
Poulos (1989) USA Site1: Sand  Site2: Clay B, S; A, C; B, C
Zhang et al. (2006) Germany Weathered soils A, C
Thompson et al. (2009) Mississippi, USA Sand, Clay A, C
Ishihara (2010) Japan Sand A, C
Ibrahim et al. (2013) Germany Silty clay, Silty sand A, C

Notes: Pile type:  A – Large-displacement pile, B – Low-displacement pile,
Pile material: C – Concrete, Al – Aluminum, S – Steel,
“;” indicates separator between cases in the same reference.

Appendix 2 
Weights and biases of the developed ANN model for driven piles
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Continued Table A1
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