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Abstract. Time-cost problems that arise in repetitive construction projects are commonly encountered in project schedul-
ing. Numerous time-cost trade-off approaches, such as mathematical, metaheuristic, and evolutionary methods, have been 
extensively studied in the construction community. Currently, the scheduling of a repetitive project is conducted using the 
traditional precedence diagramming method (PDM), which has two fundamental limitations: (1) progress is assumed to be 
linear from start to finish; and (2) activities in the schedule are connected each other only at the end points. This paper pro-
poses a scheduling method that allows the use of continuous precedence relationships and piece-wise linear and nonlinear 
activity-time-production functions that are described by the use of singularity functions. This work further develops an 
adaptive multiple objective symbiotic organisms search (AMOSOS) algorithm that modifies benefit factors in the basic SOS 
to balance exploration and exploitation processes. Two case studies of its application are analyzed to validate the scheduling 
method, as well as to demonstrate the capabilities of AMOSOS in generating solutions that optimally trade-off minimizing 
project time with minimizing the cost of non-unit repetitive projects. The results thus obtained indicate that the proposed 
model is feasible and effective relative to the basic SOS algorithm and other state-of-the-art algorithms.
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Introduction

Construction scheduling is one of the most important as-
pects of construction management. The time-cost trade-
off (TCT) optimization problem is a cornerstone of con-
struction scheduling and planning efforts because it seeks 
to identify construction method options that balance 
these two conflicting considerations (Koo, Hong, & Kim, 
2015; Lim, Jang, Choi, & Lee, 2015). Typically, projects of 
a shorter duration have higher direct cost. A construction 
company may have a competitive advantage over its rivals 
if it can minimize both project time and cost simultane-
ously (Tran & Cheng, 2014; Cheng, Tran, & Cao, 2013).

In the original TCT optimization problems, the project 
duration can often be compressed by accelerating some of 
its activities at an additional expense (Hegazy, 1999; Kelley 
& Walker, 1959). From the perspective of practical appli-
cability, the original TCT still faces some challenges when 
applying to real case study. Over the past decades, the vast 

majority of its extensions deal with the possible shorten-
ings and their effects on the project duration while activity 
stretching has the same importance in decreasing the pro-
ject cost as well, especially in the case of the TCT problems 
associated with repetitive projects.

Specifically, the aforementioned optimization involves: 
(1) minimizing the direct cost of a project that is complet-
ed before a specified deadline (deadline problem) (Khalied 
& Khaled, 2006; Long & Ohsato, 2009); (2) finding the 
shortest project duration without exceeding a given budget 
(budget problem) (Hegazy & Nagib, 2001); (3) combining 
multiple objectives in one objective and thereby provid-
ing a single solution to the optimization problem (Ipsilan-
dis, 2007); or (4) generating a complete and efficient set 
of optimal time cost trade-off solutions called Pareto front 
(time-cost curve problem) (Feng, Liu, & Burns, 1997). The 
multiple objective algorithms are used to optimize both 
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objectives simultaneously in a single run (Hyari, El‐Rayes, 
& El-Mashaleh, 2009; Liberatore & Pollack-Johnson, 2013; 
Huang, Zou, & Zhang, 2016).

Many methodologies have been proposed in the exten-
sive subject of project scheduling since the development of 
the critical path method (CPM). The original solution pro-
cedures for the time cost trade-off were proposed by Kelley 
and Walker (1959) using parametric linear programming. 
Techniques are categorized into heuristic methods, and 
mathematical programming models (Feng et al., 1997). At 
the beginning, the mathematical approaches were used to 
solve the time-cost tradeoff problems because they can di-
rectly yield an optimum value; otherwise all solutions need 
to be enumerated. In general, methods using linear and/
or integer programming lead to optimal solutions whereas 
such approach can be of great computational effort (Chas-
siakos & Sakellaropoulos, 2005).

Other researchers attempted to utilize heuristic meth-
ods in solving the time-cost tradeoff problems (Hazır, Erel, 
& Günalay, 2011; Li & Love, 1997). Heuristic approaches, 
however, operate on rules of thumb and lack rigor (Zheng, 
Ng, & Kumaraswamy, 2005). They can only deliver good 
feasible solutions and by no means guarantee an optimum 
solution (Shannon & Lucko, 2012).

Owing to the limitations of mathematical and heuristic 
approaches, such as their inability to deal with non-linear 
activities or handle more than one objective (Zheng et al., 
2005), metaheuristic methods were designed. Evolution-
ary Algorithms (EAs), known as a type of metaheuris-
tic optimization for solving time cost tradeoff problems, 
have drawn more attention in recent years. The advantage 
of EAs is its ability to find optimal solutions to complex 
problems in a relatively short time (Agdas, Warne, Osio-
Norgaard, & Masters, 2018).

Noticeably, the traditional precedence diagramming 
method (PDM)-based scheduling optimization focuses 
only on time without consideration of productivity issue 
(Haidu, 1996; Photios & Yang, 2016). An extensive review 
of the literature done in this study also found that the ex-
isting algorithms do not handle recent developments of 
traditional PDM well, e.g., continuous relationships and 
piecewise linear and non-linear activities, shedding a light 
of an urgent research need.

Repetitive projects (RPs) are common in the construc-
tion sector. Repetition arises from geometry and location 
layouts or the multiplication of units (Cho, Hong, & Hyun, 
2013; Srisuwanrat & Ioannou, 2007; Zhang, 2015). RPs of-
ten require resources (such as crews) to perform the same 
task in various units (locations, segments) by moving from 
one unit to the next (Vanhoucke, 2006).

Several repetitive scheduling methods (RSMs) have 
been proposed for the planning and scheduling of repeti-
tive construction projects (Huang & Sun, 2005; Jeeno, 
Brijesh, Dileeplal, & Tinjumol, 2016; Khalied & Khaled, 
2006; Photios & Yang, 2016). The general consensus is that 
RSMs are simple and easily applied scheduling methodol-
ogy that follows naturally from the concepts and relation-
ships found in the PDM (Harris & Ioannou, 1998). RSMs 
address the need for work continuity and uninterrupted 
resource deployment in the construction of a repetitive 
project. Consequently, RSMs are preferred for the schedul-
ing and resource planning of repetitive construction pro-
jects (Huang & Sun, 2006).

The currently used RSMs on the basis of the PDM have 
two fundamental limitations on precedence relationships: 
(1) it assumes that progress is linear from start to finish; 
(2) activities in the schedule are connected each other only 
at the end points. The first basic assumption on prece-
dence relationships of the PDM is that activities are linear, 
progressing at a fixed production speed without planned 
breaks. In practice, this restrictive assumption is almost al-
ways inaccurate (Hajdu, Lucko, & Yi, 2017). For example, 
in a trench construction project, the production speed if 
it is measured along the street accelerates if the depth of 
the trench is decreasing and slows down if the depth of the 
trench is increasing.

Hence, the relationship between duration of activ-
ity and quantity of work is non-linear (Figure  1a). With 
respect to the second basic assumption of the PDM, Fig-
ure  1b shows a relationship between activity A (linear) 
and activity B (non-linear), violating end-point relations. 
Generating a more competitive schedule requires consid-
eration of continuous precedence relationships; piece-wise 
linear and nonlinear activity-time-production functions 
that are described by the use of singularity functions (Su & 
Lucko, 2016), presenting a serious challenge to the planner 
in facilitating the time-cost tradeoff.

Figure 1. Activity function in trench project

a)                                                b)
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Cheng and Prayogo (2014) presented a powerful op-
timization algorithm, called symbiotic organisms search 
(SOS) for solving structural engineering problems. SOS 
has only two common controlling parameters (population 
size and the maximum number of function evaluations), 
making it robust and generalizable. Many researchers have 
proved that SOS outperforms such well-known algorithms 
(Abdullahi & Ngadi, 2016; Cheng, Prayogo, & Tran, 2016; 
Tejani, Savsani, & Patel, 2016; Verma, Saha, & Mukherjee, 
2017) as artificial bee colony (ABC), differential evolution 
(DE), particle swarm optimization (PSO), and genetic al-
gorithms (GAs) in dealing with both benchmarked func-
tions and engineering problems such as scheduling (Ab-
dullahi, Ngadi, & Abdulhamid, 2016; Cheng et al., 2016; 
Ezugwu & Adewumi, 2017), structural design (Tejani 
et al., 2016; Tejani, Savsani, Bureerat, & Patel, 2018), and 
power flow problems (Duman, 2017).

Motivated by these advantages of SOS, several re-
searchers have extended the SOS algorithm to multiple 
objectives. The fact that multiple objective symbiotic or-
ganisms search (MOSOS) is more powerful than other 
widely used multiple objective algorithms has been dem-
onstrated (Panda & Pani, 2016; Tran, Cheng, & Prayogo, 
2016). Therefore, this study develops a new model that is 
based on the SOS algorithm for facilitating the time-cost 
tradeoff for repetitive projects by considering continuous 
precedence relationships; piece-wise linear and nonlinear 
activity-time-production functions via singularity func-
tions.

The contributions of this study are as follows: (1) devel-
oping a new numerical method for scheduling repetitive 
projects by allowing continuous precedence relationships 
and piece-wise linear and nonlinear activity-time-produc-
tion functions; (2) introducing an adaptive multiple objec-
tive symbiotic organisms search algorithm to handle mul-
ti-objective problems simultaneously in a single run; and 
(3) facilitating the solving of time-cost tradeoff problems. 
This paper is organized as follows. First, literature that is 
related to the proposed optimization model is reviewed. 
Then, a model for solving TCT problems with a singular-
ity is presented. This new model is demonstrated using a 
numerical example and relevant statistical results. The fi-
nal section draws conclusions and provides suggestions for 
future research.

1. Literature review
1.1. Methods of project scheduling

The most widely used network technique for establishing 
construction project schedules, the precedence diagram 
method (PDM), has existed for almost six decades (Fon-
dahl, 1961; Roy, 1959). PDM has become the prevalent 
technique of our time due to the flexibility provided by 
its different precedence relations and easy drawing by us-
ing the activity-on-node notation. In the PDM, the start 
or end of an activity can be connected to other activity 
in a schedule, allowing for the use of three precedence 
relations between project activities – the minimal start-to-

start (SS), finish-to-finish (FF), and start-to-finish (SF) – 
in addition to the traditional finish-to-start relationship 
(Fondahl, 1987; Kelley & Walker, 1959).

Several researchers have criticized these strict end-
point relations and several methods that explicitly allow 
point-wise links to emerge from anywhere on a prede-
cessor to anywhere on a successor have been developed 
(Hajdu & Isaac, 2016). Francis and Miresco (2002) pro-
posed the chronographic method, which allows the pre-
decessor and successor to have several new relationships 
in order to allow a superior monitoring of the project ex-
ecution. Kim (2012) developed the beeline diagramming 
method as a new networking technique that captures all 
overlaps among activities. de Leon (2008) connected in-
ternal points, called embedded nodes, to each other, and 
called his method the “graphical diagramming method”.

All of these methods are based on the same con-
cept; only the terminology and definitions differ. Hajdu 
(2015b) studied descriptions of point-to-point relations 
using standardized nomenclature, formulas to expand the 
CPM, and an algorithm for generating both minimal and 
maximal relationships. Point-to-point relations are prac-
tically acceptable, but they cannot support a comprehen-
sive model because they do not allow for the control of 
all points that are associated with the connected activities.

Drawing on the literature, Hajdu (2015a) was the first 
to describe continuous precedence relations that perfectly 
represent the overlapping of activities in network sched-
ules. This technique applies a non-linear definition of ac-
tivities to overcome the limitation in the original PDM, 
which assumes continuous linear activities only.

Research on the temporal logical relationships among 
activities in time-work diagrams has led to mathematical 
formulations thereof using singularity functions to min-
imize the duration of linear schedules and to determine 
criticality (Lucko, 2014). Lucko (2009) was the first to in-
troduce the productivity scheduling method (PSM) using 
singularity functions as a powerful and flexible mathemat-
ical method for overcoming the inherent limitation of the 
linear scheduling method, which is difficult to computer-
ize. The PSM formulates singularity function equations of 
activities and buffers. The difference between the extended 
PDM and extended PSM methods is that the PDM allows 
non-linear activities and continuous relationships. Moreo-
ver, the PDM uses stacking activities and their buffers to 
consolidate them in the final configuration with mini-
mum differences of critical activities (Lucko, 2009). Lucko 
(2011) derived one flexible equation for solving the re-
source leveling problem by transposing and differentiating 
activity equations. Su and Lucko (2015b) used singularity 
functions to derive a new mathematical method within 
activities to model unbalanced bidding projects. Su and 
Lucko (2015a) optimized present value scheduling using a 
synthetic cash flow model with singularity functions.

More recently, Hajdu et al. (2017) derived an algorithm 
for identifying pairs of activities that are connected by a 
continuous relation and that may be nonlinear. Their work 
used singularity functions, temporarily stacked activities, 
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the first derivative of singularity functions and the time 
gap between successor and predecessor and buffer tech-
niques for dealing with continuous precedence relations 
and nonlinear activity-time-production functions in a 
schedule.

The method of Hajdu et al. (2017) used the first deriva-
tive of the singularity functions of the relationships among 
activities to identify the minimum time gap between the 
successor and predecessor buffers. Solving the first differ-
ential equation for complicated activities-based singularity 
functions is difficult. Singularity functions have been ap-
plied to linear schedules but never explicitly to multiple ob-
jective optimization problems in the field of construction.

This work develops a novel numerical method to ob-
tain the relationship between predecessor and successor 
activities using a time or work buffer in the project net-
work. The method will be applied to the time-cost trade-
off problem. It enables optimization of project scheduling 
with a wide range of production functions of construc-
tion activities (linear/ nonlinear singularity functions) and 
general relations (point-to-point or near continuous) in 
complex project environments. 

1.2. Singularity functions

Singularity functions, which were first used in the struc-
tural analyses of beams under various loads, are being 
newly applied to construction scheduling (Lucko, 2009). 
Singularity functions are a generalization of traditional 
polynomial functions that involve a right-continuous op-
erator. The general and continuous features of singularity 
functions satisfy the requirements of current research and 
make singularity functions effective for solving scheduling 
problems with nonlinear activities and continuous rela-
tions (Lucko, 2011; Isaac, Su, Lucko, & Dagan, 2017).

Lucko (2009) explicated the following advantages of 
singularity functions; they describe the phenomenon of 
interest geometrically; they separate the components of 

the phenomenon of interest; they capture any changes in 
progress across activity time and amount of work. This 
study uses a non-linear singularity, which (1) incorporates 
non-linear changes in progress with respect to time and 
amount (such as in the excavation of a trench that gradu-
ally deepens from begin to end) in repetitive projects; and 
(2) considers general relationships among activities in 
schedule for the better modeling of overlapping activities.

Equation  (1) defines a single term that is used in a 
singularity function; a complete function includes one or 
more of such terms:
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where w is the variable that is represented on the horizon-
tal w-axis; a is the cutoff value on the w-axis at which the 
function becomes valid; m is the order of the exponent, 
and k is a scaling factor. Eqn (1) is zero for all w a< , and 
is evaluated normally for all w a≥ . The singularity func-
tion is cumulative: as w increases, more terms become ac-
tive. If a term is active only from a1 to a2, then it must be 
added at a1 and subtracted at a2. By applying singularity 
function to linear schedules of construction projects, the 
traditional definition the activity production function is 
formulated as Eqn (2) (Lucko, 2009):
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where y is time variable of an activity with m units; x is 
amount variable; the pair of coordinates (xk, yk) corre-
sponds to index k.

Figure 2a displays how multiple basic terms produce a 
shape that can be completely customized. Figure 2b pre-
sents the scheduling of an activity in a repetitive project 
with singularity functions.

Figure 2. Example of singularity functions

a) Singularity function with multiple basic terms b) Example of singularity function for an actual 
activity in repetitive project
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2. Time-cost in repetitive projects

A project consists of M activities, which may be repeated 
in U units. Each unit is modeled on an activity-on-node 
network, in which a set of M nodes represents M activi-
ties and their precedence relationships. This network is 
repeated in U units. Resources are required to execute 
each activity (i), which is repetitively executed in U units 
from unit 1 to unit U. The TCT problem for RPs requires 
that project planners determine the execution options of 
all activities (i) in U units for optimal scheduling while 
satisfying all project constraints. The problem of schedul-
ing RPs must tradeoff two conflicting objectives, which are 
minimizing project duration and minimizing cost.

Objective 1: Minimize project duration pT ⇒ Min
pT , 

as defined in Eqn (3):

, , ,1,..., . 1,..., .
1,..., . 1,..., .

min ( ) min ( )p i j i j i ji M i M
j U j U

T Max FT Max ST D
= =
= =
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where ,i jFT  is the finish time of activity (i) in unit (j). The 
duration of each activity i at unit j is denoted by Di,j. No-
tably, duration of activities can be changed between their 
normal and crash durations by selecting execution option.

Objective 2: Minimize total project cost ,Min
p pTC TC⇒  

given by Eqn (4):

,
1 1

.
M U

p D I i j o P
i j

TC C C c C b T
= =

= + = + +∑∑ . (4)

Indirect cost .I o PC C b T= +  where PT  is the project 
duration and is determined by Eqn (3). The term b is the 
indirect cost per unit of project time. Co is the total ini-
tial cost (which may include mobilization cost, the cost of 
temporary facilities, and other initial costs). Direct cost

,
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D i j
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=∑∑ , where ci,j is the direct cost of completing

activity (i) in unit (j).
The scope of this study is limited to continuous use of 

resources between units. In repetitive construction pro-
jects, most activities require several resources to be em-

ployed together. However, only the most significant re-
source is assumed to be associated with an activity, and the 
same resource will be used for this activity in successive 
repeating units, so each resource must be consistent from a 
repetitive-unit to other repetitive-unit (Harris & Ioannou, 
1998). This assumption is still valid for the development 
of the proposed method. Moreover, interruptions are not 
allowed between the start time (STi,j) and the finish time 
(FTi,j (j = 1, …, U).

3. Proposed model for time-cost trade-off

This section describes the adaptive multiple objective 
symbiotic organisms search for simultaneously optimiz-
ing project time and cost in repetitive projects with singu-
larity functions. The proposed model is developed based 
on the original MOSOS algorithm (Tran et  al., 2016). 
Figure 3 schematically depicts the adaptive MOSOS algo-
rithm, which was written in the MATLAB programming 
language. The figure shows various stages of the adaptive 
algorithm, including initialization, the adaptive mutual-
ism phase, the commensalism phase, the parasitism phase, 
and termination. The following subsections describe these 
phases in detail.

3.1. Initialization

This study considers the scheduling of repetitive projects 
with singularity functions, in which project duration 
and cost are simultaneously optimized. The inputs to the 
model include such information about the project as re-
lationships among activities, the singularity function of 
the duration of each activity in each unit, and the activity 
cost in each unit ci,j. The user must set the parameters of 
AMOSOS, including the size of the ecosystem ecosize, the 
number of decision variables D, the number of objective 
functions O, the maximum number of generations Gmax, 
and the lower bounds (LB) and upper bounds (UB) on the 
decision variables. Given these inputs, the optimizer au-
tomatically calculates an optimal set of execution options 
for all project activities.

Figure 3. Proposed model for TCT
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AMOSOS uses Eqn  (5) to generate uniform-ran-
domly the first ecosize organisms of the population with 

, [0,1]i jx ∈ :
0

, , * ( ) ;
1,2,..., ; 1,2,...,ecosize.

G
i j i i j i iX LB x UB LB

i D j

= = + −

= =  (5)

3.2. Decision variables

The vector with D elements in Eqn (6) is a candidate time-
cost tradeoff in a project scheduling problem:

1, 2, , ,[ , ,..., ,..., ]j j i j D jX X X X X= , (6)

where D is both the number of decision variables and the 
number of activities. Index j specifies the jth individual in 
the ecosystem. The element Xi,j is an integer in the range 
[1, Mi] (where Mi is the number of methods for executing 
each activity), which represents one method for executing 
activity i. A ceil function in Eqn (7) is employed to convert 
the real-valued variables of the SOS to their nearest inte-
gers to determine the methods for executing the activities:

, ( [0,1] ( ))i jX Ceil rand UB i= × . (7)
Along with crew information and the precedence re-

lationships among activities, the Xi,j values determine the 
times that are required to perform project activities and 
yield the project duration and costs, based on the schedul-
ing subsystem that will be described below.

3.3. Scheduling subsystem

Once the AMOSOS organism has been created, the 
scheduling subsystem (S1) determines the project objec-
tives. Figure 4a displays the generation of project objec-
tives by the scheduling subsystem. The schedule inputs 
are obtained from the project information; they include 
the number of activities, their durations, sequence, task 
quantities, and buffer types and values, which are similar 
to those used by Hajdu et al. (2017). All singularity func-
tions must be transformed into time over work t(w) using 
their inverse functions w(t). The time and work buffer – 
or, more precisely, the function that defines the edges – 
must also be transformed.

A numerical method is used to determine the relation-
ship between predecessors and successors in a project net-
work. Eqn (8) defines the singularity functions for all ac-
tivities in repetitive projects.

1 1 1 1
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where w is the variable on the work axis; ai is the cutoff 
value on the w-axis at which the function becomes valid; 
and U is the number of repetitive units in the project. The 
values of w fall in range [0; L]. L is the total number of 
work units. The number of elements in array w depends 

Figure 4. Scheduling subsystem
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on the value of the work-step ( w∆ ) (time or duration). A 
smaller w∆  corresponds to more precise activity schedul-
ing. In repetitive construction projects, the project man-
ager sets the value of w∆  based on the project’s specifica-
tions. For example, in the excavation of a trench, w∆  is 
set to one meter. The project information yields all prede-
cessor and successor pairs for each activity in the project 
network, as mentioned with regard to step 3.

This work considers two types of continuous relation: 
one involves time lead (time buffer) and the other involves 
work lead (work buffer). The time buffer requires that the 
successor of i stays above its predecessor on the time axis 
(vertical axis). The work buffer ensures that the successor 
of i is always at least a minimum distance to the left of i 
along the work axis (horizontal axis). Figure 4b presents 
the fourth to sixth steps of the scheduling subsystem.

Figure 5 presents a sample trench project with two ac-
tivities – A (linear singularity function) and B (non-linear 
singularity function). In this example, the trench is 24 me-
ters long and consists of three units. The singularity func-
tion for each activity can be changed among units. For 

1( )w m∆ = , the maximum shift time is 4.8 hours at 2w = . 
Therefore, activity B will be shifted forward by 4.8 hours 
and the start time of activity B in the first unit is 4.8 hours 
from the starting time of i. The total project duration is 
calculated to be 42.2 hours.

The scheduling subsystem determines the two conflict-
ing objective values of the project, which were described in 
the preceding subsection. Then, the AMOSOS algorithm 
uses these values to obtain the optimal combination of ex-
ecution options for each activity.

3.4. Adaptive mutualism phase

In this phase, the design vector Xi of the ith organism 
interacts with another design vector Xj that is randomly 
selected from the ecosystem (where )i j≠ . Eqns (9), (10) 
and (11) are mathematical formulations of a mutualistic 
relationship between organism Xi and Xj:

 new 1(0,1) * ( _ * )i i bestX X rand X Mutual Vector BF= + − ;  
 (9)

j new 2(0,1) * ( _ * )j bestX X rand X Mutual Vector BF= + − ;  
 (10)

_
2

i jX X
Mutual Vector

+
= , (11)

where Xbest is the solution in the first non-dominated rank 
of the ecosystem. Organism Xi may gain significantly from 
interacting with organism Xj while, organism Xj may ben-
efit only slightly from interacting with organism Xi. The 
benefit factors (BF1) and (BF2) are obtained randomly as 
either 1 or 2 with equal probability; these values specify 
two conditions under which an organism benefits fully or 
partially from the interaction, respectively. A lower benefit 
factor corresponds to a finer search using smaller steps, 
but with slower convergence (Tejani et al., 2016).

To balance exploration and exploitation effectively, the 
benefit factors are modified using Eqn (12):

1 2
( )( )

;
( ) ( )

ji

best best

F XF X
MBF MBF

F X F X
= =

∑∑
∑ ∑

. (12)

Organisms evolve to become fitter only if their post-
interaction fitness dominates their pre-interaction fitness. 
In such a case, the old Xi and Xj are replaced immediately 
by Xi_new and Xj_new, respectively. The old Xi and Xj will 
be moved into the advanced population. Otherwise, Xi_new 
and Xj_new are added to the advanced population for the 
purpose of yielding the next-generation ecosystem. Ac-
cordingly, the convergence rate of the proposed algorithm 
is improved while favorable diversity is maintained, as the 
important information of population may be input into 
the algorithm after selection population phase.

3.5. Commensalism phase

After the mutualism phase is complete, organism Xi again 
randomly selects organism Xj as a new partner from the 

Figure 5. Example schedule with singularity functions
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ecosystem. In this situation, organism Xi attempts to bene-
fit from the interaction while organism Xj neither benefits 
nor suffers from it. Eqn (13) models commensal symbiosis 
between organism Xi and Xj.

 new ( 1,1) * ( )i i best jX X rand X X= + − − , (13)

where Xbest is the organism in the first non-dominated 
set of population. The selection mechanism in the com-
mensalism phase is analogous to those in the mutualism 
phase. If organism Xi new dominates organism Xi, then  
Xi new immediately replaces Xi, and Xi will be moved into 
the advanced population; otherwise, Xi new will be moved 
into the advanced population.

3.6. Parasitism phase

A Parasite_Vector is initialized by duplicating organism 
Xi in the search space. To differentiate the Parasite_Vector 
from original organism Xi, some randomly selected de-
sign elements of the parasitism vector are modified using 
a random generated number within the lower and upper 
bounds. The total number of modified elements is an in-
teger between one and the number of decision variables. 
The location of the modified elements is determined sto-
chastically.

Then, the Parasite_Vector again randomly selects a new 
organism Xj (i ≠ j) from the ecosystem for acting in the 
parasitism phase. The fitness of Parasite_Vector is com-
pared with that of organism Xj. The selection mechanism 
in the parasitism phase is similar to those in the two phas-
es above. If the fitness of Parasite_Vector exceeds or equals 
that of Xj, then Parasite_Vector will take the position of or-
ganism Xj in the current ecosystem and Xj will be moved 
into the advanced population. Otherwise, Parasite_Vector 
will enter the advanced population.

3.7. Ecosystem selection

The size of the ecosystem remains ecosize throughout the 
optimization process. Therefore, the ecosize best (elite) 
organisms for the next generation are selected from the 
combined ecosystem (current and advanced populations) 
by fast non-dominated sorting technique (Deb, Pratap, 
Agarwal, & Meyarivan, 2002) and crowding entropy 
method (Wang, Wu, & Yuan, 2010a).

At first, the combined ecosystem will be divided into 
the non-dominated sets from F1 to Fn using the fast non-
dominated sorting technique. The solutions in the best 
non-dominated set (Set F1) are chosen as the first mem-
bers of the main ecosystem. If F1 is smaller than ecosize, 
then the subsequent non-dominated fronts in rank order 
(F2, F3 …) are chosen as the remaining members of the 
ecosystem. This procedure terminates when all positions 
in the ecosystem are filled. Assume that Fk is the last non-
dominated set to be selected. Normally, the number of so-
lutions in all sets F1 to Fk exceeds ecosize. Therefore, the 
ecosize members are identified using the crowding entropy 
sorting technique.

3.8. Stopping conditions

When a user-specified stopping threshold, such as the 
maximum number of generations maxG  or the maxi-
mum number of function evaluations (NFE), is reached, 
the optimization terminates. The stopping condition for 
the proposed algorithm is specified as the reaching of a 
maximum number of generations. The termination of 
the optimization process yields a set of optimal solutions, 
called the Pareto front. The project planners evaluate the 
pros and cons of each potential solution to determine the 
best schedule.

Figure 6. Network of projects
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4. Case studies

This investigation analyzed two case studies to demon-
strate the effectiveness of the proposed model for solving 
the TCT problem. Figure 6 shows the precedence relation-
ships of the network projects. In these networks, the re-
lationships between the same activities of different units 
are FS0 (finish to start without lag time to allow the con-
tinuous of crew). The first case is considered as a bridge 
project which involves seven activities and five segments 
(units) with a total length of 250 meters (because each 
unit is 50 meters). The second case is medium sized as a 
15-activity project (450 meters with 150 meters in each 
segments). The second project consists of three similar 
sections (units), and each includes the repetitive activities 
in sequence from (1) to (15). Tables 1a and 1b provide 
project information, including precedence relationships 
among activities, activity durations, and the costs of the 
crew in the projects. The execution selections (options) 
are decision variables that are chosen by the optimizer. 

For instance, each option of the activity named “site 
preparation” in the first case has different value of time and 
cost. The first option is about crash time and normal cost. 
The last option is about crash cost and normal time. The 
difference between the original CPM model and the pro-
posed model is that the relationship between two activities 
in each unit of a project has the time and work buffer to 
allow continuous precedence relationships.

In Tables 1a and 1b, m is the order of the exponent of 
the modeled curve segment; k is the scaling factor, which 
can be obtained from field observations, and c is the cost 
of the activity. The coefficients m and k denote the non-
linear change in progress with respect to working time 
and amount of work done, such as when piles that become 
gradually deeper from beginning to the end are drilled, 
height at which work is done changes, and limited space 
has an increasing effect.

In the first case, for example, activity 1, site prepara-
tion, has five possible execution methods; each method 
has different values of m and k for each of the five seg-
ments. If the project manager selects method 1 for the first 
activity, site preparation, then the project’s cost is $90,000 
and the time of the activity is determined as {1;1;1;1;1}m =  
and {0.5;1;1;2;0.5}k = . Then, Eqn (8) yields the singularity 
function of time (t), depending on the amount of work (w) 
associated with the first activity in each segment or unit, 
given by Eqn (14). The two first terms are the order and 
the scaling factor as a pair { ; }m k  = {1;0.5} , specifying the 
schedule for activity 1 in the first segment (from 0 to 50 m 
in length).

1 1 1
_1

1 1 1

1 1 1

1

( ) 0.5. 0 0.5. 50 1. 50

1. 100 1. 100 1. 150

2. 150 2. 200 0.5. 200

0.5. 250 .

actt w w w w

w w w

w w w

w

= − − − + − −

− + − − − +

− − − + − −

−

  
 

 (14)

Tables  2a and 2b provide the time and work buffers 
for each “predecessor-successor” pair. In the case 1, for in-
stance, activities 1 and 2 constitute one pair, whose time 
buffer is 20 hours and work buffer is 10 meters. Buffers are 
frequently used to protect production processes from the 
negative impact of low productivity, leading to a smooth, 
safe and reliable construction workflow.

4.1. Optimization results obtained using proposed 
model

The proposed model is used to minimize simultaneously 
project duration and cost while both the logical relation-
ship constraints and the time and work buffer constraints 
are satisfied. In the preliminary optimization process, a 
trial-and-error strategy (Tran et al., 2016) was used to ob-
tain the following suitable parameters for the AMOSOS 
optimizer in the case study. The parameter ecosize was set 
to 100 and the maximum number of generations was set 
to 100. To obtain smooth curves of the non-linear singu-
larity functions of activities, the work-step ( w∆ ) was set 
to 0.01 meters. Thirty independent optimization runs were 
conducted to avoid randomness.

Figure 7 displays typical Pareto optimal fronts for the 
first case study, which are obtained using AMOSOS. The 
Pareto front represents clearly the relationship between 
project duration and cost. S1 has the shortest project du-
ration; S3 has the smallest cost, and other solutions strike 
trade-off these two objectives. This two-dimensional visu-
alization of the trade-offs may help decision-makers eval-
uate the impact of various potential resource-utilization 
plans on project performance.

Figure  8 shows the schedules (start time, number of 
crew) assigned to each activity of the three selected non-
dominated solutions and the corresponding project times 
and costs for the bridge construction project (case 1). For 
example, Figure 8c presents the optimal schedule with re-
spect to cost, obtained using the AMOSOS-TCT-based 
method for the bridge project, with total project duration 
of 1693.3 hours and a project cost of $625,000. The sched-
ule specifies, along with the sequence, start times and fin-
ish times of all activities, the profile of the assigned crew. 
The curves (linear or non-linear) in Figure 8 represent the 

Figure 7. Typical time-cost-trade-off Pareto front obtained 
using proposed model
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Table 2a. Time and work buffer data – case 1

Time buffer (hours); Work buffer (meters)

From 
activity

To activity
1 2 3 4 5 6 7

1 – 20;10 30;15 25;20 – – –
2 20;10 – – – 30;12 – –
3 30;15 – – – 20;14 – –
4 25;20 – – – – 25;18 –
5 – 30;12 20;14 – – – 35;16
6 – – – 25;18 – – 30;15
7 – – – – 35;16 30;15 –

Table 1b. Project data – case 2

No Prede-
cessors

Option 1 Option 2 Option 3
m k c m k c m k c

1 – 1;1;1 0.5;1;1 90 1;1;1 1;1;2 80
2 – 0.5;0.5;0.5 1;1;2 130 0.5;0.5;0.5 2;1;2 120 1;1;1 2;2;2 100
3 1; 0.5;0.5;0.5 1;1;2 85 0.5;0.5;0.5 2;1;3 75 2;2;2 2;1;3 50
4 1;2 1;1;1 1;1;2 100 1;1;1 2;2;2 90 1;1;1 2;2;3 60
5 1;2 2;2;2 0.1;0.05;0 170 2;2;2 0.15;0.07;0 150 2;2;2 0.15;0.07;0 120
6 2; 2;2;2 0.1;0.05;0.06 140 2;2;2 0.11;0.06;0.07 120
7 3; 0.5;0.5;0.5 1;1;2 150 0.5;0.5;0.5 2;1;1 140 0.5;0.5;0.5 1;2;2 100
8 3;4 2;2;2 0.15;0.07;0 80 2;1;2 2;1;1 60 2;2;2 2;1;2 50
9 4;5 0.5;0.5;0.5 0.1;0.05;0.2 150 0.5;0.5;0.5 0.15;0.7;0.8 120 2;2;2 0.5;0.5;1 90

10 7; 2;2;2 0.5;0.5;0.5 90 2;2;2 1;1;2 80
11 7;8 0.5;0.5;0.5 0.1;0.05;0 200 1;1;1 1;1;1 180
12 8;9 1;1;1 0.15;0.07;0 180 2;2;2 1;1;1 150 2;2;2 0.15;0.07;0 120
13 6 2;2;2 0.1;0.05;0.06 150 1;1;1 2;1;2 110 1;1;1 2;2;2 80
14 10;12 2;2;2 1;1;2 160 0.5;0.5;0.5 1;2;2 100 0.5;0.5;0.5 2;1;2 60
15 10;11;13 0.5;0.5;0.5 0.1;0.05;0 100 0.5;0.5;0.5 0.11;0.06;0.07 60 0.5;0.5;0.5 0.11;0.05;0.04 40

Table 2b. Time and work buffer data – case 2

Time buffer (hours); Work buffer (meters)

From
Act.

To activity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – – 20;15 15;8 10;5 – – – – – – – – – –
2 – – – 15;12 20;10 10;5 – – – – – – – – –
3 20; 15 – – – – – 20;15 25;15 – – – – – – –
4 15;8 15;12 – – – – – 10;5 15;9 – – – – – –
5 10;5 20;10 – – – – – – 12;10 – – – – – –
6 – 10;5 – – – – – – – – – – 18;15 – –
7 – – 20;15 – – – – – – 15;10 15;8 – – – –
8 – – 25;15 10;5 – – – – – – 20;10 10;5 – – –
9 – – – 15;9 12;10 – – – – – – 18;10 – – –
10 – – – – – – 15;10 – – – – – – 12;8 10;5
11 – – – – – – 15;8 20;10 – – – – – – 20;10
12 – – – – – – – 10;5 18;10 – – – – 15;9 –
13 – – – – – 18;15 – – – – – – – – 20;15
14 – – – – – – – – – 12;8 – 15;9 – – –
15 – – – – – – – – – 10;5 20;10 – 20;15 – –
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Figure 8. Schedules associated with three non-dominated solutions for case study
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schedule of activities from the beginning to the end of the 
project.

As an example, in Figure 8c, the start times of activity 7 
in the five segments are 1057.8, 1148.9, 1269.1, 1410.5 and 
1551.9 hours. The numbers in the middle of each curve re-
fer to the activity, and the corresponding execution option 
is indicated in parentheses. The numbers in the middle of 
the highest curve (activity 7) in Figure 8c are 7(5), reveal-
ing that the project manager will select option 5 for activity 
7. As evident from the results that were obtained for the 
bridge project, the proposed model achieved the research 
goals and objectives. It generated a schedule for the project 
that satisfied all relevant constraints. The proposed model 
minimized the duration and cost of the project by optimiz-
ing the crew assignment (execution option). Therefore, the 
proposed AMOSOS-TCT is an efficient model for sched-
uling a non-unit repetitive project with singularity func-
tions.

4.2. Analysis and comparison of results

The AMOSOS performance was compared with that of 
four widely used algorithms – the non-dominated sorting 
genetic algorithm (NSGA-II) (Deb et  al., 2002), multi-
objective particle swarm optimization (MOPSO) (Dai, 
Wang, & Ye, 2015), the multi-objective artificial bee col-
ony (MOABC) algorithm (Akbari, Hedayatzadeh, Ziarati, 
& Hassanizadeh, 2012), and multi-objective differential 
evolution (MODE) (Ali, Siarry, & Pant, 2012). All five al-
gorithms were executed for 100 generations with a popu-
lation size of 100.

NSGA-II used a crossover probability of pc = 0.9 and 
a mutation constant of pm = 0.5. In MOPSO, the inertia 
weight w was in the range 0.3 to 0.7, and the two learn-
ing factors c1 and c2 were both set to 2. In MOABC, the 
limit factor l was set to 20. In MODE, the mutant constant 
was F = 0.9 and the crossover probability was CR = 0.5. 
Each algorithm was applied independently 30 times to the 
bridge project.

Figure 9 plots typical Pareto fronts that were obtained 
when the five algorithms were applied to the case study. 
AMOSOS achieved the best distribution of solutions along 
the Pareto front and provided many optimal solutions. 
AMOSOS also yielded a better spread than did the four 
competing algorithms; NSGA-II yielded the worst spread. 

The following quantitative assessments were performed to 
evaluate further the effectiveness of the proposed method.

The performance of an optimization algorithm can be 
evaluated using various criteria. In this work, the following 
criteria and corresponding indicators are used (Senouci & 
Mubarak, 2016; Zitzler, Thiele, Laumanns, Fonseca, & da 
Fonseca, 2003).

1. C-metric (C): this metric compares the quality of 
two non-dominated sets of two considered algorithm (Zit-
zler & Thiele, 1999). The C-metric is computed without 
considering the standard efficient frontier. Let S1 and S2 be 
two approximate sets of decision solutions. The C-metric 
is a binary index that is given by Eqn (15):

2 2 1 1 1 2
1 2

2

{ ; : }
( , )

a S a S a a
C S S

S
∈ ∃ ∈ ≤

= . (15)

The numerator in Eqn (15) is the number of solutions 
in S2 that are dominated by at least one solution in S1, and 
the denominator equals the total number of solutions in 
S2. Therefore, C(S1, S2) = 1 means that all solutions in S2 
are dominated by at least one solution in S1. If C(S1, S2) = 
0, then no solution in S2 is dominated by a solution in S1. 
Owing to the asymmetry of the C-metric, the comparison 
requires checking both C(S1, S2) and C(S2, S1) (Wang & 
Singh, 2009).

Table 3 compares the values of the C-metric for the five 
algorithms, where A1, A2, A3, A4, and A5 are AMOSOS, 

Figure 9. Pareto fronts obtained using five algorithms

Table 3. Comparison of C-metrics for various algorithms

Performance measurement C(A1, A2) C(A2, A1) C(A1, A3) C(A3, A1) C(A1,A4) C(A4, A1) C(A1,A5) C(A5, A1)

Case 1

Best 0.94 0.00 0.94 0.00 1.00 0.00 0.92 0.00
Worst 0.57 0.00 0.52 0.00 0.42 0.00 0.75 0.00

Average 0.77 0.00 0.74 0.00 0.72 0.00 0.86 0.00
Std. 0.17 0.00 0.19 0.00 0.24 0.00 0.10 0.00

Case 2

Best 0.49 0.03 0.87 0.12 0.70 0.14 0.97 0.12
Worst 0.00 0.00 0.81 0.05 0.63 0.07 0.89 0.01

Average 0.28 0.06 0.83 0.09 0.69 0.11 0.95 0.07
Std. 0.13 0.13 0.05 0.04 0.05 0.08 0.02 0.03
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MODE, MOABC, MOPSO, and NSGA-II, respectively. 
These results reveal that AMOSOS solutions dominate 
more than 77% of the MODE solutions, 74% of the MO-
ABC solutions, 72% of the MOPSO solutions, and 86% of 
the NSGA-II solutions on average for the first case. In the 
second case, on average the AMOSOS dominates more 
than 28% of MODE solutions, 83% of MOABC solutions, 
69% of MOPSO solutions, and 95% of NSGA-II solutions, 
respectively.

2. Diversification Metric (DM): this metric is used to 
measure the diversity of the obtained non-dominated so-
lutions (Maghsoudlou, Afshar-Nadjafi, & Niaki, 2016). 
The algorithm with higher value of DM will have better 
performance. The value of this metric is computed as be-
low.

( )
2

1   l
i iiDM Min f Max f== −∑ , (16)

where  iMin f  and  iMax f  are the minimum and the 
maximum value of each fitness function among all non-
dominated solutions resulted from the algorithms.

3. Mean Ideal Distance (MID): this index is defined to 
measure the distance of the solutions in the Pareto fronts 
from an ideal solution (Maghsoudlou, Afshar-Nadjafi, & 
Akhavan Niaki, 2017). The formula of this metric is de-
fined as follows:

2 21 1 2 2

1 1max 1min 2max 2min
n i best i best
i

total total total total

f f f f
f f f f

MID
n

=

   − −
+      − −   =

∑
,  

 
 (17)
where 1

if  and 2
if  are the value of the first and the sec-

ond objective functions per non-dominated solutions 
obtained by an algorithm. n is considered as the number 
of non-dominated solutions. Algorithms with lower MID 
values are more desirable.

4. Spread (SP): this index (Wang, Wu, & Yuan, 2010a, 
2010b) quantifies the spread of the obtained non-dominat-
ed solutions. Eqn (18) gives the value of SP:

1
1

( 1)

N
f l ii

f l

d d d d
SP

d d N d

−
=+ + −

=
+ + −
∑

, (18)

where N is the number of non-dominated solutions that 
have already been found. The parameters df and dl are the 
Euclidean distances between the extreme solutions and 
the boundary solutions in the obtained non-dominated 
set.

The parameter di is the Euclidean distance between 
consecutive solutions in the obtained non-dominated 
set of solutions and d  is the mean of all di. This metric 
is smaller for better distributions and has a value of zero 
for the most widely and uniformly spread-out set of non-
dominated solutions.

5. Hyper-volume (HV): this metric is also known as the 
hyper-area. It is a unary metric of the size of the objective 
space that is covered by an approximation set Ω. A refer-
ence point W and the solution Xi must be used as the di-
agonal corners of a hypercube iv  for each solution iX ∈Ω  
(Wu, Wang, Yuan, & Zhou, 2010; Zitzler et  al., 2003). 
Eqn (19) yields the union of all hypercubes, HV.

1
i

i
HV v

Ω

=
=


. (19)

The algorithm with highest HV outperforms the other 
algorithms. The HV value is normalized using the refer-
ence point.

6. Computational time (CPU time). The central pro-
cessing unit (CPU) time of obtaining the corresponding 
Pareto fronts with pre-specified maximum number of it-
eration Gmax are compared under the exactly identical 
conditions including both hardware and software plat-
forms. Table 4 displays the computational time required to 
achieve the Pareto fronts for various algorithms.

Table 4 provides the average experimental outputs of 
all compared algorithms, which support the claim that on 
average AMOSOS outperforms the other four algorithms.

4.3. Multi-attribute decision making

In order to prioritizing algorithms in terms of all perfor-
mance metrics, a hybrid multi-attribute decision making 
method called AHP-TOPSIS is applied to rank the algo-
rithms in terms of all the metrics simultaneously (Magh-
soudlou et al., 2016). The approach consists of two main 

Table 4. The average experimental outputs of five algorithms

Case study Algorithms DM MID SP HV CPU time  
(in seconds)

Case1 NSGA-II 109995.5 0.965 0.466 0.585 12.83
Case2 657.8 8.157 0.812 0.606 36.03
Case1 MOPSO 174997.7 0.723 0.494 0.462 13.45
Case2 757.8 7.208 0.745 0.742 36.93
Case1 MODE 169997.6 0.762 0.442 0.815 13.78
Case2 993.5 7.342 0.762 0.735 37.07
Case1 MOABC 169997.6 0.746 0.442 0.795 13.54
Case2 1435.6 7.215 0.723 0.776 37.23
Case1 AMOSOS 174997.7 0.714 0.366 0.855 12.34
Case2 1545.0 5.821 0.622 0.948 35.89
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steps the weight identification of the metrics and final 
rank determination to decide the best algorithms with 
highest priority value. In the first step, an analytical hierar-
chy process (AHP) method is used to identify the weights 
of the metrics (Saaty, 1989). The performance metrics and 
the algorithms are considered as criteria and alternatives, 
respectively. The computational process for the weights 
of each metric followed these steps: (1) create a pairwise 
comparison matrix based on aggregating judgement from 
different experts; (2) sum up each column of the com-
parison matrix; (3) divide each corresponding element by 
its sum-up value; and (4) take the average of each row to 
obtain the weights of the criteria. Table 5 shows the paired 
comparisons matrix as input data of the AHP method, and 
the weights assigned to the metrics.

Table 5. The pairwise comparisons matrix of the metrics

Metric DM MID SP HV Weights
DM 1 0.5 1 2 0.243
MID 2 1 0.5 1 0.246
SP 1 2 1 3 0.362
HV 0.5 1 0.333 1 0.148

In the second step, the TOPSIS method is used to de-
termine the algorithm with the best performance in solv-
ing TCT problem in both case studies. The following steps 
are used to obtain the priorities of the algorithms: (1) cre-
ate the decision matrix; (2) normalize decision matrix by 
dividing each corresponding element by the maximum 
value; (3) calculate the weighted normalized decision ma-
trix by multiplying the weighted normalized matrix and 
corresponding weight of the criteria; (4) calculate Euclid-
ean distances of the alternatives from the positive and the 
negative ideal solutions, which are defined as the biggest 
value of the positive criteria and the smallest value of the 
negative criteria; (5) Calculate the relative closeness of 
each alternative to the ideal solution.

Table  6 presents the decision matrix, the normalized 
decision matrix, the weighted normalized decision matrix, 
the Euclidean distances of the alternatives, and the rela-
tive closeness of the alternatives for both case studies. As 
shown in Table 6, the AMOSOS has the best performance 
in solving TCT problems. Furthermore, Figure 10 demon-
strates the trend of all metrics over the case studies. Ob-
viously, the proposed AMOSOS algorithm yielded results 
that were better than those obtained using the other ap-
proaches in terms of all metrics.

Conclusions and further work

This work developed a scheduling method-based multiple 
objective optimization to solve time-cost tradeoff prob-
lems for repetitive projects with singularity functions. A 
numerical method was used to determine the relationship 
between predecessor and successor activities, in which 
time and work buffers were used to calculate total pro-
ject duration. The proposed scheduling method is easy to 
understand and convenient to implement, and generates 
accurate results quickly.

Table 6. The result of the TOPSIS method for case studies

No Algorithms
Decision matrix Normalize decision 

matrix
Weighted normalized

decision matrix di+ di- CL

Ra
nk

DM MID SP HV DM MID SP HV DM MID SP HV

C
as

e 
1

NSGA-II 109995.5 0.965 0.466 0.585 0.63 1.00 0.94 0.68 0.15 0.25 0.34 0.10 0.020 0.001 0.04 5
MOPSO 174997.7 0.723 0.494 0.462 1.00 0.75 1.00 0.54 0.24 0.18 0.36 0.08 0.013 0.012 0.47 4
MODE 169997.6 0.762 0.442 0.815 0.97 0.79 0.89 0.95 0.24 0.19 0.32 0.14 0.003 0.015 0.82 2
MOABC 169997.6 0.746 0.442 0.795 0.97 0.77 0.89 0.93 0.24 0.19 0.32 0.14 0.003 0.015 0.82 2
AMOSOS 174997.7 0.714 0.366 0.855 1.00 0.74 0.74 1.00 0.24 0.18 0.27 0.15 0.000 0.026 1.00 1

C
as

e 
2

NSGA-II 657.8 8.157 0.812 0.606 1.00 1.00 1.00 0.64 0.24 0.25 0.36 0.09 0.034 0.000 0.00 5
MOPSO 757.8 7.208 0.745 0.742 0.93 0.88 0.92 0.78 0.23 0.22 0.33 0.12 0.021 0.002 0.10 4
MODE 993.5 7.342 0.762 0.735 0.64 0.90 0.94 0.78 0.16 0.22 0.34 0.11 0.015 0.004 0.23 3
MOABC 1435.6 7.215 0.723 0.776 0.49 0.88 0.89 0.82 0.12 0.22 0.32 0.12 0.005 0.018 0.79 2
AMOSOS 1545 5.821 0.622 0.948 0.43 0.71 0.77 1.00 0.10 0.18 0.28 0.15 0.000 0.034 1.00 1

Figure 10. Graphs of the metrics over two case studies
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AMOSOS was used to optimize crew assignment to 
minimize simultaneously the duration and cost of non-
unit based repetitive projects. The proposed algorithm has 
modified the mutualism phase from the original algorithm 
to balance the exploration and exploitation phases of op-
timization. AMOSOS has a more powerful global search 
ability and local search ability than the considered bench-
marked algorithms.

A bridge construction project of sufficient complexity 
with respect to the nonlinear behavior of related activities 
and their buffers, was analyzed to validate the scheduling 
method and evaluate the effectiveness of the AMOSOS-
TCT model in generating optimal trade-offs between pro-
ject time and project cost for non-unit based repetitive 
construction projects with singularity functions. The pro-
posed scheduling method satisfied the research goals and 
objectives.

AMOSOS outperformed the considered benchmark 
algorithms in terms of diversity of characteristics and 
compromise solutions. The Pareto front that was generat-
ed by AMOSOS provides information that helps decision-
makers in construction projects optimally trade-off the 
two important considerations of duration and cost. This 
information should be useful for construction planners 
and decision-makers who must minimize both the dura-
tion and the cost of repetitive construction projects.

In conclusion, the contributions of this study are as fol-
lows. (1) The well-known concept of singularity functions 
is integrated into construction scheduling; (2) a numeri-
cal method is used to optimize linear/ non-linear sched-
ules for repetitive construction projects. The AMOSOS-
TCT model competes favorably with the traditional linear 
model in terms of rate of calculation, ease of understand-
ing and ease of computerization. It imposes no limitation 
on the number of decision variables and objectives.

Project managers have only to define the decision vari-
ables and provide objective functions based on the project 
network and constraints. With small modifications, the 
proposed system has the potential to solve other multi-ob-
jective optimization problems, such as scheduling and re-
source problems, in the field of construction management. 

Non-unit based repetitive project problems that are 
concerned with total project cost minimization, work 
continuity, and quality maximization, are frequently en-
countered in construction management. Further work 
must be conducted to address the above problems to en-
able the proposed system to be used to solve complex non-
unit based repetitive projects that involve more objec-
tives. Therefore, the scheduling model must be modified. 
The coefficients of singularity functions, such as the order 
in the exponent of the curve segment m, and the scaling 
factor k, which must be known to obtain the non-linear 
change in progress, are difficult to evaluate precisely. This 
difficulty is one of the weaknesses of the model. Future 
work should investigate the use of linguistic and uncertain 
terms to specify the values of these coefficients.
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