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Abstract. Modified Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic Algo-
rithm (QPGA) optimization methods are proposed to obtain truss structures with minimum structural weight using both 
continuous and discrete design variables. To achieve robust solutions, Compressed Sparse Row (CSR) with reordering of 
Cholesky factorization and Moore Penrose Pseudoinverse are used in case of non-singular and singular stiffness matrix, 
respectively. The efficiency of the proposed nonlinear optimization methods is demonstrated on several practical exam-
ples. The results obtained from the Pratt truss bridge show that the optimum design solution using discrete parameters 
is 21% lighter than the traditional design with uniform cross sections. Similarly, the results obtained from the 57-bar 
planar tower truss indicate that the proposed design method using continuous and discrete design parameters can be up 
to 29% and 9% lighter than traditional design solutions, respectively. Through sensitivity analysis, it is shown that the 
proposed methodology is robust and leads to significant improvements in convergence rates, which should prove useful 
in large-scale applications.
Keywords: structural optimization, finite element analysis, augmented Lagrangian, quadratic penalty function, hybrid 
genetics algorithm.

Introduction 

Structural optimization techniques are effective tools that 
can be used to obtain lightweight, low-cost and high per-
formance structures. Optimum design of truss structures 
has been widely studied by many researchers as they rep-
resent a common and complex category of engineering 
structures. The size and topology optimization of truss 
structures is a mixed variable optimization problem, 
which deals simultaneously with discrete and continu-
ous design variables (Šilih et al. 2010). Such problems 
are usually non-convex by nature and, therefore, must 
be solved by appropriate optimization methods. Topology 
optimization studies are usually based on the assumption 
of an initial ground structure that contains all possible 
joints and members. While most of conventional math-
ematical optimization methods are suited and developed 
for continuous design variables (e.g. Hajirasouliha et al. 
2011), in practice many structural design variables are 
chosen based on discrete values due to manufacturing con-
straints. Zhang et al. (2013) presented a comprehensive 
study on discrete optimization using generalized shape 

function-based parameterization. Genetic algorithms 
(GAs) have been recognised as one of the most power-
ful stochastic optimization methods for optimum design 
of truss structures, where the search space involves both 
discrete and continuous domains (Adeli, Sarma 2006). 
GA, in general, represents adaptive search techniques 
that simulate natural inheritance by adopting appropriate 
models based on genetics and natural selection. Rahami 
et al. (2008) applied a combination of force method, ener-
gy concept and GA for optimum design of different types 
of truss structures. They included the material and geo-
metric nonlinearity, which are essentially important in the 
seismic deign of structures. Hasançebi (2007) used a dif-
ferent method for optimization of truss bridges by com-
bining various variable-wise versions of adaptive evo-
lution strategies under a common optimization routine. 
They carried out size and shape optimizations by using 
discrete and continuous evolution strategies, respectively. 
Ant System algorithm is another method that is used by 
Luh and Lin (2008) to find optimal truss structures for 
achieving minimum weight under stress, deflection, and 
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kinematic stability constraints. The results of their study 
indicated that multiple truss topologies with almost equal 
overall weight can be found concurrently as the number 
of members in the ground structure increases. Dede et al. 
(2011) combined GA with value and binary encoding for 
continuous and discrete optimization of trusses to mini-
mize structural weight based on stress and displacement 
constraints. They showed that the value encoding method 
requires less computer memory and computational time 
to achieve optimum solutions.

This paper aims to develop an efficient hybrid GA 
method for size and topology optimization of truss struc-
tures using both continuous and discrete design variables. 
To achieve a good convergence, binary, integer and float-
ing-point encoding is utilized. Hybrid GA is introduced 
to overcome inequality and equality constraints applied 
to the structure. Augmented Lagrangian Genetic Algo-
rithm (ALGA) and Quadratic Penalty Function Genetic 
Algorithm (QPGA) methods are proposed for continuous 
and discrete non-linear optimization of truss structures, 
respectively. For size optimization, the cross-sectional ar-
eas of the members are selected as design variables, while 
topology optimization is associated with connectivity of 
the elements between the nodes. The efficiency of the 
proposed methods to obtain reliable optimum solutions 
is investigated through sensitivity analysis.   

1. Optimization methodology

1.1. Objective function
There are several criteria for optimum design of truss 
structures including weight, cost, displacements, maxi-
mum stresses, bucking strength, vibration frequencies, or 
any combination of these parameters. In this study, the 
objective function is to minimize the weight of the struc-
ture, as shown in Eqn (1):
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where N is the number of truss structural members,  ρ   
is the density of the material, p is the optimum possibil-
ity for the weight function, L is the length of each truss 
member, and A is the cross-sectional area of the members. 

During optimization process, Ai can either be con-
tinuous, chosen to be random number within a set region 
or can be discrete values extracting from cross-section 
types available in the market. The Augmented Lagrangian 
method is applied for solving the constrained optimiza-
tion problem. To allow non-linear constraints, Karush-
Kuhn-Tucker (KKT) conditions are utilized. Therefore, 
to minimise the objective function, the following KKT 
equation should be satisfied: 
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where λi is Lagrange multipliers, ( ) f A  is the objective 
function, ( )  ig A and ( ) ih A are inequality and equality 
constraint functions, respectively. Also, cgN  and chN  
denote the numbers of inequality and equality constraints, 
respectively. 

1.2. Constraint handling
In this study, the constraints were basic nodes, structural 
stability, member stress, nodal displacement, and buck-
ling strength. Structural stability of the truss was also ex-
amined for external and kinematic stability. Using GA 
concepts, topological instability in each chromosome was 
determined before structural analysis. The penalty func-
tion was allocated to the related chromosome in the un-
stable truss structure. The kinematic stability of structure 
should have a symmetric and positive definite stiffness 
matrix in Cholesky method. Therefore, the Cholesky ap-
proach for the stiffness matrix [K] was employed for the 
internal instability checks during the optimization pro-
cess. In connection with member stress, the stress result-
ing from design load combinations should be within al-
lowable limits, according to the materials used. In this 
study, a number of penalty functions were determined 
with regard to allowable tension and compressive stress 
of the truss members. If any one of the constraints is 
not satisfied, a penalty function is assigned to the related 
chromosome by using Eqn (3):   
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where the ith member can be under tension or compres-
sion, ( )1 ,iP A X  is the penalty function value for the 
stress,  iσ and  a

iσ are the member stress and allowable 
stress, respectively. In this study, FE analysis was used 
to calculate the member stress and nodal deflection of 
the truss structure in the optimization process. Similar 
to the stress constraints, if any one of the displacement 
constraints is not satisfied, a penalty function for the ver-
tical displacement is assigned to the related chromosome 
by using Eqn (4): 
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where ( )2iP A  is the penalty value of the active nodal 
displacement, i∆  is the displacement in the direction of 
the degree of freedom, and a

i∆  is the allowable displace-
ment in the direction of the degree of freedom. 

In general, the failure of a truss structure could be 
due to failure of a structural component, material failure 
or structural instability. In this study, tubular hollow sec-
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tions were used for all truss members with outer width 
(d), inner width (c) and sectional thickness (t). The buck-
ling strength of each member was calculated based on 
the ratio of inner width (c) to sectional thickness (t) ac-
cording to Eurocode 3 (2010). Cross sections were placed 
into one of four behaviour classes in Eurocode 3 (2010)
defined by 

2
d

t ε×
, in which ε is 235 / yf . To avoid 

buckling in the compressive members, the following cri-
terion should be satisfied: 

 .
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where EDN  is the design axial load and .b RdN  is the 
member buckling resistance determined based on the fol-
lowing equation:
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where the first term corresponds to Classes 1, 2 and 3 of 
the Eurocode 3 (2010) cross sections, while the second 
term is for Class 4 sections. Also, χ is the reduction factor 
of the relevant buckling mode, A is the gross area, effA  is 
the reduced effective area, and 1Mγ  is the partial safety 
factor for buckling resistance calculations. For members 
under compression, the value of χ should be determined 
for the appropriate non-dimensional slenderness ratio  λ  
from the relevant buckling curve, according to Eqn (7): 
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where the first term is applied for Class 1, 2 or 3 and 
the second term is applied for Class 4 cross sections. 

crN  is the elastic critical bucking load based on the gross

cross-sectional properties, 
2

cr 2
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π
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The imperfection

factor,  α , depends on the cross-section type. In this 
study,  α  was considered to be 0.49. Based on Euro-
code 3 (2010), for λ  less than or equal to 0.2, buckling 
effects can be ignored.

1.3. Augmented Lagrangian Genetic Algorithm 
(ALGA) for continuous optimization approach
ALGA was used for solving nonlinear optimization of 
truss structures with nonlinear constraints. This method 
helps to avoid conducting extensive numerical calcula-
tions to find the appropriate value for the penalty func-
tion coefficient. In this way, each constraint is separately 
allocated to its own adjusted penalty function coefficient. 
The advantage of using ALGA in comparison with QPGA 
is to include a set of Lagrange Multipliers, instead of a 

single coefficient penalty function. The fitness function 
and nonlinear constraint functions are combined by us-
ing the Lagrangian and the penalty parameters for a se-
quence of sub-problems. Subsequently, each sub-problem 
is solved by using genetic algorithm. The algorithm starts 
by setting an initial value for the penalty parameter (i.e. 
initial penalty). The sub-problem formulation is defined 
by Eqn (8):
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where m and mt are the number of nonlinear inequality 
constraints and the total number of nonlinear constraints, 
respectively. The components iλ  of the vector λ are 
known as Lagrange multiplier estimates, the elements is  
of the vector s are nonnegative shifts, and ξ is the positive 
penalty parameter.

1.4. Quadratic Penalty Function Genetic Algorithm 
(QPGA) for discrete optimization approach
The constrained optimization problems can be converted 
into unconstrained problems using the QPGA method. 
This approach requires the selection of a penalty func-
tion coefficient. In this study, the penalty function is de-
fined by Eqn (9):
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where 1 2,  γ γ are the penalty function coefficients,  fL is 
the factor for normalizing the objective function, N is the 
number of design variables, M is the number of degrees 
of freedom, iσ  is the maximum stress in the ith member, 
and iδ  is the displacement of each node in vertical direc-
tion. Since discrete optimization indicates greater sensi-
tivity on nodal displacements, Eqn (10) is introduced to 
obtain fast convergence:
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where n, k and m are penalty coefficients considered to 
be 8, 2 and 5, respectively.

1.5. Procedure for obtaining the optimum solution
Figure 1 shows the flowchart of the proposed optimiza-
tion methods. In the adopted GA optimization approach, 
the population size, maximum number of generations, 
stall generation and stall time limit generation were 40, 
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200, 50, and 200, respectively. Additionally, the penalty 
coefficient and the tolerance of the nonlinear constraint 
violation in the optimization process were considered as 
100 and 1e–6, respectively. The method starts from an op-
timal population represented by the cross-sectional areas, 
that minimises the objective function to a required accu-
racy. Then, the solution is filtered into FE modeling to be 
kinematically stable, i.e., until Gruber’s criterion is satis-
fied and the existence of the basic nodes can be checked 
out by the model. Subsequentely, different configurations 
are created by GA procedure. The kinematic stability and 
buckling of the structure is then verified by the Cholesky 
factorization within the global stiffness matrix. The pro-
cess reiterates by assigning an initial population based 
on the optimal solution founded in the first step of opti-
mization. The effeciency of the successive model is then 
improved by updating the initial population using the last 
optimum encountered solutions. The maximum numer of 
iterations, Nmax, was set to be 10. Since the unconstrained 
stiffness matrix is a sparse banded, symmetric and posi-
tive definite matrix, it is possible to reduce arithmetic op-
erations by using Cholesky factorization. However, densi-
ty of the Cholesky factorization affects the computational 
time and cost. Furthermore, for sparse matrices, iterative 
methods need to be considered to improve the efficiency 
of the optimisation process. As a result, the full stiffness 
matrix O(N3) can be reduced to O(N), where N is the size 
of the matrix. In this way, the computational time can be 
reduced more than 5 times (Jhurani, Demkowicz 2012). 
In this paper, Compressed Sparse Row (CSR) format and 

reordering of Cholesky factorization of stiffness matrix 
by symmetric approximate minimum degree permutation 
is used. Furthermore, in the case of the singular finite 
element stiffness matrix, Moore Penrose Pseudoinverse 
though developed Singular Value Decomposition (SVD) 
is employed.

2. Case study examples

2.1. Benchmark case study
The performance of the proposed optimization method is 
tested for the benchmark 10-bar cantilever truss shown 
in Figure 2. The results are compared with several other 
research studies using both discrete and continuous de-
sign variables.

Continuous and discrete variables were represented 
by float and permutation coding, respectively. The objective 

Fig. 1. The flowchart of the proposed optimization process 

Fig. 2. Geometry of the benchmark10-bar truss  
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function is to minimize total mass or equivalently, the 
cross sectional area of the truss members subjected to de-
sign constraints. For discrete design variables, the cross-
sectional areas were selected from the following 32 pre-
defined sections:{10.452, 11.613, 15.355, 16.903, 18.581, 
19.935, 20.193, 21.806, 23.419, 24.774, 24.968, 26.968, 
28.968, 30.968, 32.064, 33.032, 37.032, 46.580, 51.419, 
74.193, 87.097, 89.677, 91.613, 100, 103.226, 121.290, 
128.387, 141.935, 147.742, 170.967, 193.548, 216.129} 
cm2. For continuous optimization, the lower and upper 
bounds of the cross-section areas varies between 0.645 
and 64.516 cm2.

2.1.1. Size optimization using continuous cross-sectional 
areas
In this section, size optimization was conducted to de-
termine the optimal cross-sectional area of each member 
with a continuous float value. In this study, mild steel 
was used in the truss elements. To take into account the 
nonlinear constraints applied to the structure, ALGA op-
timization method is utilized. Table 1 shows the com-
parison of size optimization results with those of other 
research studies. The results of this study for minimum 
displacement and minimum weight are shown in the pres-
ent work (1) and present work (2) columns, respectively. 
It should be noted that some of the studies (e.g. Romero 
et al. 2004) did not consider displacement constraints in 
the optimization process and, therefore, obtained struc-
tures with less structural weight.

2.1.2. Size optimization using discrete cross-sectional  
areas 
By considering discrete values as design variables, the 
cross-sectional areas are to be chosen from a set of dis-
crete values of commercially available sizes presented in 
Section 2.1. Table 2 shows the comparison of size opti-

mization results in this study with results from literature. 
Similar to the previous case, the optimum design for min-
imum displacement and minimum weight in this study 
are given in the present work (1) and present work (2) 
columns, respectively. As expected, Table 2 shows that 
according to the release of the displacement constraints, 
lighter structures may be achieved. However, the opti-
mum solution in this case may not satisfy the maximum 
displacement limits (see Wu and Chow (1995) results in 
Table 2).

2.1.3. Size and topology optimization using discrete 
cross-sectional areas 
The objective of the topology optimization in this study 
is to obtain a truss structure with optimum layout that 
satisfies all design constraints using minimum structural 
weight. The topology optimization process starts with an 
initial ground structure that contains all possible joints 
and members, followed by eliminating inefficient mem-
bers, taking into account the instability effect. Variables 
involved in the optimization process can be 1 or 0 val-
ues, representing the presence or absence of the element. 
The truss structures with fewer structural members are 
encouraged by assigning smaller penalty function values, 
while higher penalty values are used for truss structures 
with larger number of connectivity. The penalty constants 
in this study were assigned as –103 and 103 for eliminat-
ing or adding a member, respectively. Table 3 compares 
results obtained by the proposed algorithm with other ref-
erences. The optimal design for the minimum displace-
ment and weight is shown in present work (1) and present 
work (2) columns, respectively.

2.1.4. Sensitivity analysis of 10-bar truss structure
In the following, the response of the optimal area distri-
bution to an adjustment of constraints (perturbation) for 

Table 1. Comparison of the continuous size optimization results with other references (Max y-displacement: 17.78 cm)

Area
Auer 

(2006)
Romero et al. 

(2004)
Burton (2004) Haftka, 

Gurdal 
(1982)

de Souza and 
Fonseca  
(2008)

Present 
Work (1)

Present 
Work (2)

A1 0.645 0.645 0.645 0.645 0.645 0.645 0.645
A2 0.645 0.645 0.645 0.645 0.645 1.419 1.587
A3 0.751 0.645 0.903 0.903 0.839 1.710 2.303
A4 35.878 35.928 23.742 23.742 24.903 36.161 38.071
A5 25.370 25.405 52.258 25.161 25.161 31.632 27.716
A6 0.645 0.645 0.645 0.645 0.645 0.645 0.645
A7 51.177 51.212 50.968 50.968 50.968 53.503 55.722
A8 35.878 35.928 35.548 35.548 35.613 36.581 37.993
A9 37.114 37.063 37.419 37.419 37.290 31.110 28.077
A10 52.050 52.013 25.161 52.258 52.193 48.574 48.852

Weight (Kg) 722.765 722.647 679.251 679.251 682.783 723.118 723.125
Max Disp. (cm) 18.2880 18.2880 22.0675 20.5740 20.2743 17.5971 17.3965

Max Stress(MPa) 172.368 172.372 352.463 258.372 246.762 215.582 224.459
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the 10-bar truss benchmark is performed. This is achieved 
by simultaneously increasing the cross-sectional area of 
members 7 and 10 (highest and lowest cross-sectional 
area). Figure 3 presents the maximum nodal displacement 
of the truss structure with respect to the cross-sectional 
area of the member 7 and 9, respectively. It is shown that 
the gradient of maximum displacement reaches the mini-
mum value for cross-sectional area equal to 115.48 cm2 

(17.9 in2) and 71.61 cm2 (11.1 in2) in members 7 and 
10, respectively. Maximum displacement at this point is 
7 cm (2.77 in), which is around 33% above the optimum 
solutions shown in Table 2. The results also indicate that 
the maximum displacement is more sensitive to the varia-
tions in the cross-sectional area of member 9 compared to 
member 7. Subsequently, maximum displacement corre-
sponding to member 9 reaches the constant value earlier 
than member 7.

2.2. Optimum results for 61-bar Pratt truss bridge
As another challenging test example for evaluation of the 
robust design optimization, the long span 61-bar Pratt 
truss bridge with 80 m floor deck illustrated in Figure 4a 
is considered. 

All members in the Pratt truss bridge were assumed 
to be made from the mild steel with E and ρ equal to 
210 GPa and 7860 Kg/m3, respectively. Available cross-
sectional areas corresponding with discrete optimiza-
tion are selected from a set of 29 discrete values of Ai 
∈ S ={0.157, 0.404, 0.384, 0.364, 0.331, 0.309, 0.324, 
0.291,0.278, 0.269, 0.254, 0.232, 0.212, 0.207, 0.198, 
0.122, 0.116, 0.104, 0.092, 0.087, 0.081,0.075, 0.063, 
0.057, 0.054, 0.049, 0.046, 0.040, 0.026} (m2). The al-
lowable stress (compression and tension) and the maxi-
mum deflection at mid-span constraints are considered to 
be 150 MPa and 3.5 cm, respectively.

Table 3. Comparison of the discrete size and topology optimization results with other references  
(Max y-displacement: 5.207 cm)

Area Rajan 
(1995)

Tang et al. 
(2005)

Rahami et al. 
(2008)

Present Work 
(1)

Present Work 
(2)

A1 0 0 0 0 0
A2 0 0 0 0 0
A3 0 0 0 0 0
A4 141.935 121.290 141.935 103.226 121.290
A5 100.000 91.613 100.000 91.613 100.000
A6 0 0 0 0 0
A7 193.548 193.548 193.548 193.548 170.967
A8 141.935 128.387 128.387 147.742 121.290
A9 46.581 51.419 46.581 46.581 37.032
A10 128.387 170.967 128.387 147.742 216.129

Weight (Kg) 2250.769 2232.240 2202.280 2160.752 2233.719
Max Disp. (cm) 5.2578 5.2070 5.2034 5.4074 5.2675

Table 2. Comparison of the discrete sizing optimization results with other references (Max y-displacement: 5.08 cm)

Area
Wu and 
Chow 
(1995)

Rajeev and 
Krishnamoorty 

(1992)

Rahami et al. 
 (2008)

Li et al. 
(2009)

de Souza and 
Fonseca  
(2008)

Present 
Work  

(1)

Present 
Work  

(2)

A1 10.452 10.452 11.613 10.452 10.452 18.581 11.613
A2 10.452 10.452 10.452 11.613 10.452 24.774 23.419
A3 15.355 16.903 11.613 19.935 10.452 24.968 21.806
A4 121.290 128.387 141.935 141.935 141.935 121.290 128.387
A5 91.613 100.000 87.097 100.000 100.000 87.097 87.097
A6 11.613 10.452 10.452 10.452 10.452 10.452 16.903
A7 170.967 216.129 193.548 193.548 193.548 193.548 216.129
A8 103.226 128.387 121.290 121.290 141.935 121.290 121.290
A9 33.032 91.613 74.193 74.193 51.419 87.097 74.193
A10 103.226 141.935 193.548 170.967 170.967 147.742 170.967

Weight (Kg) 1985.009 2546.393 2531.842 2537.140 2492.632 2489.882 2568.985
Max Disp. (cm) 6.6462 5.0820 5.0762 5.0665 5.0889 5.2730 5.0825
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The bridge is assumed to be a dual-carriageway road 
with 2 lanes in each direction. The permanent load, in-
cluding steel weight, surface and parapet, was 56 kN/m. 
The live load, including UDL and tandem system, was 
45 kN/m. The maximum combination of the permanent 
load and live load was 127 kN/m by assuming the per-
manent and live factors as 1.20 and 1.35, respectively. 
Figure 4a shows typical deformations of the traditional 
analysis using the same cross-sectional area (0.257 m2). 
Results obtained by the proposed discrete nonlinear ap-
proach are given in Table 4. The obtained results confirm 
that the proposed method not only reduces the structure 
weight but also significantly improves displacement and 
members stresses. It should be noted that the proposed 
algorithm leads to lighter weight, i.e., 21% less than tra-
ditional design. Also, the maximum displacement and 
maximum member stress ratio for discrete optimization 
was 16% and 33% less than the traditional design, re-
spectively.

2.2.1. Convergence proof and sensitivity analysis
This section analyses the robustness and accuracy of the 
proposed method for the 61-bar Pratt truss bridge pre-
sented in Figure 4a. Optimum values of total weight and 
maximum deflection using initial population size as cross 

Fig. 3. Stress behaviour and displacement behaviour due to increasing the cross-sectional area of members 7 and 10

Fig. 4. (a) Geometry of 61-bar Pratt truss bridge and structural deformation of traditional design; (b) Comparison between 
optimum design solutions using five different sets of initial cross sectional areas (1st to 5th run) with the traditional design

sectional area (1st to 5th run) are presented in Figure 4b. 
Numerical results indicate that the proposed method has 
better accuracy and robustness compared to the tradition-
al design methods.

For better comparisons, Figure 5a shows the con-
vergence curves of the Pratt truss as an average of four 
different runs and two cases. In the first case, sensitivity 
analysis was carried out for all members in the structure 
by increasing their cross-sectional areas by the ratio of 

( )   /A x x∂ ∂ , which was defined as 1 mm2. In the second 
case, top and bottom chords are considered to have great-
er areas than braces areas, i.e., A+13 mm2, A+3 mm2 and 
A, respectively (see Fig. 4a). Sensitivity analysis was 
then carried out by increasing the cross-sectional area 
of the members A by the ratio of ( )  A x / x∂ ∂  equal to 
1 mm2. Figure 5b shows the maximum joint displacement 
with respect to weight, where the red and green lines cor-
respond to the first and the second case, respectively. It 
is shown that the second case leads to better design so-
lution in terms of displacement and weight compared to 
the first case.

2.3. Optimum design of 57-bar planar tower truss
The efficiency of the proposed method is studied for 
a large scale structures, the 57-bar space transmission  
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tower shown in Figure 6a. All members were assumed 
to be made from the mild steel with E equal to 210 GPa,  
ρ equal to 7860 Kg/m3,  allσ  (compression and tension) 
equal to 147.15 MPa and maxδ  equal to 2.05 mm. Avail-
able cross-sectional areas corresponding with discrete 
optimization under the applied loads were taken from 
CE Marked Structural Sections (2013) using a set of 57 
discrete values of Ai ∈ S = {0.048, 0.057, 0.059, 0.063, 
0.066, 0.069, 0.082, 0.082, 0.087, 0.094, 0.101, 0.11, 
0.115, 0.119, 0.123, 0.132, 0.141, 0.143, 0.151, 0.155, 
0.167, 0.179, 0.187, 0.192, 0.206, 0.212, 0.218, 0.227, 
0.251, 0.254, 0.262, 0.264}×10–2 m2.

For continues variable optimization, cross-sectional 
area of each member was selected in the range of 0.00001 
to 0.1 m2. Buckling analysis was performed for this ex-
ample under external loads shown in Figure 6a to cal-
culate the critical loads which can cause instability and 
collapse in the whole structure. The buckling load (i.e. 
critical load at which the structure would buckle) was 
calculated based on eigenvalue analysis, and determined 
as 2.04 kN. Figure 6b shows the structural deformation 
under design loads by taking into account the buckling 
effects. Table 5 compares the results of optimization us-
ing continues and discrete variables with the traditional 
design solution using uniform cross-sectional areas. It 

Table 4. Optimum design results for the Pratt Truss Bridge using different types of design variables (Max y-displacement: 3.5 cm)

Design Traditional Discrete Design Traditional Discrete
Variables (cm²) Variables Variables Variables (cm²) Variables Variables

1 2570 3088 32 2570 3840
2 2570 3088 33 2570 486
3 2570 865 34 2570 2320
4 2570 2540 35 2570 571
5 2570 2320 36 2570 4040
6 2570 2776 37 2570 924
7 2570 2074 38 2570 2120
8 2570 3308 39 2570 625
9 2570 2908 40 2570 3840
10 2570 2074 41 2570 1158
11 2570 1158 42 2570 1217
12 2570 4040 43 2570 805
13 2570 3240 44 2570 3640
14 2570 745 45 2570 2120
15 2570 1570 46 2570 541
16 2570 4040 47 2570 1042
17 2570 1981 48 2570 3088
18 2570 865 49 2570 2320
19 2570 1981 50 2570 625
20 2570 3840 51 2570 1981
21 2570 924 52 2570 3240
22 2570 1570 53 2570 2688
23 2570 456 54 2570 2320
24 2570 4040 55 2570 2120
25 2570 865 56 2570 3088
26 2570 2074 57 2570 2688
27 2570 486 58 2570 3308
28 2570 4040 59 2570 625
29 2570 625 60 2570 2776
30 2570 2320 61 2570 3840
31 2570 401    

weight (Kg)    793135.0 626506.4
Displacement (cm)    4.01 3.38
Sigma (MPa)    56.476 37.798
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is shown that optimization of truss topology using con-
tinuous and discrete variables leads to 29% and 9%, re-
spectively, savings in the total structural weight when  
compared to the conventional design. Furthermore, Table 5 
shows that the optimal design based on discrete optimiza-
tion approach resulted in 27% and 42% less displacement 
and member stress compared with the traditional design, 
which highlights the efficiency of the proposed method 
in practical applications. Figure 6c presents the maximum 
nodal displacement of the 57-bar planar tower truss as a 
function of structural weigh. Through fitting curve ap-
proach, it can be observed that 14.46maxW ×∆ =  and 
correspondingly, 88 10maxW σ× = × .  As a result, max

max

σ
∆

 

has a constant value of 75.532 10× . This means that there 
is a linear relationship between the maximum nodal dis-
placement and maximum member’s stress, which can be 
used for practical design purposes.

Summary and conclusions 

In this study, modified Augmented Lagrangian Genet-
ic Algorithm (ALGA) and Quadratic Penalty Function 
Genetic Algorithm (QPGA) optimization methods were 
developed for size and topology optimization of truss 
structures to obtain acceptable design solutions with 
minimum structural weight. The proposed method was 
validated by optimizing a 10-bar truss structure, a Pratt 

Design Traditional Continuous Discrete Design Traditional Continuous Discrete
Variables (cm²) Variables Variables Variables Variables (m²) Variables Variables Variables

1 11.5 8.31 15.5 30 11.5 8.75 14.1
2 11.5 7.77 4.8 31 11.5 7.66 5.86
3 11.5 7.66 5.69 32 11.5 8.68 6.91
4 11.5 8.41 11.9 33 11.5 8.61 9.4
5 11.5 8.82 4.8 34 11.5 8.49 11.9
6 11.5 8.18 21.2 35 11.5 8.06 5.86
7 11.5 8.63 8.24 36 11.5 7.83 6.31
8 11.5 8.88 6.31 37 11.5 8.69 25.4
9 11.5 8.67 20.6 38 11.5 8.91 6.56
10 11.5 8.84 14.3 39 11.5 8.26 8.7
11 11.5 8.68 26.4 40 11.5 5.14 13.2
12 11.5 7.64 10.1 41 11.5 8.87 6.56
13 11.5 8.84 11 42 11.5 7.66 5.86
14 11.5 8.37 21.8 43 11.5 8.9 8.7
15 11.5 7.9 12.3 44 11.5 8.07 26.4
16 11.5 8.81 18.7 45 11.5 8.16 12.3
17 11.5 8.54 15.1 46 11.5 7.97 8.7
18 11.5 8.67 11.9 47 11.5 8.03 19.2
19 11.5 8.59 21.2 48 11.5 8.67 8.24
20 11.5 7.93 14.1 49 11.5 8.91 6.56
21 11.5 7.96 8.7 50 11.5 8.91 9.4
22 11.5 7.73 5.69 51 11.5 7.91 13.2
23 11.5 8.35 21.2 52 11.5 7.69 9.4
24 11.5 7.56 8.7 53 11.5 5.97 11
25 11.5 7.93 13.2 54 11.5 8 18.7
26 11.5 8.94 16.7 55 11.5 8.01 6.56
27 11.5 8.55 6.91 56 11.5 8.26 6.31
28 11.5 8.06 5.69 57 11.5 8.62 14.1
29 11.5 7.97 13.2     

weight (Kg)     981.891 70.141 893.692
Displacement (cm) 1.47 1.99 1.07
Sigma (MPa)     0.8538 1.1940 0.4919

Table 5. Optimum design results for the 57-bar planner truss using continues and discrete variables
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truss bridge and a 57-bar planar tower truss using both 
discrete and continuous variables. The numerical exam-
ples verified the feasibility of the developed algorithm, 
and indicated that the adopted method can significantly 
reduce the structural weight and maximum deflection of 
the conventional design. It was shown that the optimal 
design solution for the Pratt truss bridge using discrete 
optimization is 21% lighter than the traditional design, 
while it will also exhibit 16% and 33% less maximum 
joint displacement and maximum member stress under 
the design loads, respectively. The size and topology opti-
mization of the 57-bar planar tower truss through contin-
uous and discrete optimization also resulted in 29% and 
9% lighter structures than traditional design, respectively. 
Several sensitivity analyses were conducted to show the 
robustness and reliability of the proposed optimization 
methods, which should prove useful in optimum design 
of large-scale truss structures. 
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