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Abstract. The article investigates the application of a new type of global quantile-oriented sensitivity analysis (called QSA 
in the article) and contrasts it with established Sobol’ sensitivity analysis (SSA). Comparison of QSA of the resistance de-
sign value (0.1 percentile) with SSA is performed on an example of the analysis of the resistance of a steel IPN 200 beam, 
which is subjected to lateral-torsional buckling. The resistance is approximated using higher order polynomial metamod-
els created from advanced non-linear FE models. The main, higher order and total effects are calculated using the Latin 
Hypercube Sampling method. Noticeable differences between the two methods are found, with QSA apparently revealing 
higher sensitivity of the resistance design value to random input second and higher order interactions (compared to SSA). 
SSA cannot identify certain reliability aspects of structural design as comprehensively as QSA, particularly in relation to 
higher order interactions effects of input imperfections. In order to better understand the reasons for the differences be-
tween QSA and SSA, two simple examples are presented, where QSA (median) and SSA show a general agreement in the 
calculation of certain sensitivity indices.

Keywords: sensitivity analysis, quantile, resistance, lateral-torsional buckling, imperfections, steel, random sampling.

Introduction 

The fundamental characteristic of safety and reliability of 
the design of load bearing structures is the design value 
of resistance (Galambos, 1998). In order to verify if a 
structure can bear the relevant loadings, referred to as the 
ultimate limit state, it is necessary to check if the resist-
ance capacity is equal to or greater than the sum of the 
relevant action effects (Sedlacek & Müller, 2006; Sedlacek 
& Kraus, 2007).

Standard EN 1990:2002 (2003) provides a semi-prob-
abilistic procedure for the safety assessment of design 
methods. Design methods can be verified by comparing 
the design values contained in the Eurocodes with the de-
sign quantiles obtained using stochastic analysis. For ex-
ample, the design resistance of a steel structure calculated 
according to Eurocode 3 (EN 1993-1:2005, 2005) should 
correspond approximately to 0.1%-quantile of the random 
resistance R (Kala, 2012). The random variability of R can 
either be identified on the basis of physical experiments 
performed in the laboratory, or these experiments can be 
simulated on a computer using a stochastic computational 
model with consideration to the effects of all important in-

itial imperfections (see, e.g. Vales & Stan, 2017; Jönsson & 
Stand, 2017; Liu, He, Yhenyu, & Yuan, 2018).

The approaches described in design standards often re-
quire further explanation for a full understanding of their 
background in order to reduce the possibility of errors. 
The fundamental question is which initial imperfections 
(“imperfections”) are crucial, in the sense that their ran-
dom variability significantly affects the design resistance? 
The motivation for work presented is to analyze the sen-
sitivity of the resistance design value (design quantile) to 
random input initial imperfections. The statistical charac-
teristics of these imperfections must then be determined 
with high precision.

Common sensitivity analysis methods (Saltelli, Chan, 
& Scott, 2004) monitor the correlation between model in-
puts and the output or the effects of random inputs on the 
variance of model output. However, these methods may 
not be suitable for analysing the effects of random imper-
fections on the design quantile Rd. In accordance with the 
classical utility theory, variance is not sufficient for the 
determination of the decision-maker state of knowledge 
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in general (Borgonovo, 2007; Antucheviciene, Kala, Mar-
zouk, & Vaidogas, 2015). This problem can be partially 
overcome using sensitivity analysis based on factorial de-
sign (SAFD), which describes the influence of inaccuracies 
in the statistical moments of input imperfections on the Rd 
(Kala & Valeš, 2017a, 2017b). 

The so-called Goal Oriented Sensitivity Analysis, 
which uses new global sensitivity indices subordinated to 
contrast functions, is more general in use (Fort, Klein, & 
Rachdi, 2016). The choice of the contrast function can de-
termine global sensitivity indices of different types.

Contrast functions are an important part of the statis-
tical learning theory (Vapnik, 1998; Massart, 2003) where 
they define estimation procedures of certain features, 
which are associated to a random model output. Quantile-
contrast functions, which measure the loss (distance) be-
tween R and Rd in dependence to the influence of input 
random imperfections, are used in the article. Loss has the 
significance of contrast because it highlights the character-
istics of numerical models involved in the used statistical 
approach (Rachdi, 2011).

The quantile-contrast function measures the absolute 
distance (contrast) between R and Rd. The other contrast 
functions are defined in Fort et  al. (2016). It has been 
shown in Fort et al. (2016) that use of the quadratic con-
trast function with the mean minimiser leads to estab-
lished Sobol’ sensitivity indices (Sobol’, 1993, 2001). The 
first order quantile contrast index has been studied and 
applied in Browne, Fort, Iooss, and Gratiet (2017) and 
Maume-Deschamps and Niang (2018). The measures pro-
posed in Kucherenko, Song, and Wang (2019) make use 
of the mean distance between quantiles rather than the 
mean distance between average contrast functions as in 
the case of quantile-oriented sensitivity indices. The first 
and higher order quantile contrast indices have been com-
pared with Sobol’ global sensitivity analysis in an example 
using Ishigami Function in Kala (2018).

The aim of the present article is global quantile-orient-
ed sensitivity analysis (QSA) of Rd performed by numeri-
cal estimation of all first and higher order quantile contrast 
indices. QSA has a high potential to be developed for the 
analysis of design structural reliability based on stochas-
tic models and design quantile (see, e.g. D’Angelo & Nuss-
baumer, 2017; Kala, Valeš, & Jönsson, 2017; Chalmovsky 
et al., 2017; Hariri-Ardebili & Pourkamali-Anaraki, 2018). 
Theoretical development of QSA for models with correlat-
ed inputs can be expected analogously to the development 
of Sobol’ sensitivity analysis (SSA) (see, e.g. K. Zhang, Lu, 
Wu, & Y. Zhang, 2017; Li, Lu, Zhang, & Gao, 2017; Xiao, 
Lu, & Wang, 2018).

The numerical example presented in this article builds 
on Kala and Valeš (2017a, 2017b), describing in detail the 
advanced non-linear FE model of a steel beam, which is 
subjected to lateral-torsional buckling (LTB) due to uni-
form bending moment. Resistance R (model output) is 
denoted as LTB-R (Kala & Valeš, 2017b) or LCC (Kala 
& Valeš, 2017a) in previous studies. SSA of R published 

in Kala and Valeš (2017b) is extended to beams of higher 
strength class and compared with QSA of Rd. 

The noticeable differences in the results of QSA and 
SSA are found and their effects on structural reliability are 
discussed. QSA revealing higher sensitivity of the resist-
ance design value to random input higher order interac-
tions (compared to SSA).

2. Global quantile-oriented sensitivity analysis 

Given a model of the form Y = f(X1, X2, ..., XM), where Y 
is a scalar output and Xi are M statistically independent 
input variables. The contrast function y associated with 
a-quantile can be written with parameter q as

 ,  –( ) ( ( ) ) 1) (( )( )YE Y E Y <qy q = y q = q a −  (1)

and the estimator of a-quantile q* is given by q*=Argmin 
y(q). Based on Fort et al. (2016), the first order quantile 
contrast index Qi (first order or main sensitivity index 
subordinated on the contrast) can be defined as
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where the numerator is the contrast variation due to Xi. 
Qi is the sensitivity index of the estimator of q*. The mini-
mum value of (1) can be calculated, for e.g., using K runs 
of the Latin Hypercube Sampling method (LHS) (McKey, 
Beckman, & Conover, 1979; Iman & Conover, 1980) as
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where q* is the estimator of a-quantile. The a-quantile q* 
can be estimated from LHS runs so that a×K runs of Y 
are smaller than q* and (1  –  a)×K runs of Y are great-
er than q*, see the example in Figure 1. The estimate of 
0.001-quantile is practically evaluated as the 400th smallest 
value in the set arranged in ascending order of K = 400000 
runs of LHS, see Figure 1.

Figure 1. Example of the estimate of the 0.001-quantile from 
400 000 LHS runs 101×104 mm (300×300 DPI)
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The second member in the numerator (2) can be cal-
culated using two sets of the LHS method. N random re-
alizations of Xi, i.e. Xi(1), ..., Xi(j),…, Xi(N) are generated 
in the first set. Then, K random realizations of vector X~i 
are generated for each realization Xi(j), j = 1,…, N (all vari-
ables but Xi). For fixed Xi we can calculate
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where conditional a-quantile q*(j) is calculated in a simi-
lar manner as in (3) with the difference that the runs of 
Y are obtained for K random realizations of variables X~i 
and fixed (non-random) Xi. For N runs of Xi we subse-
quently obtain 
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The second order quantile contrast index Qij is defined as 
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The higher order quantile contrast indices can be ex-
pressed analogously. The sum of all sensitivity indices 
must be equal to one:
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It can be noted that the use of the contrast function 

y(q) = E(Y – q )2 (8)

transforms (1), (2), (6) and (7) to the classical Sobol’ de-
composition (Sobol’, 1993, 2001), in which the first order 
sensitivity index Si is defined as
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where corr is Pearson correlation coefficient. Sobol’ higher 
order sensitivity indices are calculated in a similar man-
ner, see (e.g. Saltelli et al., 2004).

3. Basic research examples

QSA and SSA are based on the decomposition of the re-
sponse function. However, each method uses a different 
contrast function. QSA measures the contrast as the ab-
solute distance from the conditional quantile (1), while 
SSA measures the contrast as the square of the distance 
from the conditional arithmetic mean (8). Each sensitivity 
analysis has a different descriptive (measuring) capability. 
Two examples are presented, where QSA and SSA exhibit 
partial or general agreement, to enable better understand-
ing of the reasons that lead to differences between QSA 
and SSA.

3.1. Additive model

Let us consider the linear function 

1 2 3Y x x x= + + , (10)
where x1, x2, x3 are statistically independent random vari-
ables. SSA evaluates the model (10) as perfectly additive – 
without input interactions. The aim of the study is to find 
such input pdf so that there is an agreement in sensitivity 
measurements of both QSA and SSA, i.e. without interac-
tion effects.

Let us consider input variables xi (i = 1, 2, 3) with two-
point probability mass function (pmf), see Figure  2. All 
the values of the pmf must be non-negative and sum up 
to 1 and a b≠ . Then QSA and SSA yield the same results 
when 0.8p ≥ or 0.2p ≤ . The results are only first order 
sensitivity indices S1 = S2 = S3 = Q1 = Q2 = Q3 = 0.333. All 
higher order indices are zero.

Figure 2. The probability mass function 36×34 mm 
(300×300 DPI)

The agreement between QSA and SSA can be clearly 
illustrated on an example with p = 0.8, a = 0, b = 1 solved 
using the LHS method. The 0.5-quantile in (3) is calcu-
lated as q* = 0, then the contrasts Y–q* = Y are equal to:  
Y = 0 (51.2% runs), Y = 1 (38.4% runs), Y = 2 (9.6% runs), 
Y = 3 (0.8% runs). The value of (3) is (0)y  = (1×0.384 + 
2×0.096 + 3×0.008)×0.5 = 0.3. The value of (4) is m(j) = 0.2 
for each j and thus the value of (5) is also 0.2. Substituting 
into (2) we obtain Qi = (0.3–0.2)/0.3 = 1/3, which is a result 
identical to SSA where Si = 1/3. All higher order indices 
are zero. 

It can be noted that 20% runs of m(j) in (4) has condi-
tional quantile q*(j) = 1, which occurs in those runs where 
the fixed value is Xi(j) = 1. Simplified, fixation of Xi(j) = 
1 gives q*(j) = 1, fixation Xi(j) = 0 gives q*(j) = 0. There-
fore, the change of conditional quantile q*(j) is controlled 
only by fixing the ith input variable Xi(j) without the ran-
dom influence of the other input variables, which gives  
Q1 = Q2 = Q3 = 1/3 and Q12 = Q13 = Q23 = Q123 = 0. Howev-
er, if p < 0.8 then q*(j) = 1 occurs in cases with fixed values  
Xi(j) = 0 and Xi(j) = 1; i.e. quantile q*(j) is not only influ-
enced by the fixation of one input variable, but also by the 
values (interactions) of the remaining two input variables. 
These interactions give non-zero higher order indices Q12, 
Q13, Q23, Q123. Interactions are not present in SSA, because 
fixation of one input variable influences only the condi-
tional arithmetical mean (10) without the influence of the 
remaining two input variables for each ( )0,1p∈ . In terms 
of SSA, the model (10) is perfectly additive. 

Let each xi have a different pmf with ai < bi. Then 
QSA and SSA of (10) have non-zero first order sensitivity  
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indices and zero higher order indices if 1 2 3 2.4p p p+ + ≥  
and/or 1 2 3 0.6p p p+ + ≤ . In general, Si ≠ Qi with the ex-
ception of the example, which is described in the preced-
ing two paragraphs.

Let x1, x2, x3 have a normal distribution with mean val-
ue m and standard deviation s. SSA can be calculated ana-
lytically as S1 = S2 = S3 =1/3 and Q12 = Q13 = Q23 = Q123 = 0. 
Contrast (8) represents the variance. Si indicates by how 
much one could reduce, on average, the output variance 
if Xi could be fixed (Saltelli et al., 2004). In the presented 
example, fixation of two input variables will, on average, 
result in the same reduction of the variance as would the 
sum of two variances with fixations of each variable in-
dividually. On the other hand, QSA (0.5-quantile) gives  
Q1 = Q2 = Q3 = 0.183, Q12 = Q13 = Q23 = 0.056, Q123 = 0.283. 
At first glance, there is a relatively high value of index  
Q123 = 0.283. Index Q123 can be calculated as Q123 = 1 – 
Q1 – Q2 – Q3 – Q12 – Q13 – Q23. The non-zero value of 
Q123 means that the contrast (3) is not reduced only by the 
conditional contrasts associated with the fixation of one or 
two input variables. Qijk indicates by how much the con-
trast could reduce, on average, if one could fix Xi, X2, X3.

Numerical results for (10) were obtained for N = K = 
100000 runs of LHS and analytically in the case of SSA. 
Knowledge related to the 0.5-quantile can be generalized 
for any other quantile.

3.2. Multiplicative model

Let us consider the function 

1 2Y x x= , (11)
where x1, x2 are statistically independent random vari-
ables with standard Gauss pdf. SSA evaluates model (11) 
as purely interactive. The variance V of output Y and the 
Sobol’ indices can be computed analytically:

1V = ,  1 2 0S S= = ,  12 1S = . (12)

The value of (3) is (0)y =  0.318. The value of (5) is 
also 0.318. Substituting into (2) we obtain Qi = (0.318–
0.318)/0.318 = 0. Because the second member in the nu-
merator (6) is zero then Q12 = 1. The result Q1 = Q2 = 0, 
Q12= 1 is identical with the SSA result (12). Numerical re-
sults for (11) were obtained for N = K = 1000000 runs of 
LHS and analytically in the case of SSA. The same result 
can be obtained using the function Y = sin(x1)sin(x2).

4. Global sensitivity analysis based on 
metamodels

4.1. FE model

The FE model is described in great detail in Kala and 
Valeš (2017a, 2017b). Therefore, only basic information 
is presented here. The aim of the computational model is 
to study the behaviour of a hot-rolled steel beam IPN 200 
at the ultimate limit state. The beam is subjected to LTB 
due to uniform bending moment M. The computational 
model is created in the software Ansys APDL version 13 
(ANSYS, 2014) using the element SOLID185, see Figure 3.

End-fork boundary conditions and kinematic cou-
pling constraints are assumed for the model. The model 
takes into account the influence of geometric and material 
imperfections, including residual stress. Residual stresses 
caused by rolling and cooling are considered. The residual 
stress distribution is implemented in the FE-model using 
an equivalent temperate load (Jönsson & Stand, 2017; Kala 
& Valeš, 2017a, 2017b). The magnitude of residual stresses 
in hot-rolled profiles is generally independent of the yield 
strength (Galambos, 1998; Jönsson & Stand, 2017). The 
studied variable is the static resistance R, which is the the-
oretical maximum load bending moment associated with 
the ultimate limit state (collapse) of the beam. The calcula-
tion of R is performed using the geometric and material 
non-linear analysis.

4.2. Establishment of a polynomial metamodel

QSA is evaluated using the polynomial metamodel, which 
was developed and described in detail in Kala and Valeš 
(2017a, 2017b). The metamodel approach has been shown 
to accelerate the evaluation of SSA (Kala & Valeš, 2017b) 
or SAFD (Kala & Valeš, 2017a) with very good efficiency.

R ≈
2 2 2 2 2

1 2 3 4 5
0 0 0 0 0

a b c d e

a b c d e
Y c X X X X Xa

= = = = =
= ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑∑ ∑ ∑ , (13)

where a = 34a + 33b + 32c + 3d + e. Metamodel (13) re-
places the highly computationally demanding FE model 
(Kala & Valeš, 2017a, 2017b) based on the structural fi-
nite element SOLID185 (ANSYS, 2014) whose output is 
the load-carrying capacity R. Constants ca are calculated 
for fixed LTλ  by the least square method using the LHS 
method and 400 FE model runs (Kala & Valeš, 2017a). 
In this article LCC is designated as resistance R and 0.1 
percentile of R is the design resistance Rd.

The pdfs of input imperfections for steel grade S235 
(Melcher, Kala, Holický, Fajkus, & Rozlívka, 2004) are 
the same as in Kala and Valeš (2017a) to allow for direct 
comparison. Artificial random variables for the creation 
of the metamodel (13) are listed in Table  2 in Kala and 
Valeš (2017a). The real-valued random variables (random 

Figure 3. FE model in the Ansys program for the analysis of 
LTB – view in the y-z plane 57×58 mm (300×300 DPI)
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imperfections) for (13) are listed in Table  1 in Kala and 
Valeš (2017a) or upon expansion in Table 1 in this article.

In this article, the stochastic computational model 
described in Kala and Valeš (2017a) is extended to steel 
grade S355. With regard to the yield strength of steel 
S355, the statistical characteristics mfy,S355 = 393.8  MPa,  
sfy,S355 = 22 MPa are taken from Sadowski, Rotter, Rein-
ke, and Ummenhofer (2015), where ten samples of steel 
sheets were studied. This is a relatively small sample, how-
ever, the results (Sadowski et  al., 2015) are in relatively 
good agreement with our statistics mfy,S355 = 394.5 MPa,  
sfy,S355 = 19.808 MPa, which were evaluated from 243 
samples of flanges of profiles U65 to U140 (Melcher et al., 
2008), see also discussion (Kala & Valeš, 2018).

The FE beam model of steel S355 has two distinc-
tions: 1) the random yield strength fy is transformed into 
fy = 22(fy–297.3)/16.8+393.8 [MPa] and 2) the length of 
the beam is 

2 3 4
2 1.7 0.36 0.95 0.15LT LT LT LTL ≈ λ − λ + λ − λ , 

where L2 is also a parameter for maximum X4 in Table 2 in 
Kala and Valeš (2017a).

The resistance modelling has been described in Kala 
and Valeš (2017a, 2017b). This study focuses on issues 
that are specifically related to the accuracy in the tails, as 
it specifically influences the QSA results. The resistance 
from the FE model YANSYS is calculated with an accu-
racy of 0.2% (Kala & Valeš, 2017a). The accuracy of the 
approximation (13) is evaluated as the mean deviation

/META ANSYS ANSYSY Y Y− , where YMETA is resistance 
from metamodel (13), see Figure 4. Columns Dall show the 
accuracy measured over all 400 support points. Columns 
Dtail show the accuracy measured over 20 smallest values 
of YANSYS. Practically, 400 pairs (YMETA, YANSYS) were cre-
ated, which were ranked in an ascending order according 
to support points YANSYS. Dtail is then evaluated for the first 
20 pairs (YMETA, YANSYS). Accuracy Dtail is better than Dall 
with the exception for high slenderness values, where it is 
approximately the same. The accuracy of the approxima-
tion decreases with increasing slenderness of the member. 
The worst accuracy of the metamodel (13) is about one 
percent of the value YANSYS, see Figure 4.

All input random variables of the metamodel (13) are 
listed in Table 1. The rs is value of the residual stress at edg-
es of the flanges at any point at the midspan of the beam 

(Kala & Valeš, 2017a, 2017b). The beam is curved accord-
ing to the first eigenmode. The amplitude of initial bow 
imperfection e0 is located at the centre of the top flange 
edge at the midspan (Kala & Valeš, 2017a, 2017b). The pdf 
of e0 is symmetrical around zero and small eccentricities 
are more likely than large ones, although the large ones 
are more dangerous (Model Code, 2001). All random vari-
ables listed in Table 1 are statistically independent. A de-
tailed explanation of the probabilistic models of all input 
imperfections are published in Kala and Valeš (2017a).

In this article, QSA is evaluated for 0.001-quantile (0.1 
percentile) of static resistance R, where 0.001-quantile rep-
resents the design resistance Rd. The calculation of Rd is 
based on the semi-probabilistic approach (Freudenthal, 
1956) of standard EN 1990:2002 (2003), which falls into 
the category of FORM methods (Sedlacek & Müller, 2006). 
Rd given as 0.1 percentile corresponds to design reliability 
with target reliability index of βd = 3.8 (failure probability 
Pf = 7.2E–5) provided that we consider the ultimate limit 
state for common design situations within the reference 
period of 50 years, see Table C2 in EN 1990:2002 (2003) 
and/or Kala (2015).

Standard EN 1990:2002 (2003) enables the determina-
tion of design values not only from a Gauss pdf, but also 
from the two-parameter lognormal or Gumbel pdf, which 
is often assumed to reflect the effects of the random load. 
Resistance R is often approximated using Gauss or log-
normal pdfs (Model Code, 2001). In many cases very good 

Table 1. Statistical characteristics of input imperfections

No. Symbol Characteristic Density Mean m St. Deviation s

1.  t2 Flange thickness Gauss 11.3 mm 0.518 mm

2. fy 
Yield strength, S235
Yield strength, S355 Gauss 297.3 MPa

393.8 MPa
16.8 MPa
22 MPa

3. E Modulus of elasticity Gauss 210 GPa 10 GPa

4. e0
Initial curvature, S235
Initial curvature, S355 Gauss 0

0
L1/1960*   L2/1960*   

5. rs Residual stress Gauss 90 MPa 18 MPa

Note: *
2 3 4

1 2.15 0.75 1.95 0.39LT LT LT LTL ≈ λ − λ + λ − λ  for S235, 
2 3 4

2 1.7 0.36 0.95 0.15LT LT LT LTL ≈ λ − λ + λ − λ  for S355.

Figure 4. The accuracy of the metamodel (13) 67×49 mm 
(300×300 DPI)
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estimates of the design values of Rd can be obtained using 
Hermite pdf (STATREL Manual, 1996) from Kala (2016a), 
which respect the skewness and kurtosis of R. In this arti-
cle, Rd is calculated in all cases as 0.1 percentile non-para-
metrically, based on LHS simulation, see Figure 1.

4.3. Estimation of Sobol’ and quantile contrast 
indices

Non-dimensional slenderness LTλ (EN 1993-1:2005, 
2005) is a deterministic parameter that was increased us-
ing the step-by-step method with an increment of 0.01. 
Two grades of structural steel S235 and S355 are consid-
ered, hence two pairs L1, L2, two stochastic computational 
FE models and two metamodels (13) are associated with 
each value LTλ . All sensitivity indices Si, Sij, etc. and Qi, 
Qij, etc. are evaluated using the LHS method. Each sensi-
tivity index is evaluated by double-nested-loop simulation. 
The same sets of (pseudo-) random numbers are used in 
each step, thereby ensuring that sampling and numerical 
errors do not swamp the result being sought (Rubinstein, 
1981; Ahammed & Melchers, 2006).

Sobol’ first order sensitivity index Si (9) is evaluated in 
two cycles. Ten thousand E(Y|Xi) are evaluated for each 
fixed value of Xi. The variance V(E(Y|Xi)) is evaluated from 
ten thousand E(Y|Xi). The unconditional variance V(Y) is 
evaluated using 500 thousand runs of LHS. Each Si and 26 
additional higher order Sobol’ indices were evaluated with 
this number of runs.

The first order quantile contrast index Qi (2) is eval-
uated using N = 4000 runs of m(j) (4). Each run m(j) is 
evaluated using a set with K = 400000 runs of Y, in which 
q*(j) represents the conditional 0.1-percentile evaluated as 
the 400th smallest value from the same set, see Figure 1. 
The unconditional contrast (3) is also evaluated using  
K = 400000 runs. The higher order quantile contrast indi-
ces are expressed analogously.

5. Sensitivity analysis results

The results of SSA depicted in Figure 5 and Figure 6 show 
that the results obtained for two steel grades S235 and 
S355 are very similar but not identical. The maximum 
value Se0 of steel S355 (red full line) is approximately 30% 
higher than that of steel S235 (black full line), see Fig-
ure 5. All other observations and conclusions regarding 
steel S355 are the same as for steel S235 and are listed in 
the last two chapters of Kala and Valeš (2017b). Due to 
the small values of the second and higher order sensitivity 
indices, the total sensitivity indices (Saltelli et  al., 2004) 
were not evaluated because their size approximately cor-
responds to that of Si in Figure 7.

The plots of indices Si and Qi are approximately similar 
in shape; however Qi has much lower values than Si. This 
means that QSA shows a high contribution of higher order 
effects (interactions). On the contrary, SSA has a relatively 
low share of higher order effects. For example, for 0LTλ =
the size of the second order index St2,fy = 0.44 is almost the 
same as the first order index Sfy = 0.47, i.e. the interaction 

effect of yield strength and the flange thickness is as sig-
nificant as the individual effect of the yield strength. Since 
Qi are relatively small, it is not possible to deduce their sole 
influence on Rd, but it is necessary to study all higher order 
quantile contrast indices.

Figures 8 to Figure 10 show only the quantile contrast 
indices greater than 0.04. The plots of indices Qij and Qijk 
show that interactions with yield strength fy are especial-
ly significant for beams with low and intermediate slen-
derness, approximately for 1.2LTλ < , see Figure  8 and 
Figure  9. On the other hand, interactions with Young’s 
modulus E are predominantly found in beams with higher 
slenderness, approximately for 1.2LTλ > . 

Variables fy and E do not have common second-order 
interactions since Qfy,E ≈ 0. However, this is not valid for 
the indices of the third Qijk and fourth Qijkl and fifth Qijklm 

Figure 5. First order Sobol’ sensitivity indices 65×48 mm 
(300×300 DPI)

Figure 6. Second order Sobol’ sensitivity indices 67×47 mm 
(300×300 DPI)

Figure 7. First order quantile contrast indices 62×46 mm 
(300×300 DPI)
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order in which fy and E have common interaction effects 
across the whole spectrum of analysed slenderness values, 
see plots Qt2,fy,E in Figure 9 and Qt2,fy,E,e0 and Qt2,fy,E,e0,rs in 
Figure 10.

The flange thickness t2 is involved in all key interaction 
effects of any order; see Figure 8 to Figure 10. Imperfection 
e0 is involved in all key interaction effects of the third and 
higher orders shown in Figure 9 to Figure 10, but only in 
one interaction index of the second order St2,e0 in Figure 8.

Due to strong interactions between imperfections, the 
role of each imperfection must be assessed due to its first 
order component and/or its interactions with the other 
imperfections. One possibility is to introduce the so-called 
total effect STi, which measures the first and higher order 
effects (interactions) of variable Xi. For example, the total 
effect for imperfection e0 (fourth variable in Table 1) can 

be expressed as QTe0 = QT4 = Q4 + Q14 + Q24 + Q34 + Q45 + 
Q124 + Q134 + Q145 + Q234 + Q245 + Q345 + Q1234 + Q1245 + 
Q1345 + Q2345 + Q12345. The total quantile contrast index for 
Xi can be expressed as:

( ) ( )( )
( )

~min min ,
1

min

i

Ti

E E Y X
Q q q

q

 y q − y q 
 = −

y q
. (14)

QTi –Qi is a measure of how much Xi is involved in in-
teractions with any other input variable. QTi = 0 implies 
that Xi is not-influential and can be fixed anywhere in its 
distribution without affecting the quantile Rd. The calcula-
tion methodology and LHS sample sizes K, N are the same 
as was described in previous chapters.

The plots of QTi(14) are shown in Figure 11. Propor-
tions QTi differ from proportions Qi (Figure 7) or Si (Fig-
ure  5), therefore, it can be concluded that the random 
variability of imperfection has a different effect on the un-
certainty of the design quantile Rd than it has on the ran-
dom resistance R of the structure. It is apparent from Fig-
ure 11 that imperfections e0 and rs are considerably more 
important than could be inferred from the individual plots 
of Qi or Si.

Conclusions

The presented numerical study identified general agree-
ments and significant differences between established 
Sobol’ sensitivity analysis (SSA) oriented to mean (central 
parameter) of random resistance R and quantile-oriented 
sensitivity analysis (QSA) of design resistance Rd (0.1 per-
centile of R).

The results of QSA and SSA are very different in the 
contribution of second and higher order sensitivity indi-
ces. QSA showed significant influences of interaction ef-
fects on Rd, which is in high contrast with the small inter-
action effects measured by classical SSA oriented on mean 
of R.

In contrast, the upward and downward trends of the first 
order indices Si and Qi are in general agreement; see Figure 5 
and Figure 7. The yield strength fy is dominant for 0LTλ = . 
The influence of fy decreases and the influence of t2 and E 
increases with increasing slenderness. QSA and SSA exhib-
it a general agreement in identifying fy and t2 as dominant 

Figure 8. Second order quantile contrast indices 62×46 mm 
(300×300 DPI)

Figure 9. Third order quantile contrast indices 62×46 mm 
(300×300 DPI)

Figure 10. Fourth and fifth order quantile contrast indices 
62×46 mm (300×300 DPI)

Figure 11. Total quantile contrast indices 62×46 mm 
(300×300 DPI)
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imperfections, both in terms of first order indices and total 
indices. Imperfections e0 and rs have some influence only 
for intermediate slenderness. The order of the most relevant 
variables is the same for low and high slenderness. However, 
for some intermediate slenderness, the order of the second 
and third crucial imperfection is slightly different.

Numerical results demonstrate that both QSA and SSA 
are in agreement in identifying the non-influential imper-
fections. All indices of all orders associated with E, e0, rs 
are zero for 0LTλ = , see Figure 5, Figure 6 and Figure 11. 
All higher order indices related with fy are very small for 

2LTλ = , however, they do not have to be zero.
The example shows that it is appropriate to analyse the 

effects of imperfections on the quantile Rd using the so-
called total effect QTi, which measures both the individual 
effect of input imperfection Xi and the interaction effects 
among Xi and other input imperfections. Generally, the 
QSA results (represented by the total indices) can change 
the order of importance of input variables of stochastic 
models aimed at verifying standard reliability indices.

The total effects of imperfections e0 and rs on the de-
sign quantile Rd studied by QSA are much higher (see Fig-
ure 11) than those measured by the established SSA (see 
Figure 5 and 6). The results of QSA show that the random 
variability of imperfections can have a different impact on 
the uncertainty of the design quantiles than it has on the 
random response of the structure. In order to verify the 
design reliability represented by Rd it is necessary to de-
termine the statistical characteristics and pdfs of e0 and rs 
with greater precision than is shown by their impact on R 
identified by SSA.

QSA is proving to be a useful tool in identifying the 
influence of the uncertainty of input variables on the un-
certainty of design (0.1% quantile) and characteristic (5% 
quantile) values, which deserves much more work in order 
to make QSA a useful and practical tool. In reliability tasks 
of non-linear structural mechanics with non-additive sto-
chastic models we can expect the presence of higher order 
effects, which are can be appropriately described using the 
total quantile contrast index QTi. Since uncertainty is most 
effectively reduced by using parameters that are associated 
with the highest value of global importance, acquiring in-
formation on these parameters would reduce uncertainty 
most effectively.

QSA can re-evaluate and change views on the impor-
tance of imperfections in terms of their impact on the re-
liability of design provided by the EUROCODE design 
standards. New findings can be expected for frame struc-
tures in which SSA has shown strong stochastic interac-
tions (Kala, 2016b). New interpretations of QSA results 
should be sought in the theory of structural reliability, 
which will address the reliability of structures.

Generally, contrast functions are a very powerful tool 
for estimating various parameters associated with prob-
ability distributions. By selecting the appropriate contrast 
function we can apply probabilistic oriented sensitivity 
analysis (PSA), which may be very useful in probabilistic 
analyses of structural reliability. New applications of QSA 

or PSA can be expected not only in field of technical sci-
ences, but also in medical, biological and social sciences or 
the sciences of inanimate nature.
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