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STATYBA, 1995, Nr. 1 (1) 

MODELLING OF CRYOGENIC STRUCTURE UNDER SEISMIC LOADING 

R.Kacianauskas, R.Kutas 

1. Introduction 

One should realise that seismic analysis or, more generally. seismic modelling and design under 

seismic loading is still as much an art as it is a science. A general consensus of the appropriate approach 

does not yet exist. Our intention is to demonstrate the seismic modelling possibilities on the example of 

the cryogenic structure using finite element method. 

The fundamentals of the seismic analysis as a part of structural dynamics are presented in [I] which 

includes basic computational rules and structural examples. Recent presentation of the state of art in this 

field is provided in [2]. This book represents an attempt to bridge the persisting gap between advances in 

the theory and concept of earthquake engineering design. Details of the finite element technique may be 

found in [3]. 

In order to design a structure to withstand an earthquake, the forces must be specified. The exact 

forces that will occur during the life of a structure cannot. of course, be known. A realistic estimate is 

important, however, since the cost of construction. and therefore the economic viability of the project, 

depends on a safe and cost -efficient final product. 

The seismic forces acting in a structure depend on a number of factors, including the characteristics 

of the earthquake. the site geology. structure properties and importance, etc. These factors should be 

reflected in the specification of seismic forces. 

In this presentation, the cryogenic structure under action of different seismic loads is tested 

numerically by the finite element method. Two kinds of factors for seismic models are investigated. The 

first factor considered reveals the influence of various loads to the one of structural models. For this 

purpose time-dependent analysis under action of one of the most damaging earthquakes in its recorded 

history. Mexico earthquake [-t] is performed and compared to the results obtained by still existing Civil 

EnRineerinK Design Code (CEDC) [5] and recommendations for the .Vue/ear Power Design Code 

(NPDC) 161 of former Soviet Union. The comparison of different discretisation schemes under action of 

simplified seismic loads is provided as the second modelling factor. The engineering design codes 

mentioned above are implemented into finite element software developed in the Laboratory of Numerical 
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Modelling and Research of Structures of Vilnius Technical University [7, 8]. The current approach is 

briefly presented in [9]. 

2. Mathematical models 

There are two commonly used procedures for specifying seismic forces: time-dependent dynamic 

analysis and equivalent static force procedure. In a general case, a dynamic analysis should be used to 

specify distributed design forces. It should take account of the structure dynamic characteristics. 

including vibration frequencies, mode shapes and damping. The dynamic analysis for the dynamic 

motion of a structure simply means time-varying or transient analysis. This results in infinite number of 

possible solutions during the time interval under consideration. From the engineering standpoint, the 

maximum values of the earthquake structural response are usually the ones of particular interest. An 

arbitrary time-history can be represented by a series of short duration impulses and dynamic response of 

single impulse is expanded to produce an arbitrary response. Since the amount of computations is 

rapidly growing the time-history models may be excessive. On the other hand, this model may be used 

not directly for computation of design stresses but for estimation of possible damages. 

The time dependent analysis is carried out on the basis of equation of motion. For seismic analysis, 

the discrete dynamic equilibrium model or transient model is written as 

[ M]ii(t) + [ C]U(t) + [ K]U(t) (l) 

Here, [M], [C] and [K] are given mass, damping and stiffness matrices of conventional finite element 

systems while F'.eos ( t) is the vector of seismic load. The time-dependent unknown function U(t) stands 

for the nodal displacements, U(t) = dU(t)ldt for velocities and ii(t) = d 2 U(t)ldt2
. When a 

structure is subjected to a sudden ground acceleration a, the i-th component of seismic load develop 

according to Newton's second law 

(2) 

where m; is corresponding mass. The main difficulty in practical application of (l-2) is how to choose 

the required acceleration. For this purpose, the required earthquake accelerograms are used. 

However. from a practical standpoint it is very important to introduce simplified seismic analysis 

models. In the equivalent static force models. the inertial forces are specified as static forces using 

empirical formulas. The explicit formulas were, however, developed for the simplest structures. The 

specification of seismic forces is provided by corresponding design codes. The philosophy of a particular 

document indicates the general level of protection that it can be expected to provide. The code-specified 
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forces are generally lower than those that would occur in a large or moderate earthquake. It is assumed 

that the larger loads that actually occur will be accounted for by the additional factors of safety and by 

redundancy of the system. 

In generaL the engineering models represent an envelope of possible values and may be presented in 

the following way. The simplified seismic analysis is considered as a particular case of the linear static 

analysis model and is expressed by a conventional displacement equilibrium equation 

[K][u]s = [F]s· (3) 

Here, [Fls = [Fs1, Fs2, ... , Fsi· ... , Fsm1 and [UJs = [Us1, Us2, ... , Usi• ... , Usm1 stand for a given seismic 

load and unknown displacement matrices, where m is a number of considered loads. The loading matrix 

describes a truncated set of the lowest free vibration modes. If we express the free-vibration problem 

(304) as a generalised eigenvalue problem 

(4) 

model (4) produces a set of eigenvectors (modal co-ordinates) [.\1, while the values of the diagonal 

matrix [ ro ]2 are squared frequencies of the structure. The seismic load vectors F Si corresponding to an 

individual mode i may be expressed by eigenfrequency (J)i, mode shape vector Xi, global mass matrix 

[M] and some other preliminary defined factors 

(5) 

For the sake of simplicity, dynamic behaviour of complex structures is represented by the behaviour 

of the simplest prototype. Substructuring, physical co-ordinates, macroelements and other multilevel 

discretisation techniques are used for the definition of expression (5). The models in the form of bending 

cantilever beam are frequently used for modelling of buildings. The main drawback of the model (3) is 

that the number of modes m which should be retained for seismic analysis is unknown and not all the 

modes occur at the same time. As a rule, the modal responses were combined using the complete 

quadratic combination method. where typical stress (force) component cr is expressed as a combination 

ofm modes 

(6) 

Various national and even regional codes and recommendations provide different specification of a 

seismic load (5). Perhaps most simple model is specified by Civil Engineering Design Code (4]. Here, 
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individual component} of seismic load Fsi = {Fsil, Fsi2, ... , Fsij, ... , F.'5in}t is displayed by a simple 

formula 

(7) 

where G; is the dead gravity load of a structure referred to nodej (j =L n) while al' ~' ... , ak 

represent a set of the specified factors. One of them a1 depends on intensity magnitude sm defined by 

Richter scale. Richter magnitude scale is defined as logarithm to base ten of the maximum seismic wave 

amplitude in microns recorded on seismograph located at a distance of 100 km from the earthquake 

epicenter. For example, if magnitude s
111 

= 7 then a.1 = 0.1, if s
111 

= 8 then a.1 = 0.2, if s
111 

= 9 then a.1 = 

0.4. If a multi-storey building may be simplified to cantilever model, the contribution of individual mode 

i in node j is expressed by factor a.2 = TJij 

N 

xij LGPx,P 
p~ 1 

N 

"'G x2 
£.... p zp 
p~ 1 

(8) 

where xiJ is the projection of mode shape vector i in node j into the direction of seismic load. The 

number of modes involved is not strictly defined but is restricted by vibration period T:?: 0.4 s. Other 

factors depend on building properties, ground, etc. 

The recommendations for design of nuclear power equipment [6) use more exact higher-order model 

based on response spectra technique. The response spectra technique assumes approximation of 

maximum of total values of response parameters against frequency characteristics. The earthquake 

responses of standard systems with a single degree of freedom using generalised co-ordinate approach 

are extended to complex systems. The design spectra should be obtained by the selection of possible 

earthquake motions that could be experienced of the site statistics and used to create a smooth spectrum 

of some suitable design level. The design forces are given in simplified version of modal analysis which 

is now applicable in the form of equivalent static forces. It provides an envelope of response parameter 

plotted as a function of the natural period of a standard oscillator. Finally, the seismic load component 

analogous to (7) is expressed as 

(9) 

Here, m i is nodal mass. a1 = a, ( T1 • IJI) is a specified acceleration of a standard oscillator depending 
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on vibration period T; and damping factor \If, while Tl.ij is a mode shape factor which is defined in 

similar way as (8) 

Tl.; 
(10) 

Here, xij andx;
1 

are the mode shape values and their projections to seismic direction. The admissible 

vibration spectrum is restricted by frequency equal to 24 Hz. 

Both time-dependent dynamic model (l-2) as well as the equivalent static force models (3-5), (7-8) 

or (3-5), (9-10) are used for the estimation of enveloping stresses. 

3. Description of the Structure 

Cryogenic equipment is built up as a large metal box intended for cryogenic technologies. The box 

consists of a three-dimensional frame covered by thin metal sheets. The structure is additionally 

stiffened by an external frame-type structure also used for technological service. The material of the 

structure is taken as being linear elastic and is defined by three dependent characteristics such as 

Young's modulus E = 2.1·105·MPa, Poisson's ratio v = 0.25 and mass density p = 7800 kg/m3. 

The geometry and the dimensions of a hermetic part of the structure arc presented in fig. I. 

According to design requirements the frame members are made of standard welded profiles. The 

structure contains five profiles illustrated in fig. 2. The cross-sectional characteristics of the profiles are 

presented in table 1. The first profile is used for corner columns. the second profile is used for a wall 

column. the third - for horizontal beams, while the fourth as well as fifth profiles are used for an 

external frame. The thickness of covering sheets t is taken as t = 2 mm. 

Table l. Geometric characteristics of profiles 

Profile Area Axial Axial Torsion Eccentr. 
No A (cm2) moment moment moment moment 

I, (cm4) I_ (cm4) Ir (cm4) I., (cm4) 

I 81.0 12352.1 9290.3 26.4 4428.0 
2 111.6 18567.3 4068.3 130.3 0. 
3 81.0 11620.0 1168.3 54.3 0. 
4 130.5 12560.0 846.0 281.0 0. 
5 61.2 5800.0 774.0 31.0 0. 
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The mass required for seismic analysis is taken as a mass of structural members, a mass of covering 

and an external mass of equipment aided to structure. The mass of structure and mass of covering are 

formed by lumping at nodes. The location of external mass is shown in fig. 1, where m 1 = 900 kg and 

m2 = 1200 kg. 

a) 

c) 

~/ 
z 

y t 
! 

Fig. 1. Geometry and lumped mass loading of the structure 

b) 
z 

N30 y y 

-+--+----
N30 N30 

NJO I N24 

d) e) 

z 

y y 

N:JO 

Fig. 2. Cross-sections of the structural members: 

y 

a) comer columns~ b) wall columns~ c) horizontal beams~ d-e) external frame 
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For numerical analysis the cryogenic structure is presented as an assemblage of beam type finite 

elements rigidly connected at nodes. The elements used are of two types: a classical three-dimensional 

beam element FRM3 and a generalised beam element CFRM [7]. The classical element describes 

uncoupled axial. bending and torsion deformations of symmetric cross-section. The general element may 

describe coupling of bending with shear, bending with axial deformations as well as coupling of bending 

in both planes of uniform cross-section. The latest deformation mode is accepted in the element when it 

has non-zero eccentric moment of inertia lvz· The element CFRM is used to describe the shifting of a 

mass center of the element section with respect to a finite element grid. The main difference between the 

above elements lies not only in the formation of the stiffness matrix but also in computation of stresses. 

The first element simply deals with the sectional moments while for the second general element the 

tensopoints have to be defined. The covering of the structure is modelled by a special wall element 

PANL [7]. The total view of a finite element model is presented in fig. 3a, while fig. 3b illustrates the 

fragment of the model with shrank elements. A discrete model assumes the above structure to be 

assembled of classical beam elements and complex wall elements. The development of characteristic 

matrices of the wall elements is a lower-level modelling procedure. In the context of general seismic 

analysis, this two-level discrete model may be used by formulation of the linear static analysis (3 ). 

frequency analysis (4) or linear transient analysis (l) problems. However, the main idea of the 

computation of the seismic loads (3-10) rests on a more simple global model considering the structure as 

a simple cantilever. It means that actual seismic loads reflect the dynamic behaviour of a complex 

structure by only a small number of external degrees of freedom (the lowest vibration modes). 

a) b) 

Fig. 3. Finite element model of cryogenic structure: 
a) entire view: b) fragment with shrank elements 
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4. Numerical results. 

For design purpose a detailed time-dependent seismic analysis (l-2) is replaced by more simple 

equivalent static force models (3-lO) the methodology of which is defined by particular design codes. In 

this presentation, the cryogenic structure under the action of different seismic loads is tested numerically 

by the finite element method. Two kinds of factors influencing seismic models are investigated. The first 

factor considered reveals the influence of various loads on one of the structural models. 

Different models representing the above structure and seismic loading are tested numerically in order 

to recover the main features and to obtain enveloping results. The maximum normal stresses are chosen 

as modelling parameters. For this purpose a typical most heavily loaded horizontal beam and a comer 

column are taken as illustration. 

The first group of examples investigate the frame of a structure without the covering subjected to 

different seismic loads. The horizontal component of 1985 Mexico earthquake [4] acting in plane (!yz 

(fig. 4) is used for time-dependent analysis. It was a unique and most damaging earthquake in its 

recorded history having a very regular motion and a very long duration. 

a (m/s2 ) 

6 

0 
L....c~J !(sec) 

0 5 10 15 20 25 30 35 40 45 50 55 60 

Fig. 4. Horizontal accelerogram of 1985 Mexico earthquake- acceleration a versus timet. 

The direct integration of equations (I) was used by applying different time increment values M. For 

the evaluation of maximum stresses the effect of damping is neglected. Figures Sa and 5b illustrate the 

history of stresses of most stressed horizontal beam and comer column. respectively. The more rough 

time approximation with the time increment M = 0.1135 sec was used for the whole time history. while 

the refined time approximation with the time increment M = 0.0445 sec was used for the region of 

maximal loading. The first scheme provides the maximum stress crmax = 246.9 MPa for the beam and 

a max= 200.3 MPa for the column. The refined model reflects the influence of higher-order frequencies 
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and finally leads to a larger value of maximum stresses a max= 302.3 MPa for the beam and to crmax = 

224.6 MPa for the column. 

a) 

b) 

0 (MPo) ::-oo -------------------

100 

-100 t.=0.1135 

~/ 

dt =0 0445 

a -~(~M~F~o~)--------------------------~ 400, 

300 

200 

100 

--1 oo I 
-200 ~ 
- 300 L_____j___ 

0 5 

dt=O.ll35 

1 Cl 15 20 

dt =0 0445 
I / 
I / 

•/ ,__ 

' 

/ 

Fig. 5. Variation of stresses in time-history analysis: 
a) for characteristic column; b) for characteristic beam; 

For the evaluation of a seismic load according to a simplified model (3-10) the frequency analysis 

problem ( 4) was solved. The eight lowest free-vibration modes are taken into consideration. The 

projections of modes into plane Oxv are presented in fig. 6. The shapes of the first four lowest free 

vibration modes (fig. 6a-d) of the structure correspond to the modes of cantilever beam model related to 

bending coupled with torsion. while the next four modes (fig. 6e-h) arc merely related to the 

deformations of the cross-section. 
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According to the CED Code [5], the seismic load is calculated by expression (7). Numerical values of 

maximum stresses for the characteristic (maximally stressed) horizontal beam and corner column 

corresponding to different magnitudes of Richter scale s
111 

are selected in the tables 2. The tables contain 

values increasingly arranged due to contribution of individual modes. The same results of computations 

of stresses according to recommendations of NPD, where seismic load is expressed by (9). are also 

selected in table 2. The obtained stresses are graphically illustrated in fig. 7. Here. time-history of 

maximum stresses in selected region is compared to the values of engineering models. The influence of 

the particular code methodology, of the seismic loading magnitude s111 (according to Richter scale) and 

the contribution of individual vibration modes are reflected and may be estimated on basis of these 

results. 

Table 2. Comparison of maximal stresses crmax (MPa) due to difierent models of seismic loading: 
a) the values of stresses for horizontal beam 

Mode Civil Engineering Code Nuclear Power Code Time-
number depend. 

i Magnit. Magnit. Magnit. Magnit. Magnit. Magnit. analysis 
sm = 7 sm = 8 sm = 9 sm= 7 s =8 s =9 

I 3.158 6.316 12.632 9.288 18.576 37.153 
2 11.379 22.758 45.516 31.685 63.370 126.739 
3 12.174 24.348 48.696 33.473 66.947 133.894 
4 27.730 55.461 55.461 69.547 139.094 278.188 
5 27.755 55.511 111.022 69.599 139.198 278.395 
6 28.988 57.976 115.952 71.920 143.841 287.682 
7 30.049 60.099 120.198 74.364 148.728 297.457 
8 30.514 61.028 122.056 75.494 150.989 301.978 

Maxim. 
values 30.514 61.028 122.056 75.494 150.989 301.978 302.3 

b) the values of stresses for corner column 

Mode Civil Engineering Code Nuclear Power Code Time-
number depend. 

i Magnit. Mag nit. Magnit. Magnit. Magnit. Magnit. analysis 
sm = 7 sm -~ 8 s =9 s =7 s c 8 sm ,, 9 

1 7.250 14.501 29.002 21.322 42.645 85.290 
2 25.435 50.870 101.741 70.842 141.684 283.369 
,., 

26.202 52.405 104.810 72.561 145.123 290.246 ·' 
4 41.045 82.090 164.181 106.021 212.042 424.085 
5 41.049 82.099 164.199 106.030 212.()61 424.123 
6 41.210 82.420 164.840 106.322 212.644 425.289 
7 41.353 82.706 165.412 106.638 213.277 426.555 
8 41.556 83.112 166.225 107.112 214.225 428.451 

Maxim. 
values 41.556 83.112 166.225 107.112 214.225 428.451 224.6 
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Theoretically, the simplified static methods should give an envelope of any real stress history. It is 

obvious that NPD Code provides a higher stress level and larger safety margin than CED Code does. 

This fact is, in general, observed in the results of modelling with the exception of a single peak value. 

A comparison of different models illustrates the fact that for the beam the maximum damaging stress 

crmax = 302.3 MPa computed by a time history model exceeds the stresses of the CED model crmax = 

122.1 MPa obtained for the Richter scale magnitude sm = 9 in order of 2.5 times and the maximum 

stresses cr max = 301.9 MPa of a NPD model in order of 1.001 times. It means that simplified models can 

not estimate the scattering of seismic loads for such a dangerous earthquake. 

The same comparative study for column stresses provides the highest time-dependent stress crmax = 

224.6 MPa which violates the enveloping stress crmax = 166.2 MPa for a CED model, while lies below 

the enveloping stresses crmax = 428.4 MPa obtained by an NPD model. It means that the design code 

methodology covers the peak values with the probability lower than I 00 %. 

A critical study of the role of separate vibration modes indicates that the contribution of the second as 

well as the fourth mode is dominating and provides approximately 77.5 %of the total value for beams 

and columns. In general, these modes correspond to the bending deformations of the global model. The 

influence of higher modes is negligible small. 

Table 3. The values of free-vibration frequencies 

Mode Frequenciesf(Hz) 

number 

i Modell Model2 Model3 Model4 

1 1.164 2.247 1.147 2.500 

2 1.313 2.550 1.308 2.551 

3 1.660 3.061 1.632 3.059 

4 1.740 3.133 1.731 3.183 

5 2.063 3.552 1.930 3.552 

6 2.474 3.763 2.463 3.763 

7 2.849 3.878 2.792 3.878 

8 2.958 4.176 2.950 4.176 

The second group of examples is considered in order to compare different computational and 

mechanical models of structure. For the purpose of comparison. the seismic load was computed 

according to CED code requirements. The load was accepted in current investigations by assuming the 

magnitude of Richter scale S 111 = 8. Four discrete models of the structure are studied numerically. The 
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first model assumes the structure of cryogenic equipment without covering modelled as an assemblage of 

classical beam elements FRM3 while the second model assumes the structure where the corner columns 

are modelled be a generalised element CFRM. The third and the fourth models assume the above two 

models with covering which is described by the wall element P ANL. The involving or neglecting of the 

wall properties leads to quite different structural (mechanical) models, while differences in the 

modelling of corner columns have to be considered as various computational models. 

Table 4. Comparison of maximal stresses due to different structure models: 

a) the values of stresses for horizontal beam 

Mode Maximal stresses cr max (MPa) 

number 

i Modell Model2 Model3 Model4 

1 6.31 88.79 4.85 88.80 

2 22.75 90.19 24.15 90.19 

3 24.34 90.26 53.12 90.26 

4 55.46 90.27 74.28 90.27 

5 55.51 90.28 74.33 90.28 

6 57.97 90.34 76.66 90.34 

7 60.09 90.34 77.39 90.35 

8 61.02 90.35 79.15 90.35 

b) the values of stresses for corner column 

Mode Maximal stresses crmax (MPa) 

number 

i Modell Model2 Model3 Model4 

I 14.50 7.48 12.57 8.11 

2 50.87 7.60 60.41 8.19 

3 52.40 7.79 61.00 8.39 

4 82.09 7.85 95.99 8.42 

5 82.09 7.88 97.44 8.45 

6 82.42 7.88 97.91 8.45 

7 82.70 7.88 97.94 8.46 

8 83.11 7.89 98.84 8.46 
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The values of the lowest frequencies of all four models are presented in table 3. while the maximum 

stresses computed according to CED code requirements for beams and columns are presented in table 4. 

The frequency values illustrate the fact. that dynamic properties of the structure essentially depend 

on mechanical models. It means that the covering of the box stiffens the structure and shifts increasingly 

the frequency range. The two frequency spectra and response curves defining seismic loads are 

illustrated in fig. 8. Following to the design code requirements. in this frequency range l\TPD Code 

produces a single response curve. while CED code produces certain envelope of response values varying 

according to additional factors. The higher values of nuclear codes may be estimated quantitatively. In 

addition. CED specifies the limit of frequencies that has to be taken into account. From this picture it 

follows that for the model with covering only a single vibration mode producing seismic loading has to 

be taken into consideration. 

The contribution of individual vibration modes in different discretisation models is illustrated 

graphically in fig. 9. The pictures are plotted for the intensity scale magnitude sm = 8, while for the other 

sm the stresses differ by a simple scalar factor. It is easy to find. that stresses occurring on the frame 

without covering are produced by several modes. while in the structure with covering they are mainly 

produced by a single mode. A covering dramatically reduces the stresses in columns (approximately 10 

times) but increases the stresses of beams by order of 48 %. The application of a symmetric beam 

element model to non-symmetric sections leads to dangerous reduced values of stresses for the model 

with covering where a computation error reaches 22% for the beam and 16 %for the column. For the 

model with covering the difference is negligibly small. Thus, only careful examination of different 

models may predict a desired order of safety margin of the designed structure. 
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Fig. 9. Diagrams of the increasing contribution of individual vibration modes in 
different discretisation models: 

a) for horizontal beam; b) for comer column 

5. Conclusions 

Modelling of the cryogenic structure under the seismic loading is considered in the paper. The 

structure under discussion represents a large metal box comprising a hermetic space for low temperature 

technologies. For design purpose a detailed time-dependent seismic analysis is replaced by more simple 

equivalent static force models, the methodology of which is defined by particular design codes. In this 

presentation, the above structure under the action of different seismic loads is tested numerically by the 

finite element method. Two kinds of factors - the seismic load and structure models are investigated. 

Seismic loading is presented by two models. Theoretically, the equivalent static force methods 

should give an envelope of any real seismic stress history (time-dependent seismic load). It is obvious 

that Nuclear Power Design Code provides a higher stress level and larger safety margin than Civil 

Engineering Design Code does. This fact is, in general, observed in the results of modelling with the 

exception of a single peak value. 
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The second group of examples is considered in order to compare different computational and mechanical 

models of structure. The involving or neglecting of the covering leads to quite different structural 

(mechanical) models, while differences in the modelling of corner columns have to be considered as various 

computational models. A covering dramatically reduces the stresses in columns but increases the stresses of 

beams. The application of a symmetric beam element model to non-symmetric sections leads to dangerous 

reduced values of stresses for the model with covering. Thus, comparison of different models may be used 

for predict of the behaviour of the designed structure. 
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KRIOGENINIO :ptENGINIO, VEIKIAMO SEISMINES APKROVOS, MODELIAVIMAS 

R.Kacianauskas, R.Kutas 

Santrauka 

Nagrinejamas kriogeninio irenginio seismines analizes ufdavinys baigtinill element11 

metodu. Kriogenini irengini sudaro erdvinis remas su lakstinio plieno apvalkalu. 

Pateikiami du seisminio modeliavimo uzdaviniai. Pirmajame ufdavinyje pateikiamas toks seismines analizes 

matematinis modelis, kuris ivertina seismini proces1:1laike. Tokio proceso pavyzdziu paimtas femes drebejimas, 

jvykt;s Mechike 1985 metais. Siame modelyje itempimai gaunami integruojant pateikil:l literati.iroje Mechiko 

zemes drebejimo pagreiciq diagram11. Integravimas atliekamas dviem skirtingiems laiko zingsniams. Antruoju 

atveju seismine apkrova modeliuojama, remiantis buvusios SSSR statybos ir atomines energetikos projektavimo 

normomis ir taisyklemis. Analizuojama taip pat skirtingq remo elementq ir apvalkalo modeliq itaka seisminiam 
atsparumui. 

Pateikiami :i.Ssamiis skaiciavimo rezultatai Skaiciavimai atlikti baigtiniq elementq programq paketais, 

sukurtais VTU konstrukcijq skaitinio modeliavimo ir tyrimo laboratorijoje. 

Palyginamieji modeliq parametrai yra pavojingiausiq kolonos ir rygelio maksimaliis itempimai. Gauti 

rezultatai parodo, kad pagal atomines energetikos projektavimo normas apskaiciuoti itempimai praktiSkai 

apgaubia seisminio proceso sukeltus jtempimus, o pagal civilines statybos normas gauti itempimai pasiekia tik 
vidutines jq reiksmes. 
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