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A NON-LINEAR THIRD-ORDER TRIANGULAR LAMINATED PlATE 

ELEMENT FOR ANALYSIS OF CRACKED RC SLABS AND BEAMS 

R.Belevicius, G.Kak.lauskas, G.Marciukaltis 

1. Introduction 

The use of composite materials, that is, continuous or discontinuous fibers embedded in suitable 

metallic or nonmetallic matrices, is receiving even wider attention and use in commercial applications. 

It should be noted also that almost all practical composite material structures are thin in the thickness 

direction because their superior properties permit the use of thin structures. 

That were the reasons of exclusive activities in the field of theoretical investigations of multilayered 

composite plate structures. The available theoretical models for homogeneous isotropic plate structures 

are usually not sufficient to deal with composite where transverse shear effects can be significant even 

for thin multilayer composite plate structures. Considerable attention has, therefore. been given to the 

development of various theories of laminated composite plates. Much of this effort has been focused 

upon to include the effects of material orthotropy, bending-stretching coupling and transverse shear 

deformations. A study of Noor and Mathers [ 1] has shown that the inaccuracies associated with 

neglecting shear deformation effects in the prediction of the behaviour of laminated composite plates is 

a complex function of geometry, support conditions, loading, material orthotropy and laminate 

configuration, in addition to the thickness ratio of the plate. Therefore, reliable prediction of laminated 

composite plates necessitates inclusion of anisotropy, bending-stretching coupling and transverse shear 

flexibility in the mathematical model. 

By now, about 20 shear-flexible finite element models of laminated composite plates have been 

proposed. Among various element shapes the triangle and quadrangle are the only desirable for 

practical applications. The survey of triangular and quadrilateral elements determines the Discrete 

Shear Triangle ( DST ) [2] as the most effective and simple composite plate element. The main 

limitation of DST element is, it can model only laminated plates built up with symmetric series of 
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layers. For a general plates with no restrictions on plies-stacking there exists only one general triangular 

finite element rendering satisfactory results for displacements, stresses and frequencies - element 

TRIPL T proposed by Lakshminarayana and Sridhara Murthy (3). Extensive results on development of 

the TRIPL T for elastic composite plates \with orthotropic layers were presented by Belevicius I-ll 

Application of the TRIPL T element for nonlinear analysis of reinforced concrete slabs and beams 

was reported by Kaklauskas et al. (5). Good match with test data was obtained for numerical examples 

presented. 

Several approaches of nonlinear finite element analysis has been developed in recent years to model 

the complex behaviour of reinforced concrete (RC) slabs and beams. Four basically different approaches 

can be distinguished. 

I) The modified stiffness approach is based on an empirical moment-curvature relationship where 

different flexural rigidities are assumed for different loading stages. Jofriet and McNiece [6) used a 

bilinear moment-curvature relation to study reinforced concrete plate bending problem. Bell and Elms 

(7) assumed a similar material idealisation to study slabs and shells. The models proposed by Yebo and 

Ghali (8) and Bashur and Darwin [9) include the non-linear variation of material properties through the 

depth of the slab. Finite-difference model proposed by Karpenko [ 10) is based on Building Code 

moment-curvature relationship for RC beams modified for two-way slabs with different patterns of 

cracking. 

2) The layered model is based on the basic non-linear stress-strain law. The finite element is divided 

into several imaginary concrete layers each of them being considered in a plane stress state. Each layer 

may have different material properties corresponding to its material state. The method proposed b.\ 

Hand et al. [ ll) for slab and shell analysis has been developed by Lin and Scordelis [ 12). Wanchoo and 

May [13], Gilbert and Warner [14), Shafer eta!. [15], Figueiras and Owen [16) and others. 

3) Three-dimensional finite element modeling of RC slabs introduced by Berg et al. [ 17) and 

developed for more complex structures by Cope and Rao [18,19], etc. 

4) Models based on slab analysis in which cracks are treated as lines of discontinuity of rotation 

angles. 

This paper deals with the layered model which is based on the basic nonlinear stress-strain law. The 

finite element is divided into several imaginary concrete layers each of them being considered in a plane 

stress. Each layer may have different material properties corresponding to its material state. 

2. Finite Element Model 

The only general laminated finite element for plate bending analysis TRIPL T ( 3) rendering 

satisfactory results for displacements, stresses and frequencies has been chosen for the present work. 

With reference to [3], let us briefly characterise the TRIPLT element and explicitly show our way of its 
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formulation and derivation of all necessary matrices. The element is a shear-flexible triangular element 

for laminated plates taking into account the in-plane/out-of-plane couplings. It has a satisfactory rate of 

convergence and acceptable accuracy with mesh refinement for thick as well as thin plates of both 

homogeneous isotropic and laminated anisotropic materials. 

The mathematical formulation is based on the Yang, Norris and Stavsky theory. Complete cubic 

polynomials are used to approximate the three displacements and two rotations within the element. The 

displacements and rotations, along with their first derivatives, are chosen as the nodal parameters. 

Using a local area-coordinates, explicit shape functions have been derived. All structural matrices for 

the element have been formulated fully analytically [ 4]. 

2.1. Interpolation functions 

The element has three comer nodes of 15 d.o.f. per node and one centre node of five d.o.f. Complete 

cubic polynomials are used to approximate the three translational displacements (vI , v 2 , v 3 = w ) and 

two rotations ( BI , 82 ) within the element. The nodal parameters, 50 in all, are shown in Fig. 1, where 

parameters of geometry are also shown. 

Denoting the cubic interpolation polynomial in area-coordinates by H and a vector of ten nodal 

parameters related to an ordinary displacement by {If/}, after standard finite element procedure [20] we 

obtain the interpolation functions for displacement vI : 

(1) 

where the inverse of configuration matrix F contains only differentiation coefficients of area-coordinates 

with respect to Cartesian ones: 

1 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 

3 c3 -b3 0 0 0 0 0 0 0 

F-' 
0 0 0 3 cJ -b) 0 0 0 0 

= 0 0 0 0 0 0 3 c2 -b2 0 

0 0 0 3 -c3 b3 0 0 0 0 

0 0 0 0 0 0 3 -c~ b) 0 

3 -c2 b2 0 0 0 0 0 0 0 

-7 c2- c3 -b2 + b3 -7 -c1 + c3 b I - b3 -7 C I - C 2 -b) + b2 27 

(2) 
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x~.v~ 02 -
(a) 

Fig. l. Composite plate tinite element TRIPL T. 

(a) Geotm:try, positive displacements, nodal d.o.f.: 

( b ) Composite laminate nomenclature. 

hJ 

I ~ 2 h 
h, 

__________i 

(b) 

Since the same finite element approximation H is used for the other translations and rotations we get 

analogously 

T -1 { } v 2 = H F If/ v2 

w = RTF-I {If/ w} 

()1 = HTF-I{lfloJ} 

()2 = HTF-I{Vte2}· 

2.2. Behaviour of strains and stresses 

(3) 

Actual strains of the model are mid-surface extensional strains { & 0
} (membrane strains), curvatures 

{ K} and transvers shear strains { y}. Assuming small strains we got those from the displacements by 
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Ordering the total nodal d.o.f. by 

{\If} T = { {\If vl r' {\If v2 r' {\If w r' {\If Bl r' {\If 82} T}' 

{co} = BPI {\if}, 

{K} = Bb {\if}, 

{r} = B' {V'}. 

The geometrical matrices BP1
, Bb, B' are now directly readable from (4)- (10). 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

For a composite laminate the membrane stress resultants {N 11 , N 22 , N 12 r, bending stress 

resultants { M 11' M 22' M 12 r and transverse shear resultants { Q 23' Q 13} T are related to 

corresponding strains by the following constitutive relations 

N = A{c0
} + B{K}, 

M = B{c0
} + D{K}, 

Q=A{r}. 

(ll) 

Here, using the traditional notations from laminate theory [21,22], A, B, D are symmetric constitutive 

matrices of order three and A of order two. These matrices for the. whole composite accumulate 

conventional constitutive matrices C of layers, assumed to be constant within the layer, i.e. from zk-J to 

zk for ply number k (Fig. 1) 
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N 

A= L ck (zk - zk-1), 
k=1 

(12) 

3) 1 ) - z -k-1 h2 ' 

where 

c = [~:: ~::l (13) 

The stresses for each lamina of composite. assuming the stresses to be averaged in lamina, can be 

obtained from stress resultants as follows: 

( 14) 

(15) 

The stress cr33 for thin-layered composites is imperceptible in comparison with other components and is 

usually neglected in the analysis. 

2.3. Finite element stiffness matrix 

The 50 x 50 element stiffness matrix then becomes 

K = fBP1 TABP1 d~ + fBbTDBbd~ + fBP1 TBBbd~ 
!!. !!. !!. 
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{16) 

where fl. is for the element area. 

The five centre-node d.o.f. which are usually introduced only due to completeness requirements for 

the interpolating polynomials are to be eliminated. Partitioning stiffness and load matrices into two 

parts and denoting the parts to be eliminated by indices 2 we obtain the reduced matrices 

Kred = Kn - KuKzz -IKu T' 

P .... =PI- KuK12-lp2. 

2.4. Basic matrices 

{17) 

The expressions for stiffness matrix seem to be clearly too cumbersome the conventional numerical 

integration or computer algebra methods to be applied directly. More oblique ways are necessary for 

numerical evaluation of matrices. One such way out of the situation could be the approach of basic 

matrices. The constitutive parameters (13) are assumed to be constant within each element, and thus. 

taking equation (16) as a whole, we see that the element geometry and the displacement assumption are 

described by six basic matrices of order ten defined by 

Tu = F-T fu u T d!l r 1 
) .J ' 

(18) 

ij = 00, 01, 02, 11, 12, 22 ' 

where the zero index means no differentiation. The total element stiffness matrix of order 50 separates 

itself into 15 ( 13 =t: 0) sub matrices of order ten according to the ordering 

Kn Ku 0 Ku Kts {\f/ V)} P,t 

Kzz 0 K24 Kzs {\f/ v2} P,z 

K33 K34 KJS {\f/w} = pw (19) 

K•• K•s {\f/ 81} Pot 
symm. Kss {\f/ 82} Pol 

Note that there is no coupling between in-plane translations and the out-of-plane translation. 
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The material parameters will be the factors in the linear combinations which give the stiffness sub 

matrices (19) by the basic matrices (18). The evaluation is not complicated and thus after numerous 

algebra we shall directly list the results 

KJ4 

T 
K•s = DnTu + DJ6 Tn + D26 T22 + D66 Tu + A45 Too 

K 55 = D22T22 + D 35 (T12 + T12 T) + D66 T11 + A 44 T00 • (20) 

Now, we have separated in the stiffness matrix only six unique sub matrices T dependent exclusively 

on interpolation law. With the exclusion of the "geometry influence" the expressions of matrices to be 

obtained become crucially more simple. If there, no doubt, it is impossible to obtain analytical 

expressions neither for stiffness matrix nor for a stiffness sub matrices according to a single d.o.f., the 

basic matrices were obtained analytically. 

2.5. Rotational transformations 

The result (20) is based on the assumption that the material parameters behind A, A, B, D as well as 

the basic element matrices Tij are all evaluated in the element coord!nate system y 1 , y2 . Let the 

laminae material description is given in coordinate system x1 , x2 , and angle a between coordinate 

systems is defined by reference to local, material system, positive anti-clockwise. The transformation of 
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material parameters can be given in a number of alternative forms. Here we chose the multiply angle 

approach, which is found to give the best insight [22] : 

{ e 12 ) Y = e 4 - e 3 cos( 4a) 

(e33)y = e5 - e3 cos(4a) 

~~:~:) ~ %c,sU.(2a) ± c,sU.(4a) 

(e44)y) _ 1 1 
{ e 

55
) Y - 2 ( e 44 + e 55 ), ± 2 ( e 44 - e 55 ), cos( 2a) ± 

± (e45 ), sin(2a) 

(e45 )y = (e45 ), cos(2a) - 1( e 44 - e 55 ), sin(2a) 

based on definitions 

e 1 = ~ ( 3( e 11 + e 22 ) + 2( e 12 + 2e 33) L = 

= (e 11 ), -e2 -e3 

1 
e2 = 2(en- e22), 

e 3 = ~ ( ( e 11 + e 22 ) - 2( e 12 + 2e 33) L 

e4 = ~(( e 11 + e 22 ) + 2( 3e12 - 2e33 )), 

e5 = ~(( e 11 + e22 )- 2( e 12 - 2e33 )), = 

= .!._( e1 - e4). 
2 

(21) 

(22) 

Obviously, with separation in the stiffness matrices evaluation, (20), the "material" influence. which is 

coordinate system dependent, and "geometry" influence, which is invariant, the coordinate system 

rotations for each layer of laminate can be performed very economically. 
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2.6. Non-linear procedures 

For the nonlinear analysis, the direct iteration method using secant stiffness formulation is adopted. 

During the first iteration elastic properties of the materials are assumed. After the computation of nodal 

displacements, strains and curvatures at the reference plane, strains and stresses in concrete and 

reinforcement layers are assessed. Based on new values of secant stiffness moduli, a new stiffness matrix 

is formed and iterations are carried out until the convergence is achieved. 

3. Material Model 

The slab is divided into several layers, corresponding either to concrete or reinforcement Each layer 

may have different properties but these properties are assumed to be constant over the layer thickness 

within the element The constitutive model is based on smeared crack approach. 

tension 

~0 

compression 

Fig. 2. Constitutive Model for Concrete 

Before cracking, concrete is treated as elastic isotropic material and Poisson's ratio is assumed to be 

constant Cracked concrete is considered as an orthotropic material with its first material axis normal to 

cracks and the second one parallel with cracks. Poisson's effect is neglected. Two models for cracked 

concrete have been employed: 

(a) rotated crack model in which the principal axes of stresses and strains coincide, 

(b) fixed crack model, in which the material axes are fixed after the crack initiation. 
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Perfect bond between adjacent concrete and steel layers is assumed although this is not true for 

advanced strain states. To model compressive concrete response, the constitutive relations offered by 

Vecchio and Collins in their modified compression field theory [23] have been adopted (see Fig.2). The 

theory estimates degradation in compressive strength due to presence of transverse tensile strain after 

cracking. Thus, for concrete in compression, the relation used to model work-hardening and strain 

softening effects is 

(23) 

where 

(24) 

Here fc2 is the average principal compressive stress in concrete; fc 2 max, the compressive strength of 

concrete when its degradation due to transverse tension is assessed; J;, unaxial compressive strength of 

concrete (cylinder test); ec1 and ec2 , respectively the average tensile and compressive strain in 

concrete; e 0 , the strain in concrete cylinder at the peak stress which can be taken as -2J;/ Ec where 

Ec is the modulus of elasticity of concrete. 

a) 

compress10 

Fig. 3. Behaviour of Cracked Concrete 

a - tension-stiffening diagram 

b - shear retention diagram 

b) 

G 
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For concrete in tension, prior to cracking a linear relation is used (Fig.3,a), i.e. 

(25) 

where 

(26) 

Here e cr and fer are the cracking strain and stress respectively. 

The cracked concrete carries between cracks a certain amount of tensile force normal to the cracked 

plane. The concrete adheres to the reinforced bars and contributes to overall stiffness of the structure. 

Several approaches [ 12, 14,16] based on experimental results have been employed to simulate this 

tension-stiffening behaviour. A gradual release of the concrete stress component normal to the cracked 

plane is adopted in this work (Fig. 3,a). 

Many experimental results have shown that for the cracked concrete the primary variable in shear 

transfer mechanism is the crack width, although aggregate size, reinforcement ratio, and bar size also 

have an influence. An approach similar to that used in ref. [24] is adopted, where the cracked shear 

modulus is assumed to be a function of the tensile strain (Fig. 3,b). A reduced shear modulus G is 

employed to simulate the aggregate interlock and dowel shear affects where ~ 1 is assumed to be 0.25 

(Fig.3,b). 

The reinforcing bars are considered as steel layers of equivalent thickness. Each steel layer exhibits 

an uniaxial response, having strength and stiffness characteristics in the bar direction only. A bilinear or 

a trilinear idealisation can be adopted in order to model the elasto-plastic stress-strain relationship. 

4. Numerical Examples 

Tension stiffening factor is considered as the most influential one in numerical modeling of cracked 

RC beams and slabs. In order to minimise shear effects and to eliminate some other factors. simply 

supported beams and one-way slabs loaded by two equal concentrated loads and, therefore, having pure 

moment zone have been investigated. Two such examples are presented in this paper. 
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4.1. Example 1 

A simply supported beam shown in Fig. 4 was tested by Jokiibaitis [25]. The material properties and 

other parameters have been accepted as follows: 

J: = 41.3 MPa; fer= 3.0 MPa; e0 = -0.0021; 

E = 39500 MPa· G = 15800 MPa· E = 2 · 105 MPa· f, = 587 5 MPa· c ' c ' s , y • ' 

Good agreement between experimental and computed deflections (Fig.4) has been achieved at all 

stages of loading. 

M,kNm 

r--,li ____._! -p _......._! p ---.,1 .J M 
0.60 0.60 060 j w 

~, .. 
computed 
experimental 

8.0 f-f-----t-----t-----+-----+-----+-i 

__., __., __ _:::.., ...... 
:;:;~ 

~----- ...--" 
__./ / 

e.o ··+-----+------+---__.--:::.-...----~-::?'-r----+------+-
- p:;-:::.---· 

<>;;;. 
//.;'>' ! 

4.0 1---1-------bo"::._---+-----+-----+------~ 

/ j] p 
;fl 

2.0 f--f----,~--t-----t-----t------t------4---' 
;f 

I! 

1;/ 
0 ··~-----r-----r-----+-----+-----+-

·----~- •••• ; ••••• •--- •• J ••••• J ••••• ·'·. ----~ •••••• --.- ~ ·-- •• ;. ·····-.- •• ) ••••• J ••••• ·'· •••• -~ •••••••••• : ••••• : ••••• .: ••••• J •• -- .J.- --· -·--- -- ·'·---- -· ---- -~-----: •• -. 

0 2 3 4 5 

Central Point Deflection, mm 

Fig. 4. Momt!nt versus deflection curves at center point of Jokubaitis beam 
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4.2 Example 2 

A simply supported one-way slab tested by Jain and Kennedy [26], was isotropically and singly 

reinforced with the first layer of steel in the direction of the applied uniaxial moment. A plan of the 

slab. indicating effective dimensions and the finite element mesh used, is shown in Fig.5. The uniaxial 

moment was generated by means of two uniformly distributed line loads across the slab width, 

symmetrically placed in respect of the centre line of the slab. The slab was 38.1 mm thick with an 

effective depth 31.0 rnm to main reinforcement having diameter of 4.76 rnm and spacing of 65.3 rnm. 

-i o 15 i' o,23 r 

M,kNrnlm 
computed 
experimental 

1.6 ,--r----+-----t-----+----+-----j----:---t
_ .. ::r:: 

1.2 

0.4 -· .__- r-~--- -

0 

0 0.5 1.5 2 2.5 3 
Deflection of Mid Span, mm 

Fig.5. Moment versus deflection at midspan of Jain's simply supported one-way slab 

The following material properties and parameters were assigned in the analysis: 

fc' = 32 MPa; fc, = 2 MPa; E0 = -0. 0022; 

Ec = 2. 88 ·104 
MPa; Gc = MPa; E, = 2 ·105 MPa; fv = 220 MPa; 
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vc = 0.18; a 1 = 0.6; a 2 = 12.5; P1 = 0.25; P2 = 30. 

The experimental and numerical moment-deflection curves are compared in Fig.5. As in the 

previous example, good agreement has been obtained. 

5. Concluding Remarks 

The cumbersome third-order multilayered finite element TRIPL T has been successfully applied for 

modeling of reinforced concrete plates and beams. 

Layered approach, based on the nonlinear material model of reinforced concrete, can correctly 

simulate the behaviour of beams and slabs. The tension stiffening effect has a very significant influence 

on the post-cracking response of underreinforced concrete structures, but not on the behaviour at the 

ultimate load. It is believed that further interaction of numerical analyses and experiments should lead 

to improvement of the material model. 
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TRECIOS EILES TRIKAMPIO SLUOKSNIUOTO ELEMENTO PANAUDOJIMAS 

SUPLEISEJUSil) GELZBETONINil) PLOKSCilJ IR SUl) ANALIZEI 

R.Belevicius, G.Kak.lauskas, G.Marciukaitis 

Santrauka 

Straipsnyje pateiktas universalus sluoksniuotos plokstes netiesines medziagos baigtini4 elementt! 

modelis, pritaikytas supleiSejusios ge!Zbetonines plokstes skaiciavimui. Pasirinktas sudetingas analitiSkai 

suformuotas trecios eiles trikampis sluoksniuotas Reisnerio-Mindlino plokstes elementas, turintis 50 laisves 

laipsni4. Programa ivertina atskirq plokstes sluoksniq netiesines deformacijas, supleiSejimq. Betono 

fizikiniame modelyje ivertinta tempiamo ir gniuzdomo betono itempimq-deformacijq diagramos zemyn 

krentanti dalis. Skaiciavimo modelis ir programa patikrinti, atlikus turimq ir teoriniq rezultatq palyginimq. 

Straipsnyje pateiktq ge!Zbetonines sijos ir plokstes paskaiciuoti iJinkiai gerai atitiko eksperimentinius. 
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