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Statybiné mechanika

SEMI-ANALYTICALLY BASED FINITE ELEMENTS
AND THEIR APPLICATION TO THIN-WALLED BEAMS

R. Kacianauskas

1. Introduction

Many of structures being used in various fields of engineering are composed of different beam-type
structural members. Analysis and design of these structures involves basic statements and relations of
beam theory. On the other hand. beam theory may be used for the modelling of complex structures
containing large amount of different members by simple beam-type models. It is necessary to remark.
that classical beam theories may be applied for the structural members, the shape and geometric
relations of which lie within the certain boundaries. On the limits of these restrictions. the validity of
certain assumptions requires careful examination. Therefore. much effort has been made to the
development of alternative beam theories and corresponding finite elements.

The development of finite elements based on the semi-analytical theory is considered here. The semi-
analytical finite elements and the corresponding higher-order beam theory are suggested and already
presented in [1-3]. This theory describes the cross-sectional distribution of three-dimensional variables
by the use of semi-analytical finite element approximations. To distinguish it from the conventional
beam finite elements which are based on the engineering theories, a new term, semi-analvtically based
finite elements (SABFE). is introduced. Development of SABFE may be considered as further step in
application of semi-analytical theory. The functional (semi-discrete) beam equations and general discrete

models as well as their applications to thin-walled beams are presented in this paper.

2. Functional (Semi-Discrete) Equations

The functional (semi-discrete) mathematical model of the beam is a typical many-ficld problem. The
mixed formulation [4] is the most suitable tool for deriving the governing equations of the coupled
problem which is expressed in terms of both primary and secondary variables. The two-level hierarchical
approach is proposed in order to develop a semi-discrete model. All the matrices and the vectors referred

to here to define the primary variables will be denoted by the subscript 1. The longitudinal three-
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dimensional displacement u.(x, v, z). the normal stress o (x. v. z) and strains edx, ¥, ) are assumed to
be as functional primary variables. The remaining displacements and stresses may be hierarchically
involved in the problem and will be referred to as secondary variables. The semi-discrete analogous of
them will be denoted by the subscript 2.

After independent approximation of displacement and stress fields the primary state variables are
described by the corresponding semi-discrete variables such as the generalised displacements U, (x), the
generalised strains ©,(x) and the generalised stresses (2((x). Taking into account the symmetry of

primary differential compatibility  operator [Ba\,,]I and equilibrium operator [Be‘\,]. thus

[Be_\ ,] = [BCM] = [B]]. the sct of governing functional (semi-discrete) primary cquations contain

equilibrium (static). compatibility (kinematic) as well as constitutive (physical) relationships with
corresponding boundary conditions and are written as follows ([1-3]) :

equilibrium equations

[By()]Q(x) = -p(x): (la)
compatibility equations

[B,(0)]U,(x) - ©,(x) - 0O (1b)
constitutive equations

[D)(0)]Q(x) - ©)(x) = 0. (lc)

Here [D] and p are flexibility matrix and external load vectors. The distribution of three-dimensional
variables may be recovered from the scmi-discrete state variables U, (x) and Q,(x).

The secondary fields are described by the corresponding semi-discrete variables such as the
displacements U,(x). the generaliscd strains @,(x) and the generalised stresses (,(x). After introducing
the assumption about an independent constitutive relationship between the primary and the secondary
variables (diagonal elasticity tensor). which applies to the existing beam theories. the coupling between
the primary and secondary variables is determined by an algebraic operator [B,,] appearing in the
compatibility and the equilibrium equations. With the above remarks in mind. the secondary problem
may be defined by the following cquations:

equilibrium equations

[B,(x)] [Blz(x)]HQl(X)} ) _{pl(x)}. (2a)

(0] [By (0] €2() pr(x)|

compatibility equations

= 0. (2b)

[Bio] (0] {ulm} _ {@m}

1
‘{Blz(-")] [Bzz(x)] U, (x) O, (x)



constitutive equations
(D] [0] {le {@lm} o -
_ - 0. c
[0] [Dz(x)] 0, (x) B,(x)
The secondary model (2) contains the uncoupled primary compatibility (1b) as well as the
constitutive (1c) relationships that may be applied for the elimination of the variables Q,(x) and @ (x).
When some of the mathematical operations have been performed, the first coupled secondary

equilibrium equation may be expressed in terms of primary displacements U, (x). The secondary strains

©,(x) are eliminated using relation (2c). Finally. the secondary model is expressed as the three-field

problem
(B D] [Bi0] [0 [Bu)] {[U;x) py(x)
(0] [0]  [By(0] U0 = -{py(x) . L 3)
By (0] [Byy (0] -[Dy(0)] {{@2(x) 0

This equation will be used for the development of mixed SABFE for thin walled beams.

3. General Finite Element Relations

A number of distinct procedures is available for obtaining of the discrete finite element model
associated with the equation (3). By introducing Lagrangian multipliers. we shall deal with a constraint
variational principle. This obvious technique leads to the creation of variational principle for any set of
linear equations. By treating equation (3) as a set of constraints. we can establish a general variational
principle simply by putting the initial functional IT = 0. The Lagrangian multipliers corresponding to the
first equation (3) are easily identified as primary displacements A (x) = U, (x). multipliers
corresponding to the second equation as secondary displacements A,(x) = U,y(x) and multipliers
corresponding to the third cquation as secondary generalised stresses A;(x) = (,(x). Now the constraint

variational principle may be expressed by the following functional
U, (x), Uy(x). 0,(x)) -

- o) {[Belp@] (B - [BLmlvem - 0 JdL -
L

(00 ([Ba0] @) - pr0 )dL -
L

- Jl@ ) (<[Bu] ovi ) + [Br otz - [0y 0
L

)

Qz(x))dL + bound. t.



The next step in the discretisation of equation (3) 1s to choose the appropriate shape functions for the
longitudinal distribution. In order to solve the becam problem as a mixed one, we can start directly to
make the independent approximation of cach variable U, (x). Us(x) and @,(x). Practical experience and
theoretical knowledge obtained from beam. plate and shell analysis may be generalised and applied here.
It is possible and convenient to introduce the approximations with the shape functions of a general

character
Ui(x) [N ]u,.
Up(x) — [NpyyoUy - [Ny (o]Us. (3)
0,0 [Nyames

Here [Ny ()] [N 5 (01 [Ny 22(0)] and | N,(x)] are the shape matrices while U;. U, and @, are the
vectors of the discrete variables.

The most complicated issuc is the approximation of sccondary displaccments. The second expression
of (5) allows to usc us the highcr-order interpolation polvnomials and provides a link between primary
and sccondary variables. By the sclection of the appropriate shape functions. both the conforming finite
elements with (' as well as (' continuity or the non-conforming clements may be imposed by the same
approximation (3).

The algebraic expression of functional (4) is achicved by the substitution of approximations (5). The

variations of the functional produce the set of three simultancous equations

M
ar
(ﬁU 2
ol
oy

0.

Finally. after integration by parts

(4] [o] [H] JUII JFul

[0] (0] [c]|uvy (R (©6)
[H]" [c] [6] ]Q.»J \0}
Here. algebraic submatrices in the cocfficient matrix arc
(4] J(Beo)vey o] Do) BV o]l (7a)
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[H] - -J[N“(x)]t[Blz(x)][NQZ(x)]dL - _[([Bzz(x)][NUZI(x)])t[NQZ(x)]dL: (7b)
L L

[c] - - J.[Ngz]t[Bzz(x)]["Vz"zz(x)]dLl (7¢)
L

[6] - _“NQZ(X)]‘[Dz(x)][NQQ(x)]dL_ -
L

The free terms remain as follows

Fy= j[NL'l(X)]llh(X) di - J.[Nljzl(x)]ll’z(x)dl‘ RRTE (82)
L 3

Fy - f[NL'zg(X)]t)Pz(-Y)d[‘ - B (8b)
L

where F|-and F,, denote the vectors of external nodai loads.

Expressions (7) and (8) contain general shape matrices and involve an integration over the whole
domain considered. Practically. the shape functions arc defined locally and this integration is changed bv
the summation of integrals obtained over the individual elements. Further transformations of the model
(6) depend on the properties of the interpolation polynomials. If any component of the unknown variable
cannot be eliminated still leaving a well-defined problem. then the mixed problem can be transformed
into an irreducible formulation. The climination of secondary stresses is the path to formulate an
reducible model. The selection of the appropriate rules (some times strongly heuristic) for the
elimination of the stresses and the application of different integration techniques is widely discussed in
bending problems, where the shear forces have to be eliminated. In this context. the elimination of
stresses at the element level by using condensation technique is often more effective than the application
of special integration rules.

The general solution of coupled problem (6) consists of two ingredients
Uy = Uy = Uy

where the primary contribution is obtained from the solution of the discretised uncoupled model (1)

which is written as
while the secondary contribution is

Ugy = - [4]'[H] Q.



The primary model (9) may be derived and solved independently using a standard displacement
approach. for example the Lagrangian variational principle. In the absence of secondary loads (F, = 0).

the equilibrium ecquation provides zero secondary stresses
0, =0

and zero secondary displacement contribution

In general. @, has to be found by iterations. while in the particular statically determined case Q,
follows directly from the second (equilibrium) equation (6). The secondary displacements U, have to be

found from the third (compatibility) equation (6).

4. Application to Thin-Walled Beams

Previously. we have dealt theoretically with the SABFE of bcams. Now we shall demonstrate how
general relations can be applied to thin-walled beams. The first step in the implementation of this
approach is the development of primary clements.

Let us consider a straight thin-walled bcam with a constant cross-section. The beam is referred to the
local Cartesian co-ordinate system. the axis Ox of which coincides with the beam axis while the local
normalised co-ordinate Z is used for the description of an individual element. In terms of the
conventional finite elements. any clement of a beam will be globally defined by two nodal points i and ;
Iving on the beam axis (fig. 1a). In fact. the global node indicatcs an appropriate cross-section. In the
most general case. the node ; of the finite element contains n degrees of freedom. referred here to n
subnodes (fig. 1b). The term subnode is used to identify node 4 of the cross-section /. The subnode is
indicated by the two subscripts jk.

The vector of the nodal displacements of the clement e is defined by U, = {U,,. Ue/,}‘. where U, =
{U,- Uypgeeoo Uy U, 3 Ina particutar case. the subnode vector U, is defined by the single
variable. thus U, = {{_,}. According to {2]. the functional compatibility operator of the beam [B,(x)]
= [B,] includes only the first-order derivatives

c
— 0

[B] X (10)
0 —

~

CX

ol

~



therefore ', continuity requirements for displacement approximation are sufficient. All displacement

components are interpolated bv the same first-order polvnomials. therebv the shape matrix
[N“(x)] = [N“e(;ﬂ is defined by n rows and 2» columns and has a regular pattern
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AN N Liz)
PR el e2'=
[V (2] . (1)
\‘;]‘i] \62(5\'
Node ;7
al R .
£ N
Node / ey —
3 ! £ =
L, -7
4+ e ———— >
) 7 (_:)
s T . s o ot
/ Subnode Jk \
} // B .
. I
] / ~ubelement iR j-l. e
- ‘jn 1
Node @ )
_ . Upn
L(‘
- - —

Fig. 1. Semi-analytically based primary finite elements of a thin-walled beam:

a) global model: b) general model with degrees of freedom: ¢) element THIN3: d) element THIN4



Here. the first-order Lagrangian interpolation polynomials may be applied as shape functions A\,

Their derivatives are found by following standard differentiation rules

C\el(é) . _L F\ez(;) L

ox L, cx L

(12)

where L, is the element length. Taking into account the diagonal pattern of the approximation matrix

(11) and of the compatibility operator (10). the strain-displacement relation matrix for element e
[B.2)] - [B]N(2)]

is also regular. By substituting the derivatives (12), the matrix [B,(§)] = [B,] is independent of co-

ordinates and expressed as follows

[B.] - —[-[1] [1]} (13)

The stiffness matrix |K, ] = [4] of thc wholc primary element is expressed according to (7a). When the
substitution of the matrices |B,] established by (13) and [D,] derived in [2] as well as the integration
along the Iength /., have been made. the final stiffness matrix of the element e is expressed in terms of
the dimensional parameters such as Young's modulus £,. the length 7. the characteristic dimension of

the cross-section /7, as well as the wall thickness 7, and in terms of the nondimensional coefficients

2]

(6] e
K= e 1)

‘e
Here. [C_e] is the matrix of nondimensional cocfficients that depends on the geometry of the

(14

appropriate cross-section.

The generalised stress-displacement relationship is expressed as usual on the element level as
0. - [BoU. (15)

In the absence if internal loads only the generalised relation matrix IBQL,] has to be cstablished and

expressed in the following form
-1
[po.] [P][B.]
By substituting the matrices [D,] and [B,] we finally obtain

[bo.]  Zee[2)] (2] (16)

o
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The computation of the stress vector S, for the element e will be implemented in the same manner as

in the case of vector Q, using the similar expression as (15)
S, = [BSc]Uc' (17

Here. the stress-displacement relation matrix [Bge] is defined as

el T

[ﬁSe] - [Cte] [BQe]‘

The substitution of particular matrices expressed in terms of the finite element parameters provides the

final expression of the stress matrix

E

[Bse] = =={-1] (1] (18)

(=

A final remark concerns the assembling of SABFE. In general. the assembling of the global
matrices is a two-level procedure. The first step involves the assembling of the semi-analytical finite
elements while the second step deals with the assembling of the conventional finite elements. In fact.
the global model may be considered as an assemblage of individual subelements. Here. the subelement is
considered as a part of SABFE defined by a single semi-analytical element. For this reason, the
definition of subelements and their characteristic matrices may be sufficient for the total assembling of
the global model.

The possibilities of constructing various SABFE are ample but the present work deals only with two
elements, THIN3 and THIN4 (fig. 1c. d) intended for U-type cross-section. They were derived using
expressions (14) to (18).

The development of the secondary finite elements is a further step of the complex numerical
analysis. The higher-order equations obtained by the secondary semi-analytical finite elements have to
be used for the evaluation of the model (3). As we have already pointed out. a large number of different
models may be formulated to describe various types of mechanical behaviour. A thin-walled beam
assembled from semi-analytical elements of the Timoshenko-type ([2]) will be considered as an
illustration.

Let us define vectors and operators for a single subelement. The semi-discrete equations (2) written
for a single semi-analytical subelement may be considered as an analytical model. After separation of the
coupled model. the longitudinal variables are selected as primary components and described by the
generalised displacements U, (x) = {U,(x). Lr'xz(x)}‘. the generalised strains O, (x)={A (). A.\_z(x)}t and
the generalised stresses Q,(x) = {\;(x). N,,(x)}!. The transversal variables are selected as secondary

components and described by the vectors U,(x) = {L’y(x)}. O,(x) = {O_(x)} and @,(x) = {Q}_(x)}.

-11-



The basic secondary operators in (2) are simply defined as

1
(Byy(x)] - _”(1” : (8] L_"x]
h(x)

The choice of the appropriate shape functions follows a well-defined path. Thus, let us consider the

subelement J; defined by the following nodal variables: longitudinal displacements U, = {U,;, U, ,.

U.\yl N

(,[\72}‘. transversal displacements U, = {{ )1 (;j”}‘ and transversal force @, = { Q),} (fig. 2). For this
element the standard linear approximation (5a) used for longitudinal displacements is expressed in the

local co-ordinate £ by Lagrangian polynomials. where shape matrix [N,;(x)] is defined by (11). The

I

transversal force is obviously taken as constant. while [Ngz(x)] |NQ2(§)] is simply

(Vo @) - 1] (19)

Hyj2 Uxj2
— ; >

) Oy

4 ‘ J

Suabelemnent gj

Uxil | Uxjl
R X £

- ‘[ Uy;

Fig. 2. The subclement of Timoshenko-type and the basic nodal variables

Originally. as stated in {5]. the transversal displacements were approximated by the linked linear-
quadratic polvnomial expression. This kind of shape functions was initially proposed for membrane
elements with drilling degrees of freedom. In our case. the angular displacements 6, and 6_ have to be

expressed in terms of longitudinal nodal variables. i.c.
0. - (u_\., - u.\./) h.

The final expressions of the corresponding shape matrices are written as follows

11
Nyog] - ——(1-
[1,21(-)] 16/1(

o

-1 -1 [Ni22 (9] [xel(;) N3] o)

The above shape matrices are used for the assembling of global matrices and vectors.
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S. Numerical Examples

For a critical evaluation of the semi-analvtical beam theory as well as for the demonstration of the
capabilitiecs of SABFE. the numerical tests have been performed. The previously described finite
elements of beam THIN3 and THIN+4 are used for the modeclling of thin-walled beams with a {-tvpe
cross-section.

Example 1: linear analvsis of a cantilever beam under compression caused by the concentrated force.

A thin-walled cantilever beam is considered in this example (fig. 3). For the sakc of comparison with an
engineering theory. a Cartesian co-ordinates svstem 1s provided to the bending center of the cross-
section. By applving a standard technique of dimensional analysis. the behaviour of the beam is
described in terms of a nondimensional model. The following paramcters have been taken as model
variables: the characteristic dimension of the cross-section /7. the nondimensional length of the element
L . the nondimensional height of the web 4 . the nondimensional wall thickness 7 and the dimensional
material constant - Young's modulus £. A vertical concentrated load £ is applied to the free end. In the
particular casc considered. the values of nondimensional variables are taken as L =80.h =05and 7
= (.1. Due to a nondimensional origin of the model. the dimensional parameters used in the numerical
analvsis are also simplified /7 = 1. /7 - 1 and / = 1. Only two continuous state variables such as
longitudinal displacement u (x) and normal stress ¢,(x) are taken into consideration. According to the
equations of the classical beam theory. the solution of this problem has to be independent on the

longitudinal co-ordinate x.

a)

Fig. 3. Thin-walled beam with U-type cross-section:

a) 1lustration of example 1a with 3 SFE. b) illustration of example b with 4 SFE
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Two loading cases are studied in this example. The eccentric load F added to the web in the point 1 is

considered in the first case (fig. 3a). Different distributions of nondimensional stress
5.(x) = o,(x)H*/ F over the perimeter of the cross-section are obtained using different models (see

fig. 4a). The numerical values are shown in the table 1.

a)
Il
4 Zngr beam * Thin-wa.ied om (3 SFE) !
. T4 SFE # She.. (midspan)
; ® Shell (free-enca)
b)
20.0 1
. .
00— . . IR
£ P2
soezs -—— R - .
S . .
' s fecmcs !
-10.c~ : i
-20.0~ .
i
-36¢ -
400"~ —
b )
D < >
~306.0 — — . P
0 [ 34 06 os 1 12 14 15 1.8 2
¢4 SFE oL Iorced 4 SFE (3 forces)
- # Zngr beam (2 forces) ¥ Fnell (midspan?}
® 2hell (free--end) i

Fig. 4. Perimetric distribution of normal stresses G . in the U-type cross-section:

a) under concentrated eccentric load: b) under concentrated central load

By using the SABFE method. the displacement field is calculated by the solution of the algebraic
model (9) while stresses and generalised stresses are calculated by the general matrix expression (15)

and (17). in which component matrices are defined by (16) and (18). Stress distribution corresponding to
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the classical and thin-walled beam theories is calculated analytically. where the contributions of the
individual generalised stresses such as the axial force ' = F. two bending moments M.~ 3FHP. AL

FH/2 and the bimoment B = 5F7{2/32 are indicated separately. The subdivision of the cross-section into
three SFE denoted by nodes 1-4 (fig. 3a) coincides with the theory of thin-walled beams. The subdivision
of the cross-section into four SFE denoted by nodes 1-5 as in fig. 3b has no analogy in the existing beam

theories and may be treated as a more cxact solid model.

Table 1. Values of normal nondimensional stresses G . in a {’-type cross-section for example 1 with

eccentric load

Contribution of individual forces Total values
Nodal | Axial | Bending | Bending Bimo- | Classical | Thin- SFEM Shell Shell
points force moment | moment ment theorv walled | (3SFE) | theorv theory
N AV A, B theorv (inmid- | (at free
) span) end)

1 -5.0 -27.0 -7.5 -26.78 -39.5 -66.28 -66.30 -40.97 1.33

2 -5.0 9.0 275 16.07 -3.5 12.57 12.60 -2.69 0.01

3 -5.0 9.0 7.5 -16.07 11.5 -4.57 -4.57 6.07 2.97

4 -3.0 -27.0 7.5 26.78 -24.5 2.28 2.29 -20.52 -101.

Finally, the whole beam is investigated as a thin shell discretised by rectangular shell elements. The
shell model is considered as an exact model of the complex three-dimensional solid problem. The spatial
distribution of the exact field of normal stress o, is demonstrated in fig. 5. The white colour corresponds
to the tensile stresses. It is of interest to note. that the longitudinal distribution in this example (fig. 5a)
produces three different domains. The stresses in the midspan domain are almost exactly described by
the classical engineering theory while the thin-walled theory provides the enveloping approximation of
stresses in the end domains with the exception of the loading point.

The second loading case (fig. 3b) deals with the load F applied to the midpoint (point 3) of the
middle of the central wall. This problem cannot be solved in the framework of existing beam theories
while SABFE may successfully be applied. The nearest solution is possible by the approximation of the
load F by the two concentrated forces £, = 0.5F and F, = 0.5F. This type of loading provides zero
bimoment and the identical solution of both technicat and thin-walled beam theories. In a framework of
SFE, two load approximations may be considered. The first one is the exact representation of the initial
load expressed as F3 = F, the second is the three-load representation F, = 0.25F, F; = 0.5F and F, =
0.25F. The distribution of stresses for different models is presented in fig. 4b. The results obtained
demonstrate the sensitivity of stresses due to local loading where the small imperfections of loading
points may lead to significant changes of the stresses. The results deduced for a three-load discretisation
agree well with the existing beam theories. The spatial distribution of stresses obtained by the shell

model is also demonstrated in fig. 5b.
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Fig 5. Space distribution of nondimensional stresses G . obtained by shell model:

a) illustration of example 1 under concentrated eccentric load; b) illustration of example 2 under concentrated
central load

Example 2 mode shape analysis of a thin-walied beam. Free vibrations of a thin-walled cantilever

beam with a {’-type cross-section are considered (fig. 6). The details of the geometry are described in
previous examples while the basic nondimensional parameters are takenas L = 1.0. 5 =0.5and 7 =
0.1. A Cartesian co-ordinate system is attached to the bending centre of the cross-section O. The three-
dimensional state variables and equations are formed identically and discretisation is also performed in
the same manner.

Two eccentric concentrated masses /# with the two longitudinal dynamic degrees of freedom are
added to the points 1 and 2. The free-vibration analysis performed in primary variables supplies two
vibration modes. In the framework of the engineering beam theories any mass has to be attached to the
bending centre and provides three dvnamic degrees of freedom. If the global mass matrix is assembled
by standard algebraic summation of individual masses. some of the dvnamic properties of current
structure are lost and the classical theorv cannot represent the true dynamic behaviour of the initial
system.

In contrast. in a framcwork of the SFE method. the global displacements at node are defined by the
four-dimensional vector of the generalised variables U(x) = {U(x). Un(x). Uxsx). (,'ﬂ(x)}‘. The
corresponding diagonal lumped mass matrix exactly reflects mass properties of the initial system. finally

vielding at global node

M = diaglm m 0 0].

Thus. SFE method allows describe systems simply in a way which is different from that considered

by classical beam theory.
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Fig. 6. Geometry of example for free-vibration problem

As already explained. this beam 1n general. 1s an example of the coupled axial-bending model where
longitudinal movements lead to transversal displacements. The model describing their pure axial
behaviour is initially based on the simplest primary semi-analytical elements. The beam is discretised by
SABFE primary elements THIN3. The determination of the transversal displacements calls the higher-
order secondary models. For this purpose. a thin-walled beam is considered an assemblage of semi-
analytical elements of the Timoshenko type. A general approximation (20) is assigned to the
longitudinal distribution of transversal displacements. In the absence of transversal forces. the general
secondary mode! (6) turns into an "incompressible” model with |G] = |O] while the transversal

displacement components U, are deduced from the solution of a particular equation
t .
(4] [v), - [c][u],  [0]

In our case. this equation expressed for an individual subelement of the finite element i/ is simple

turned to the recurrent formula
t
uZ,/ Tty - [Hl_/] [UIU] :

The final values of the secondary displacements depend on the clement length. The transversal
movement of free-end point ! is illustrated in fig. 7.
In addition to bending. the coupled warping-torsion deformations occur in this example. It may be

treated as a third-level effect which can also be established on the results of the second-level model by
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following simplc geometric considerations. The rotation angle due to torsion is established from

transversal displacements wp) and u),; of semi-analytical elements 1-2 and 3-4 respectively as

ol(x) = (u‘u;(x) - u})‘,(x)) “h

The correction of ransversal components of the displacements due to torsion may simply be added to

the initial values. This effect as illustraicd in fig. 7 has a considerable influence on the fina' results.

Fig. 7. Trajectories of motion of free-end point 1

6. Concluding Remarks

On the basis of semi-analvtical theory evolved. a novel tyvpe of semi-analytically based finite elements
is derived. The SABFE method proposed possesses some significant advantages in comparison with the
classical beam theories:

a) Nodal displaceme. . - are compatible with the displacements of a three-dimensional body:

b) The method offers extended possibilities for introducing more complex cases loading and
Supports.

The SABFE clements are tested through a series of numerical examples and through a comparison
with other solutions so that the esscntial propertics of SABFE method could be confirmed. It is clear.
however. that a comprchensive analysis and extensive future research arc required in order to develop

and extend the SABFE method.
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PUSIAUANALIZINES TEORIJOS BAZEJE SUFORMULUOTI BAIGTINIAI ELEMENTAI IR JU
TAIKYMAS PLONASIENEMS SIJOMS

R. Kac¢ianauskas

Santrauka

Pateikiami naujo tipo pusiauanalizinés teorijos pagalba suformuluoti sijy baigtiniai elementai. Sie
clementai iSvedami i§ pusiauanalizinés aukstesnes eiles sijy teorijos, nagrin€jancios sijos skerspjivj kaip
pusiauanaliziniy elementy ansamblj. Elemento modelis yra sudaromas prisilaikant hierarchinés dviejy
pakopy schemos, kur iSskiriami pirminiai ir antriniai kintamieji. Aptartos abiejy pakopy funkcinés
(pusiaudiskretinés) priklausomybés. Jos diskretizuojamos miSriais baigtiniais elementais, panaudojant
Lagranzo daugikliy metodg. Bendrosios baigtinio elemento priklausomybés panaudotos plonasieniy sijy
elementams sudaryti. Gauti elementai i§bandyti skaiti$kai sprendZiant statikos ir dinamikos uZdavinius bei
lyginant su kitais sprendiniais.

Pasitlyti elementai turi laisvés laipsnius, suderinamus su kontinualiais kiinais, bei leidZia spresti

uZdavinius, kur apkrovy bei atramy iSsidéstymas iSeina i§ klasikiniy sijy teorijy rémy.
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