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ACCURACY ESTIMATES IN FREE VIBRATION ANALYSIS

R.Bausys

1. Introduction

The construction of a posteriori error estimates to control numerical simulation procedure is
very attractive subject for the researchers in the field of the finite element method. By now a
considerable success has been achieved mainly on problems of linear elliptic type, such as linear
elastostatics and stationary heat conduction problems, see ¢.g. Babuska et al. [I] and Oden [2].
Recently, an objective methodology for assessing the reliability of a posteriori error estimators has
been developed by Babuska et al. [3]. For free vibration problems, however, theory and computer
implementation for error estimation are far from completed and need to be further exploited.

When standard Galerkin finite element approximation is used, a priori error estimation is
available for the generalised eigenvalue problem [4,5]. However, from the computational view-
point applications of a priori error estimates, based upon knowledge of the general properties of
solutions for the model equations and the approximation properties of the discretization methods,
are in practice very limited as they provide only a qualitative assessment of the error and the
asymptotic rate of convergence when the number of degrees of freedom in the approximation
tends to infinity. A priori estimates provide indications of the error based upon upper bounds for
Sobolev norms of the solution. However, they usually do not provide much information about the
actual error in the discrete approximation. Instead, more precise information to evaluate the
actual discretization error of the cigenfrequencies can be gained only by a posteriori error
estimates which utilisc the finite clement solution itself.

New methods to improve accuracy of the eigenfrequencies of the discretized engineering
structure and to give error bounds have recently appeared. Friberg et al. [6} propose an error
estimate and an adaptive procedure for eigenpairs computation within a framework of the
hierarchical finitc clement method. This approach represents an iterative procedure for the

selection of hierarchical refincments based on the activation of positive maximum indicators



which approximate the relative change in an eigenfrequency. Avrashi and Cook [7] present an

approach for the error estimation for c? eigenproblems by smoothing gradient (stress) and
primary variable (displacement) fields. The improved eigenfrequency for the error estimate is
obtained from the Rayleigh quotient with the modified field of the primary variables and its
gradients by use of some users defined parameters.

The Superconvergent Patch Recovery (SPR) technique, originally proposed by Zienkiewicz
and Zhu |8,9] has been applied to static and dynamic wave-propagation problems in order to
improve the solution of stresses and to estimate the spatial discretization errors [10-11]. In this
paper we focus our attention on the application of the SPR technique to free vibration problems
for improving eigenmodes and eigenfrequencies giving not only an improved solution but also an
error estimation of the eigenfrequencies. The proposed SPRD technique [12] is based on a higher
order accuracy displacement field fitted to superconvergence values of the original finite element
solution in a least square sense over local element patches. In order to maintain locality of the
least squares fit we use a reduced element patch with the size 2h in the present patch recovery
technique for displacements. From the higher order accuracy field both improved kinetic energy
and strain energy can be calculated and thus an improved eigenfrequency can be obtained. A
separate patch recovery must be made for each eigenmode and eigenfrequency.

Numerical experiments show for the eigenfrequencies an improved accuracy and an improved

convergence rate of the error of the improved eigenfrequencies compared to the FE solution.

2. Model problem and basic equations

In free vibration analysis, the equations of motion for linear elastic continuum, in small

deformation theory, can be expressed by
gi -VIpw =0, in0 (1)
with boundary conditions

u(x) = uy , on I, )

%,{D%u(x) =0, , onl, 3)

where V is the strain operator, ’6,, is the boundary operator, D is the constitutive elasticity

matrix and p is the mass density. The (2 is the spatial domain with the boundary



r=rnur, (Ir,Nr, = @), where I is the boundary with essential boundary conditions and
I, is the boundary with natural boundary conditions.

By finite element approximation

u(xt) =~ u®(x.t) = Nx)@ () 4)
where N(x) contains the basis functions of polynomial order p, and applying standard Galerkin
procedure, weak form of equation (1) leads to a linear system of the differential equations of the
semidiscrete form

[M]a+ [K]a =0 (5)

Assuming a harmonic behaviour

) = ue'™ (6)
equation (5) leads to

(K] - AP Mpu” =0, A" = (0")? (7)

where /K] is the stiffness matrix and /M] is the consistent mass matrix of the structure. Equation

(7) is of the form of a generalised eigenvalue problem, with eigenvalues /l}} being equal to the
squares of the eigenfrequencies wf of the appropriate mode u,’-' of vibration.

Determination of the eigenfrequency a)f’ and the associated eigenmode u,h for each mode

of interest can be done by any convenient solution procedure of the generalised eigenvalue

problem.
3. Eigenfrequency error estimation

For the elliptic eigenvalue problem of order 2, an a priori error estimation of the

cigenfrequencies for standard Galerkin finite element approximation is given as [4,3]

) - (
©; < (uf' <w, + C1h2(1>+1 m)wl_p +1)/m (8)



and the L, - estimate for the eigenmodes

b -

,S C h%w® )

where o =min(p+1, 2(p+1-m)), C; and C, are positive constants independent of 4 and w;, h is
the maximum element size, p is the degree of complete polynomial appearing in the element basis

functions and 2m is the order of the differential operator v.

The appearance of powers of the eigenfrequencies on the right hand sides of eq.(8) and eq.(9)
suggests that higher eigenfrequencies of finite element solution give not reasonable
approximations to the corresponding exact eigenfrquencies. From eq. (8) we can observe that
finite element approximations are upper bounds for eigenfrequencies a)f’ 2@; only if the
standard Galerkin rules are employed (a consistent mass matrix is used).

The a priori error estimate gives us a qualitative assessment and the asymptotic rate of
convergence which we can anticipate by finite element solutions but it is of limited use to evaluate
an actual numerical error in the discrete approximation.

Since the exact solutions are generally unknown, the exact error in the eigenfrequencies can
only be estimated a posteriori by utilising the information which can be extracted from the

original finite element approximation. The essence of the error estimate of the post-processing

type is to replace the exact solution by an improved one a)?

Aw,’-’ = wlh - a):‘ (10)

In order to assess numerically the quality of the performance of the eigenfrequency error
estimator we introduce an effectivity index giving the ratio of the estimated errors in the

eigenfrequency to the exact ones as

h
Aw?

01. = L;; (11)
AC{)[

where A(o,}-Z is the discretization error in appropriate eigenfrequency of the finite element

solution which can be expressed as



Aa),'-' = mf’ -o; 12)

and o; is an exact eigenfrequency of the structure. A reliable error estimate is said to be
asymptotic exact if ; » 0, when h— 0. Hence, the effectiveness of the eigenfrequency error
estimator depends mainly on the superior accuracy and convergence properties of the

postprocessed eigenfrequency w: . Alternatively, this condition can be expressed as

(1 ; Aw;)sﬁis(l + "‘”7] (13)

Aa)f‘ Awf‘

where Aw; is the error in the postprocessed eigenfrequency which can be expressed as
o] = o] - o, (14)

Assuming that the true error 4Aw; has C th(-” "'1"")0)?’ +Dim rate of the convergence and

the error of the postprocessed solution Aw; has Cah?PHima),P+1Im ryie of the

convergence for some superconvergent solution with a > 0, we readily obtain

Cs h2(p+1-m+a ) w(_p +1)/m Cs h2(p+1-m+a ) w(p +1)/m
1- ‘+” <6, <1+ - l+1/ @as)
C; p20o+1-m) m}(p )im C, p2p+1-m) wl(p )im
Replacing the constant C%I by some constant C we may simplify eq.(15) as
1-Ch®® < 6; <1+Ch* (16)

From eq.(16) follows that the postprocessed eigenfrequencies should exhibit superior accuracy
and convergence properties than the eigenfrequencies of the original finite element

approximation.
4. Element patch recovery technique

The original finite element solution of the eigenfrequency can be expressed using Rayleigh

quotient as follows



(ul' )T Ku?

hiy2
1 1
A new improved eigenfrequency will be of the form
> [(Vu; )T DV dx
* K
(0] )? = =2 (18)

> )7 pu; dx
K a,

* 3 . 13
where K is summed over the total number of elements, u; is a displacement field over the

element which has a higher order of accuracy. The recovered displacement field of the eigenmode

u: will be determined by the SPRD technique, described below.

The SPR technique is based on the fact that for finite element solutions there exist certain
points in each element at which the prime variables (displacements) and the derivatives (stresses)
have superior accuracy to that found globally. These points are called the superconvergent points
of the finite element solution.

In the original SPR technique [8,9] stresses are accurately recovered by fitting polynomials
over local nodal patch to the stresses at superconvergent points of the finite element solution. In
one dimensional problems, the superconvergent points were somewhat easy and always existed
irrespective of the mesh uniformity. The situation is not that simple for the higher dimensional
problems. Mackinnon and Carey [13] dealt with Taylor series analysis in higher dimensions to
arrive at the conclusion: the midside points of linear elements are superconvergent points for the
derivatives in tangential directions. For the quadratic elements Andreev and Lazarov [14] have
shown that Gauss points on the element edges are the superconvergent points for the derivatives
in tangential directions. So, original SPR technique do not use a full superconvergent information
at the sampling points for stresses and do not provide the local projection for the displacement
field that is necessary for the improvement of the appropriate eigenfrequency in free vibration
analysis. From the expression of the Rayleigh quotient it is clear that to improve eigenfrequency it
is necessary to determine a new displacement field of higher accuracy of the corresponding
eigenmode. So our attention will be focused on a SPRD technique for the prime variables of the
finite element approximation. It has been known that the nodal points of the finite element
approximation are found to be the exceptional points at which the prime variables

(displacements) have higher order accuracy with respect to the global accuracy [15].
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The main idea of the proposed recovery procedure consists of a least squares fit of a local

polynomial to displacement values at higher accuracy points. The recovered displacement field of

the corresponding eigenmode u; over an element t €T}, is constructed as
u (x) = YN/ (x)(u; ); + 3N (x)(u;); (19)
r S

where r is used to denote finite element 7 nodes, s denotes additional nodes of the element of the
recovered displacement field, N : (x) and N : (x) are local basis functions of the order p+1
associated with the original element nodes and the additional ones, respectively.

The nodal values of the original finite element displacements are assumed fixed (u, )i -=-(u:’ J); and

recovered displacement values (. u: ); at the additional nodes are obtained by solving least squares

problem in the element patch 2, :

Find u; €@, such that

Jo,(j)= min Io @) (20)
(™ )Py
where
IS ns o T
J.Qr(u )i = ijRu (xj)Ru(xj) (21)
=1

where the residual R, (x;) is defined by expression as

R, = ") - (ul), (22)

and

™ ); = [Q(x)]b (23)

Here x; is the location of j-th sampling point in the element patch Q2,, w; is the weight

;

assigned to the j-th sampling point and ns is the total number of the sampling (nodal)points in

-11-



the element patch 2, and [Q(x)/ contains the appropriate polynomial terms of p+ 1 order, b arc

unknown cocfficients.
The unknown parameters b arc determined by the solution of the weighted least squares

problems which gives us the system of the lincar cquations
[Z wi [Q(x)ﬂ/Q(x)/]b = X wi Q)] u} (24)
J J

where w is a weighting function.

For each clement 7 € T;, we denote be E( T) the set of its edges. So for each elcment T the patch

£2, which consists of the part of clcments surrounding the master element is denoted by

2, = Ur (25)

For the triangular elements, sct E'( ') coincides with E(7), and for quadrilateral clements, sct
E'(r') consists of the adjacent cdges connccted to onc of thc nodes of the clement

(E‘(t')c:E(r)) as shown in Figure 1.

/ﬁ clement defining the patch
v

®  sampling point in the clement patch

a) Elcment pateh for lincar quadritaterals  b) Element pateh for quadratic triangles

Figure 1. Possible element patches for lincar quadrilateral and quadratic triangular

clements
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. 0 * . - . .
When the recovered displacement ficld #; of the appropriate cigenmode is determined over
all clements re7j), we obtain an cigenmode of improved accuracy and an improved

cigenfrequency can be found.

5. Numerical example

We consider in-planc vibrations of a rectangular flat plate of uniform thickness shown in

Figurce 2.

v=l)

|
|
!
|
[
|
|
|
1} v=0) 3.0
|
|
1
|
|
|
|
|

e ——————n

u=(} X, U

Figure 2. Geomelry and boundary conditions of the flat rectangular plate

A planc stress condition and isotropic matcrial with Poisson’s ratio set 1o be 0.3 are assumed.
. . . . . I .. , .
We use nondimensionalized frequencics @ [— , where L Is Young’s modulus and p  is mass
el

density, o study the quality of the proposed cigenlrequency crror estimator. A sequence of four
regular meshes with dxd, 8x8, 10x10 and 15x15 are used for the numerical experiments for both
quadrilateral and triangular clements.

For this problem an analytical solution is available [16]. The nondimensionalized frequencics

of an analytical; solution can be expressed by

2 2 2
2 -L—[% + ”—2]/(3—1))i(]+u)/ (20)
c d
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where ¢=2.0 and d=3.0, m and n arc intcger numbers.

The numerical results of the convergence of the 1-st and the 6-th eigenfrequencics for all

! 15 10 8 4
00 t 1 1
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—h
-2.0-4 pa )
2.0 188
194 o dw?
-3.0- 1.96 - )
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—5.0 o 395
-6.04——1————F——

-1.0 -0.8 -0.6 -0.4

logh

a) 1-st eigenfrequency

-0.2

0.0

quadrilatcral and triangular elements are plotted in Figures 3-6.
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Figure 3. Rate of convergence of the cigenfrequencics using lincar quadrilateral clements
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a) 1-st cigenfrequency
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b) 6-th cigenfrequency

Figurc 4. Ratc of convergence of the cigenfrequencics using quadratic quadrilateral clements
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Iigure 5. Rate of convergence of the cigenfrequencics using lincar triangular clements
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Figurc 6. Rate of convergence of the cigenfrequencics using quadratic triangular clements

The crror in cigenfrequencies of the original finite clement solution (cq.12)), of the post-

processed solution (eq.14)) and of the estimated crror of the finite clement solution (cq.10)) arc

presented in these figures. Teis not difficult to obscrve that for sufficiently small # the recivered
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obtained by SPRD technique demonstrate approximately Oh?P*) ) rate of convergence for

quadrilateral and triangular clements.

The convergencee of the cffectivity indices arc plotied in Figures 7-8.

! R L3 I 15
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N ]- —\ 4 noude clement E
08 4 e 08 ,/__.
clement ] e
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. 2 7
-g ] VA
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ut.l 0.4 E 0.4 g
0.2 0.2
T —T — T T T ¥ T v y v
00 02 04 08 0B 10 00 02 04 08 o8 1o
tog(1/h) log(1/h)
a) 1-st eigenfrequency b) 6-1h cigenfrequency
Figure 7. Effectivity indices for quadrilateral clements
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Figure 8. Liffcectivity indices for triangular clements
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We observe that the effectivity indices converge to one rapidly for all tested quadrilateral and
triangular elements when the finite element mesh is refined. The numerical results show an

asymptotic exactness of the proposed eigenfrequency error estimator.
6. Concluding remarks

The postprocessed error estimator introduced in this paper is applicable to problems other
than free vibration analysis alone. The method can be used for almost any linear finite element
discretization due to the fact that the proposed procedure is based on the ideas of approximation
theory. The error estimation procedures are essential to construct adaptive finite element
strategies. The mesh refinement strategies applied to elastostatics problems have been shown to
be very effective [9,10]. Extension of such adaptive procedures to problems of free vibration

analysis is in progress.
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PAKLAIDU NUSTATYMAS LAISVUJU SVYRAVIMU UZDAVINIUOSE

R.Bausys

Santrauka

Straipsnyje pateikiama skai¢iavimo paklaidy nustatymo procedira, skirta laisvyjy svyravimy analizés
uZdaviniams. Skaifiavimo paklaidos atsiranda dél dviejy faktoriy: a) baigtiniy elementy diskretizacijos
paklaidos; b) nuosavy reik§miy uZdavinio sprendimo algoritmy paklaidos. Literatiiroje placiausiai yra
tyrinétas nuosavyjy reik§miy uZdavinio sprendimo algoritmy tikslumas, tuo tarpu baigtiniy elementy
diskretizacijos jtaka gauty rezultaty tikslumui néra placiai nagrinéta.

Baigtiniy elementy diskretizacijos paklaidos gali biiti jvertintos i§ankstiniais paklaidy nustatymo budais.
Sie biidai, besiremiantys bendromis sprendiniy bei diskretizacijos metody aproksimacinémis savybémis,

pateikia tiktai sprendinio kokybinj jvertinimg ir asimptotinj konvergavimo greitj, kai diskretinio modelio
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laisvés laipsniy skaicius artéja | begalybg. Taciau iSankstiniai paklaidy nustatymo biddai nepateikia jokios
informacijos apie diskretinés aproksimacijos tikraja paklaida. Tikroji diskretinio modelio paklaida gali biti
jvertinta tiktai poprocesorinémis procediromis, kuriose yra ftyrinéjamas gautasis baigtiniy elementy
sprendinys.

Nagrinéjama skai¢iavimo paklaidy nustatymo procediira paremta tuo faktu, jog pasinaudojant pradinio
baigtiniy elementy sprendinio superkonvergencinémis savybémis, galima gauti aukStesnés tikslumo klasés
poprocesorinj sprendinj. Sio poprocesorinio sprendinio pagalba gali biti jvertinta tikroji baigtiniy elementy
sprendinio paklaida bei jos pasiskirstymas tyrinéjamoje konstrukcijoje.

Atlikti skaitiniai eksperimentai patvirtina, jog gautasis poprocesorinis sprendinys yra aukstesnés tikslumo
klasés ir pateiktoji paklaidy nustatymo procedura yra patikima ir efektyvi visai tyrinétai dvimadiy baigtiniy

clementy klasei.
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