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Statybine mechanika 

ACCURACY ESTIMATES IN FREE VIBRATION ANALYSIS 

R.Bausys 

1. Introduction 

The construction of a posteriori error estimates to control numerical simulation procedure is 

very attractive subject for the researchers in the field of the finite element method. By now a 

considerable success has been achieved mainly on problems of linear elliptic type, such as linear 

elastostatics and stationary heat conduction problems, see e.g. Babuska et a!. (l] and Oden [2]. 

Recently, an objective methodology for assessing the reliability of a posteriori error estimators has 

been developed by Babuska eta!. [3]. For free vibration problems, however, theory and computer 

implementation for error estimation are far from completed and need to be further exploited. 

When standard Galerkin finite element approximation is used, a priori error estimation is 

available for the generalised eigenvalue problem [4,5]. However, from the computational view­

point applications of a priori error estimates, based upon knowledge of the general properties of 

solutions for the model equations and the approximation properties of the discretization methods, 

are in practice very limited as they provide only a qualitative assessment of the error and the 

asymptotic rate of convergence when the number of degrees of freedom in the approximation 

tends to infinity. A priori estimates provide indications of the error based upon upper bounds for 

Sobolev norms of the solution. However, they usually do not provide much information about the 

actual error in the discrete approximation. Instead, more precise information to evaluate the 

actual discretization error of the eigcnfrequencies can be gained only by a posteriori error 

estimates which utilise the finite clement solution itself. 

New methods to improve accuracy of the eigenfrequencies of the discretized engineering 

stmcture and to give error bounds have recently appeared. Friberg ct a!. [(>] propose an error 

estimate and an adaptive procedure for eigenpairs computation within a framework of the 

hierarchical finite clement method. This approach represents an iterative procedure for the 

selection of hierarchical refinements based on the activation of positive maximum indicators 
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which approximate the relative change in an eigenfrequency. Avrashi and Cook [7] present an 

approach for the error estimation for C 0 eigenproblems by smoothing gradient (stress) and 

primary variable (displacement) fields. The improved eigenfrequency for the error estimate is 

obtained from the Rayleigh quotient with the modified field of the primary variables and its 

gradients by use of some users defined parameters. 

The Superconvergent Patch Recovery (SPR) technique, originally proposed by Zienkiewicz 

and Zhu [8,9) has been applied to static and dynamic wave-propagation problems in order to 

improve the solution of stresses and to estimate the spatial discretization errors [10-11). In this 

paper we focus our attention on the application of the SPR technique to free vibration problems 

for improving eigenmodes and eigenfrequencies giving not only an improved solution but also an 

error estimation of the eigenfrequencies. The proposed SPRD technique [12) is based on a higher 

order accuracy displacement field fitted to superconvergence values of the original finite element 

solution in a least square sense over local element patches. In order to maintain locality of the 

least squares fit we use a reduced element patch with the size 2h in the present patch recovery 

technique for displacements. From the higher order accuracy field both improved kinetic energy 

and strain energy can be calculated and thus an improved eigenfrequency can be obtained. A 

separate patch recovery must be made for each eigenmode and eigenfrequency. 

Numerical experiments show for the eigenfrequencies an improved accuracy and an improved 

convergence rate of the error of the improved eigenfrequencies compared to the FE solution. 

2. Model problem and basic equations 

In free vibration analysis, the equations of motion for linear elastic continuum, m small 

deformation theory, can be expressed by 

with boundary conditions 

u(x) = ub 

v~ DVu(x) = (Jb 

(1) 

(2) 

(3) 

where V is the strain operator, V11 is the boundary operator, D is the constitutive elasticity 

matrix and p is the mass density. The Q is the spatial domain with the boundary 
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r = F;1 Ura ( 1";1 nra = 0). where F;1 is the boundary with essential boundary conditions and 

Fa is the boundary with natural boundary conditions. 

By finite element approximation 

u(x.t) :::: uh(x.t) =N(x)u(t) (4) 

where N(x) contains the basis functions of polynomial order p, and applying standard Galerkin 

procedure, weak form of equation (1) leads to a linear system of the differential equations of the 

semidiscrete form 

[M]u+[K]u=O (5) 

Assuming a harmonic behaviour 

u(t) = ueiax (6) 

equation (5) leads to 

(7) 

where [Kj is the stiffness matrix and [MJ is the consistent mass matrix of the structure. Equation 

(7) is of the form of a generalised eigenvalue problem, with eigenvalues l 1
} being equal to the 

squares of the eigenfrequencies w!2 of the appropriate mode uf1 of vibration. 

Determination of the eigenfrequency w;' and the associated eigenmode uf' for each mode i 

of interest can be done by any convenient solution procedure of the generalised eigenvalue 

problem. 

3. Eigenfrequency error estimation 

For the elliptic eigenvalue problem of order 2m, an a priori error estimation of the 

eigenfrequencies for standard Galerkin finite element approximation is given as [~.5] 

(l) .<vh< +Ch2(J>+l-m; lp+l!!m 
,~e; -W; ·] W; (8) 

. 7 . 



and the L 2 - estimate for the eigenmodes 

(9) 

where a=min(p+l, 2(p+l-m)), C 1 and C 2 are positive constants independent of hand mi. his 

the maximum element size, p is the degree of complete polynomial appearing in the element basis 

functions and 2m is the order of the differential operator V. 
The appearance of powers of the eigenfrequencies on the right hand sides of eq.(8) and eq.(9) 

suggests that higher eigenfrequencies of finite element solution give not reasonable 

approximations to the corresponding exact eigenfrquencies. From eq. (8) we can observe that 

finite element approximations are upper bounds for eigenfrequencies 

standard Galerkin rules are employed (a consistent mass matrix is used). 

only if the 

The a priori error estimate gives us a qualitative assessment and the asymptotic rate of 

convergence which we can anticipate by finite element solutions but it is of limited use to evaluate 

an actual numerical error in the discrete approximation. 

Since the exact solutions are generally unknown, the exact error in the eigenfrequencies can 

only be estimated a posteriori by utilising the information which can be extracted from the 

original finite element approximation. The essence of the error estimate of the post-processing 

type is to replace the exact solution by an improved one m; 

(10) 

In order to assess numerically the quality of the performance of the eigenfrequency error 

estimator we introduce an effectivity index giving the ratio of the estimated errors in the 

eigenfrequency to the exact ones as 

(11) 

where L1m7 is the discretization error in appropriate eigenfrequency of the finite element 

solution which can be expressed as 
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Lim ~ = t» ~ - t» 
1
• I I (12) 

and t»; is an exact eigenfrequency of the structure. A reliable error estimate is said to be 

asymptotic exact if 0;-+ 0, when h-+ 0. Hence, the effectiveness of the eigenfrequency error 

estimator depends mainly on the superior accuracy and convergence properties of the 

postprocessed eigenfrequency m;. Alternatively, this condition can be expressed as 

( *) ( *) Lim i Lim i 
1- -- SO; S 1 + --

Ll"'~ Lit»~ ""I I 

(13) 

where Lim; is the error in the postprocessed eigenfrequcncy which can be expressed as 

(14) 

Assuming that the true error Lim; has C1h2(p+l-m)t»~p+l)Jm rate of the convergence and 

the error of the postprocessed solution Lim; has C.hl(p+l-m+a)m~P +l)Jm rate of the 

convergence for some superconvergent solution with a ~ 0, we readily obtain 

Replacing the constant C;lc 
1 

by some constant C we may simplify eq.(15) as 

1 - C h2a s; () · s; 1 + C h2a I 

(15) 

(16) 

From eq.(16) follows that the postprocessed eigenfrequencies should exhibit superior accuracy 

and convergence properties than the eigenfrequencies of the original finite element 

approximation. 

4. Element patch recovery technique 

The original finite element solution of the eigenfrequency can be expressed using Rayleigh 

quotient as follows 
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(uf l Kuf = 
(uf l Muf 

(17) 

A new improved eigenfrequency will be of the form 

I f (vu; l nvu; t1x 
K ile 

(18) 

,. 
where K is summed over the total number of elements, ui is a displacement field over the 

element which has a higher order of accuracy. The recovered displacement field of the eigenmode 

* ui will be determined by the SPRD technique, described below. 

The SPR technique is based on the fact that for finite element solutions there exist certain 

points in each element at which the prime variables (displacements) and the derivatives (stresses) 

have superior accuracy to that found globally. These points are called the superconvergent points 

of the finite element solution. 

In the original SPR technique (8,9] stresses are aCt.llrately recovered by fitting polynomials 

over local nodal patch to the stresses at superconvergent points of the finite element solution. In 

one dimensional problems, the superconvergent points were somewhat easy and always existed 

irrespective of the mesh uniformity. The situation is not that simple for the higher dimensional 

problems. Mackinnon and Carey (13) dealt with Taylor series analysis in higher dimensions to 

arrive at the conclusion: the midside points of linear elements are superconvergent points for the 

derivatives in tangential directions. For the quadratic elements Andreev and Lazarov (14) have 

shown that Gauss points on the element edges are the superconvergent points for the derivatives 

in tangential directions. So, original SPR technique do not use a full superconvergent information 

at the sampling points for stresses and do not provide the local projection for the displacement 

field that is necessary for the improvement of the appropriate eigenfrequency in free vibration 

analysis. From the expression of the Rayleigh quotient it is clear that to improve eigenfrequency it 

is necessary to determine a new displacement field of higher accuracy of the corresponding 

eigenmode. So our attention will be focused on a SPRD technique for the prime variables of the 

finite element approximation. It has been known that the nodal points of the finite element 

approximation are found to be the exceptional points at which the prime variables 

(displacements) have higher order accuracy with respect to the global accuracy [15]. 
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The main idea of the proposed recovery procedure consists of a least squares fit of a local 

polynomial to displacement values at higher accuracy points. The recovered displacement field of 

* the corresponding eigenmode U; over an element T E T h is constructed as 

(19) 
r s 

where r is used to denote finite element T nodes, s denotes additional nodes of the element of the 

recovered displacement field, N;(x) and N;(x) are local basis functions of the order p+l 

associated with the original element nodes and the additional ones, respectively. 

The nodal values of the original finite element displacements are assumed fixed (,;; )j = ( u~ )j and 

recovered displacement values (u;); at the additional nodes are obtained by solving least squares 

problem in the element patch {} r : 

Find u; E1'p+l such that 

f* min J .a (u h 
f* r (u )j~p+l 

where 

f* l.a (u ); 
r 

ns 

= L.wJR[ (x1)Ru(xj) 
J=l 

where the residual Ru (xi) is defined by expression as 

f* h Ru = (u )i - (u,); 

and 

(uf* Ji = [Q( x)]b 

(20) 

(21) 

(22) 

(23) 

Here Xi is the location of j-th sampling point in the element patch nr, w1 is the weight 

assigned to the j-th sampling point and ns is the total number of the sampling (nodal)points in 
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the clement patch n r and {Q(x)j contain-; the appropriate polynomial terms of p+ I order, b arc 

unknown coefficients. 

The unknown parameters b arc determined by the solution of the weighted least squares 

problems which gives us the system of the linear equations 

(24) 

where w is a weighting function. 

For each clement r e T~z we denote be E( t) the set of its edges. So for each element t the patch 

nr which consists of the part of clements surrounding the master clement is denoted by 

nr = u r' 
• reE (r') 

(25) 

For the triangular elements, set E• ( r') coincides with E( r), and for quadrilateral clements, set 

E• (r') consists of the adjacent edges connected to one of the nodes of the clement 

( E• (r') cE(r)) as shown in Figure 1. 

[:~ clement defining the patch 

• sampling point in the clement patch 

a) Element patch fur linear quadrilaterals b) Element patch for quadratic triangles 

Figure I. Possible clement patches for linear quadrilateral and quadratic triangular 

clement., 
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When the recovered displacl'ml·nt field u; of the appropriate cigcnmodc is determined over 

all clements r e T11, we obtain an cigcnmodc of improved accuracy and an improved 

eigenfrequency can be found. 

5. Numerical example 

We consider in-plane vibrations of a rectangular flat plate of uniform thickness shown in 

Figure 2. 

y. \' 

v=ll 

I 

r 
I 
I 

, 

:to 

x.u 

2.11 

Figure 2. Geometry anJ hounJary conJitions of the flat rectangular plate 

A plane stress condition and isotropic material with Poisson's ratio set to be 0.3 arc assumed. 

We usc nondimcnsionalizcd fn:yucncil·s wJ!i. where 1~· is Young's modulus and p is mass 

density, to study the quality of the proposed cigcnfrcqucncy error estimator. A sequence of four 

regular meshes with 4x4, SxS, I OxlO and l.Sxi.S arc used for the numerical experiments for both 

quadrilateral and triangular clements. 

For this problem an analytical solution is available jl(Jj. The nondimcnsionali./.cd frequencies 

of an analytical; solution can be expressed by 

Jr2 [/112 112] 
w2 = 2 -2 + -2 /(3-v)±(J+v)j 

4(1- {) ) (' d 
(2h) 
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where c=2.0 and d=3.0, m and n arc integer numbers. 

The numerical results of the convergence of the 1-st and the 6-th eigcnfrcqucneics for all 

quadrilateral and triangular clements arc plotted in Figures 3-6. 

15 10 K -1 IS Ill II -1 0.0 0.0 
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-1.0 0 Llwh 
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~ -2.0 .Jut' Llw" 
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-2.0 1.1!11 _...:,;4S .. ·· -· . 

-J.O lugltlwl ••. ··.l60 
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-J.O ..... 3.1!1 
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-1.0 -o.a -0.6 -0.4 -0.2 0.0 -1.0 -o.a -o.6 -o.4 -o.2 0.0 
logh log/i 

a) 1-st eigenfrcquem:y b) 6-th cigcnfrcquency 

Figure 3. Rate of convcrgem .. -c of the cigcnfrequencics using linear quadrilateral clements 
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b) 6-th eigenfrequcn'-'Y 

Figure 4. Rate of convergence of the cigenfrcquencies using quadratic quadrilateral clement<; 
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a) 1-st cigcnfrc4ucm:y h) 6-th cigcnfrc4ucncy 

Figure 5. Rate of convergence of the cigcnfrc4ucncics using linear triangular clements 
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Figure (>. Rate of conv..:rg~.:nc~.: of lh~.: ~.:ig~.:nfrt.:4liUJcics using 4uaJratic triangular clcmcnl~ 

The error in cigcnfrl·yuencics of the original finite clement solution ( cy.l2)), of the po~t­

proccs~ed solution (c4.14)) and of the l'stimatcd error of the finite clement solution (c4.l0)) arc 

presented in these figures. It i11 not difficult to observe that for sufficiently small h thl· n:civercd 
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obtained by SPRD technique demonstrate approximately O(h 21f'+l}) rate of convergence for 

quadrilateral and triangular clements. 

The convergence of the effectivity indices arc plotted in Figures 7-K 

r 't' ~~~ i' 
I I I I 

1.0+--------------l 

0.2 
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0.2 0.4 0.11 0.8 
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h) 6-th eigenfrequency 

Figure 7. Effectivity indices for 4uadrilateral clements 
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We observe that the effectivity indices converge to one rapidly for all tested quadrilateral and 

triangular elements when the finite element mesh is refined. The numerical results show an 

asymptotic exactness of the proposed eigenfrequency error estimator. 

6. Concluding remarks 

The postprocessed error estimator introduced in this paper is applicable to problems other 

than free vibration analysis alone. The method can be used for almost any linear finite element 

discretization due to the fact that the proposed procedure is based on the ideas of approximation 

theory. The error estimation procedures are essential to construct adaptive finite element 

strategies. The mesh refinement strategies applied to elastostatics problems have been shown to 

be very effective [9,10]. Extension of such adaptive procedures to problems of free vibration 

analysis is in progress. 
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PAKLAIDQ NUSTATYMAS LAISVl)JQ SVYRAVIMQ UZDAVINIUOSE 

R.Bausys 

Santrauka 

Straipsnyje pateikiama skaiciavima paklaidll nustatyma procediira, skirta lais~ll svyravimll analizes 

uzdaviniams. Skaiciavima paklaidas atsiranda del dviejll faktarill: a) baigtinill elementll diskretizacijas 

paklaidas; b) nuasaYll reiksmill uzdavinia sprendima algaritmll paklaidas. Literatiiroje placiausiai yra 

tyrinetas nuasa~q reiksmill uzdavinia sprendima algaritmll tikslumas, tua tarpu baigtinill elementq 

diskretizacijas jtaka gautll rezultatll tikslumui nera placiai nagrineta. 

Baigtinill elementll diskretizacijas paklaidas gali biiti jvertintas isankstiniais paklaidll nustatyma biidais. 

Sie biidai, besiremiantys bendromis sprendinill bei diskretizacijas metadll apraksimacinemis savybemis, 

pateikia tiktai sprendinia kakybini jvertinim!l ir asimptatini kanvergavima greitj, kai diskretinia madelia 
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laisves laipsni4 skaicius arteja i begalyb<f. Taciau isankstiniai paklaid4 nustatymo budai ncpah.:ikia jokios 

informacijos apie diskretines aproksimaciJOS tikr~ll paklaid11. Tikroji diskrt:tinio modclio paklaida gali buti 

jvertinta tiktai poprocesorinemis proceduromis, kuriose yra tyrim':jamas gautasis haigtini4 elcmentt} 

sprendinys. 

Nagrinejama skaiciavimo paklaid4 nustatymo procedura paremta tuo faktu, jog pasinaudojant pradinio 

baigtini4 element4 sprendinio superkonvcrgencinemis savybemis, galima gauti aukstcsnc~ tikslumo klascs 

poprocesorinj sprendinj. Sio poprocesorinio sprendinio pagalha gali buti jvertinta tikroji baigtini4 elemenlt) 

sprendinio paklaida bei jos pasiskirstymas tyrincjamojc konstrukcijojc. 

Atlikti skaitiniai eksperimentai patvirtina, jog gautasis poprocesorinis sprendinys yra aukstesncs tikslumo 

klases ir pateiktoji paklaid4 nustatymo procedura yra patikima ir efektyvi visai tyrinetai dvimacit) baigtini4 

element4 klasei. 

. 19. 




