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Building structures

NUMERICAL MODELLING OF REINFORCED CONCRETE CREEP

IN THE TENSION ZONE
I. Cypinas

1. Introduction

The creep of concrete in compression is adequately
described by the integral-type stress-strain relation ac-
cording to ageing linear viscoclasticity. The lincar creep
law can be uscd for a compression zone, because the
long-time loading of structures rarcly exceeds a half of a
total load. The failure of the structure is usually caused
by a sudden overloading, and creep phenomenon is not
involved in the failure stage. Linear creep law can also
be applied to concrete in tension. However, cracks occur
in the tension zone of reinforced concrete members in
carly stages of deformation, and the influence of cracks
must be accounted for when evaluating the deformation
of the tension zone.

There are two different approaches to this issue.
First, more traditional one, is based on the assumption
that in the tension zone suddenly occur sharp continuous
cracks, but intact concrete blocks between the cracks
work together with the tensile reinforcement. The contri-
bution of the concrete in tensile zone depends on the
bond stress distribution along the length of the un-
cracked concrete block. This phenomenon is known as
tension-stiffening, and there are many publications on
this problem. In Ref. [1] an experimentally based bi-
linear bond stress-slip curve is used to obtain an analyti-
cal solution for cracking behaviour of a reinforced con-
crete member. Ref. [2] contains analytical solution based
on certain non-linear bond-slip relations [3]. In Ref [4]
an a priori bond stress distribution is assumed. That ap-
proach was widely known in Russia from early fifties [5],
and later it became very popular in other countries too.

Slightly different approach is used in Eurocode 2
|6]. The concrete segment between the cracks is divided
into two regions: region I, where concrete interacts with
the reinforcement fully, and region II, close to the crack,
where bond is damaged and concrete docs not intcract

with the reinforcement at all. The relative length of these
two regions is defined by the parameter

$=1-4,p, (0. /0.),

where o is steel stress at cracking, o, — stecl stress

(1.1

under the actual loading, the both stresses being evalu-

ated on the basis of a cracked section. Empirical coeffi-
cient f, characterizes the bond properties of reinforce-

ment bars, g, =0.5 for plain bars, 8, =1.0 for ribbed
bars, and £, is a coeflicient taking account of load du-
ration. For a short-term loading f, =10, for a long-
term or repeated loading £, =0.5. Theoretical justifica-

tion for this approach can be found in Ref. [7].

In all these sources concrete in tension as well as in
compression is treated as linearly elastic. But concrete in
tension does not behave as ideally elastic brittle material.
Thoroughly conducted experiments pointed out that ten-
sion test specimens exhibit long descending branch of
their stress—strain curve before they break. That is be-
cause of microcracks, occurring in early stages of tension
and gradually coalescing into the major cracks when
stress approaches the tensile strength. This phenomenon
is known as strain-softening. Its analytical description
for the short—time loading is presented in Ref. [8]:

B x

£
c=fl——, x=—

, 1.2
f-1+x* £, (1.2)

where f' is tensile strength of concrete, £,'— the strain
at f', f— an empirical parameter.

It is known that the deformation process with the
falling stress—strain curve is unstable [9]. The tension
reinforcement and adjacent concrete in compression zone
of a beam stabilizes the tensile deformation of concrete.
The stabilizing effect depends on the character of rein-
forcement and the depth of the tension zone. These fac-
tors determine the magnitude of fand oin (1.2). Tn Ref,
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[10] a slightly simplificd stress-strain curve is presented

for practical usc :
& L
[ x, x=-—_ i

x <1,
&

o= . s ; (1.3)

R if x>L

The valuc of £, adjusted to the experimental results,

is expressed as

/j ) 100/15 0.366 b(h _ xm )] 0.3436 (Ej 0.146 (l 4)
\b(h-x,) nmed s ’ ‘

where .1, — arca of tensile reinforcement, b, A — width

and depth of the rectangular cross—scction, # — number
of reinforcing bars, ¢ — diameter of the reinforcing bars,
¢ — concrete cover to reinforcement, s — reinforcement
spacing; X, is the ncutral axis depth, computed neglect-
ing tension in concrete. It must be noted that there is a
rather weak dependence between the fand x,,, and so

the value of x,, may be taken approximately.

For the descending branch of a stress-strain curve
may also be used a simplificd lincar representation, as it
is donc in Refs. [11], [12]:

E. e, fe<e,,

c= f,’+($—erp)E[, ife, <e<g,,

0, ife> g .

(1.5)

Here E. — initial modulus of concrete, ¢, = f'/E, , &

— ultimate strain when the tensile stress is reduced to
zcro. In this formula strain-softening modulus £, is

. 0.483E,
= W (1.6)
As to the creep deformations in the presence of
cracks, there are rather few publications on this issue. In
the monograph {13] an usual tension-stiffening approach
is employed to the creep phenomenon. Z. P. Bazant and
co-authors in Refs. {11], [12] substantiates the strain-
softcning approach. Experimental evidence shows that
strain-softening is a primary mechanism of concrete-
rcinforcecment interaction in the tension zone. In Ref
[14] author applics this concept 1o tension creep defor-
mation in the cracking stage. Deformations duc to
cracking and lincar creep deformations are treated as
additive quantitics. Substituting creep strains for the
clastic component of strain in constitutive relation (1.3),

onc obtains the strain-softcning relation in the case of
creep. In Ref. [15] strain-softcning concept is also ap-
plicd to creep deformation of structures.

2. Incremental Form of Creep Relations for Concrete

The creep of concrete in compression is described
by the lincar integral relation

fr) = o(to)(1.10) + [, I(t.0")do{r) .

Here J(t,t') is a creep compliance function. Superscript

@.1)

“over the lower limit of integration means that the point
t=t, does not include in the integration interval.

When solving non-linear deformation problems one
must formulate them in an incremental form. In the case
of creep deformation that can be achieved in a natural
way by using a finite difference representation of integro-
differential equation (2.1) under the condition that the
stress history of the structure o = o (t) is represented by

the broken line:

AG; Ny
As, =cOAJ(t,.,to)+—A—ti’—J'ti‘+_l J(t, ) de" +

SlAg, o 2.
e k 1 ’
AJ(t ,t")dt
+ Afk l;,} (x’ ) s
k=1
At =t -1y, de, =e(t)-e(t,,),
4c; =o(t;)-o(t,,y),
AT, )= (1, 0) = T(1, 1)
Eq. (2.2) can be regarded as a quasi—clastic relation
Aeiz%i+dgi', i=1,.., N, @.3)

where the first term represents strain increment due to
40, ,
1 g

=—/| J(r,0")dr,

1
— 24
E' 4 £, 24

and the sccond one is deformation due to all previous
stress increments:

de'=0,AJ(1,,1,) +§ io-"‘ [f

=1 fe "%

AJ(1,0)dr' . (2.5)
Eq. (2.3) is exact under the condition that the strain his-
tory is in the form of the broken line. That formula ne-
cessitates the storing of all stress history, but this task is
simplified when stress is distributed lincarly over the
cross—section of the member.



When a problem is formulated in terms of dis-
placements, the explicit representation of stresses is re-
quired, and principal constitutive relation (2.1) ought to
be inverted. That can be achieved by usc of a relaxation
function R(r,¢"). In that casc the conslitutive rclation

rcads as
o(1)= e(t) R(ttg) + [ Re)ds(r)  @.6)
and incremental form of this rclation is
A0, =4¢, ] +40!. 27

Here the first term is the stress increment duc to the
strain increment at the last time interval, and the second
onc is duc to all previous strain increments.

Incremental relation Eq. (2.3), as well as Eq. (2.7),
can be inverted; both relations are equivalent. The strain
history of mcmber in flexurc can casily be stored owing
to the lincar distribution of strains over the cross—
scction. The first formulation, however, is more prefer-

able, because the creep compliance function J(r,r') is

formulated analytically, while the relaxation function
R(z,1") must be computed by the numerical integration.

3. Analytical model for creep of tension zone in the
cracking stage

As it was mentioned above, numerical modelling of
the reinforced concrete tension zone can be accom-
plished cither by usc of the strain-softening concept or
traditional stress-stiffening approach. Here we shall gen-
eralize the former concept to the case of creep deforma-
tion, because this concept is more convenicnt computa-
tionally.

Time-dependent tensile deformation of concrete is
governed by the lincar creep law until the tensile
strength is rcached and tensile cracks occur. Then the

total strain is expressed as a sum of lincar creep defor-

m
ey

e, g=c"+ &

a)

mation ¢ © of concrete between the cracks, and cracking

deformation & duc to the opening of these cracks:

£ =&+ ¢

3.1)

Last componcnt in this equation rcpresents the strain-
softening cffect, and it is assumed to be the time-
independent, such as in the case of short-time loading.
Analytical model is constructed analogically as in Ref.
[14]. The model can be seen as two elements, coupled in
scrics. First of them is a lincar creep element, undergo-
ing long-time dcformation, and another is the clement,
undergoing deformation £, that is the inelastic compo-
nent of the short-time strain after the occurrence of
cracks.

Lincar crecp component of the total strain causcs

the stress, determined by the relaxation law:

I
o (1)=& 1) R(1.t )+J'[6 R(tr)de ().  (3.2)
This equation results in the incremental relation (2.3).
The stress o(r) must also satisfy the strain softening law

according Eq. (1.3):

Al E (.3)
f-1+x £

4

o=f

Here & ° is a certain imaginary short-time strain,
£°=¢°+¢&, containing the same value of &, as long-
time strain in Eq. (3.1) (see Fig. 3.1 a). Combining the
last cquality with Eq. (3.1), we obtain the following ex-

ression, relating ¢ ° to the imposed total strain ¢:
p g p

£’=g —g+¢° (3.4)
b)
by
|
“
‘ P
o
f/l /
/
£y ¢
I
/
/ ¢, =
£ e=& + ¢

Fig. 3.1. Cracking behaviour of concrete: a) cracking without time effect, b) coupling of creep and cracking deformations.
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Elastic strain ¢ “, as a component of ¢ * is scen in
Fig. 3.1 b. [t cquals
o . N .
£f=— ]:chl. 3.5)
I, £,

Eqgs. (3.2) to (3.5) determine the time-dependent
dcformations of concrete after the occurrence of cracks.
First of this sct is integro-differential cquation, hence,
the numerical solution must be of incremental form. Re-
arranging Eq. (3.4) to an incremental form, and inscrt-
ing into it constitutive relations in the form of Egs. (2.3)
and (3.5), onc obtains:

s 40, 4o
A =46, +—— -
L E;

c

“‘Agil

(3.6)

Further, denoting cxpression Eq. (3.3) as o=0o(¢”’),

) - . do . .
and its derivative as E* :;1—; , on¢ will obtain ap-
£

. . Ao, .
proximate cquality As.f:_—_{g‘—. In the scquel, incre-

mental tangent relation for Ao, will be derived from
Eq. (3.6):

1 1 1
Ao, ——+— | =4g, - A¢
X(Ei[g EC E‘-’] i H

3.7

It should be noted that in reality the quantity in
brackets at 4o, is negative; hence, o; must be positive,

if A4g; =0 in the right-hand-side of the Eq. (3.7). Posi-

tive increment of stress with the constant strain in the
range of falling stress-strain curve is physically unjustifi-
able. To avoid that discrepancy an appropriate reloading
law must be introduced for cracking strain & . We shall
circumvent that difficulty excluding the case of constant
strain from the consideration and imposing a small
strain increments Adeg; > A¢;' to ensure the negative
stress increments in the Eq (3.7), and non-negative in-
crements of &

The solution o; at the end of the i~th time step

must satisfy the rclation

s c [ Gi- 1
£i=€f_€i1_Agi+-]—~_,l+O‘i(%_ w]’ (.8)

which is obtained from the strain compatibility cquation
(3.4). Substituting o, , as a function of & into the

right-hand-side of the last cquality, we arrive at the
cquation for the unknown quantity ¢,°. Since the rela-

lion between the o, and ¢ is non-lincar, the incre-

mental solution according the Eq. (3.7) must be refined
after cvery time step. The refinement may be performed

by dircct iteration, using a rccurrcent expression

o(ey,)
{J)
£y = &"+—=2—, (3.9)
) E;
where
1 1 1

e'=¢6 -, ~4¢;, = (3.10)

T E' E  E

The itcration process is shown in Fig. 3.2. In the casc of
linear falling branch of the stress-strain relation (1.5)
above described iterative refinement will bccome unnec-

cssary.
b )
94) ;
fe £,
* Oy+ D
E. O+ 1
1 5
"
&' €6 e\ £

Fig. 3.2. The iterative solution of Eq. (3.9).

4. Computer implementation and numerical results

In order to investigate the behaviour of the proposed
crecep model, the FORTRAN computer program was
written. It was important to ascertain the influence of the
creep strain component on the cracking process.

Until the cracks appear, the linear incrementation
scheme is valid. After the tensile stress rcaches its
maximum value f,', the cracking strain component &
appears, and the falling branch of the stress-strain rcla-
tion comes into effect. The computer program contains
two loops, enclosed one into another, the outer loop per-
forming the time steps over the lifctime of the structure,

and the inner one performing the iterative refinement of
the incremental solution o(r;) according Eq. (3.9) for

the time moments ¢,,i=1,..., N .
The algorithm is presented below.
1. Beginning of the strain incrementation loop. Seti= 1.
2. Calculate £ from Eq. (2.4), and 4¢' according to
Eq. (2.3).
3. Calculate the stress increment Ao, from Eq. (2.3).



4. If o; < f, thenassume i == i + 1 and go back to Stcp
2, clsc assume i: =1.

5. Determine by lincar interpolation the time 1=1,,
when the stress o, = [, 1s rcached.

6. Beginning of the cracking stage. Assume (=1, +1.
Calculatc £, from Eq. (3.10).

8. Ifi=i,+1 thengoto Step 11

9. Caleulate E¥ =do/de® from Eq. (1.3).

10. Calculate Ao, from Eq. (3.7).

11. Calculate &"; according to Eq. (3.10).

12. Beginning of cquilibrium iterations. Sct ; = 1.

13. Calculate ¢%,, from Eq. (3.9).

Jj#l
14. Calculate o ;,, from Eq. (1.3).

j+l
15.1f convergence is not attained, then go back to Step
13.
16.If ultimate strain is not rcached, then go back to Step
7.
A scparate layer of the reinforced concrete beam
was analysed, using that algorithm. The cross-section of
the beam is shown in Fig. 4.1.

N
h =050 m
_ Xt
b =025 m
c=004 m /— P=f-— ===
d=0013m '
s=0.05 m } }s_
SN ] _\F:C

X, ~ O.Sh” - b

A, =n n=4

s

>

d — diameter of reinforcement bars

Fig. 4.1. The cross-section and parameters of the beam

The creep parameters of concrete were evaluated
according to the analytical prediction model Ref. [16].
The 28-day cylinder strength of concrete was assumed
f.'=27.58 MPa. Concrete mix composition parameters
were as follows:

C = 320.4 kg/m® — specific contents of cement,

W/C = 0.5 — watcr/cement ratio by weight,

a/C =0.7] — aggregatc/ccment ratio by weight.

The tensile strength of concrete was determined by

a formula

fr=0324317

The model was subjected to forced deformation

(4.1)

process. Scveral different regimes of deformation were
selected, as it is shown in Fig. 4.2. The regimes arc
characterised by the ratio

z
I " e(t)dr
]
O =—F——. 4.2)
ety )ty —1,)

The concrete strength increase during the time in-
terval is ncglected for the sake of simplicity. The first
form of the process represents the case of almost constant
strain, e = 0.95. Strictly constant regime was cxcluded
to avoid the reversal of the crack strain component £.
The sccond strain-versus-time curve is the lincar growth
of strain, @ = 0.5, the third curve is the sudden growth

of the strain near the end fy  of the lifetime, @ =

0.07625.
6.002
7
0.6018 f -~
_0.0015 L
stradn - .| Deformation
0.0012 ’l z paths:
-
0.001 i - : path 1
0.0008 :
Vd —— —
0.0006 | A : path 2
oo00g 4 L7 L L q b e path 3
”
0.0002 {
[ AT PR PR L A !
0 200 400 660 500 1000

Time, days

Fig. 4.2. Characteristic strain histories, adopted in example
calculations

The stress history was computed by means of the
above mentioned computer program for all strain re-
gimes. Results are presented in the Fig. 4.3. It is scen
that the stress differences at an ultimate state due to dif-
ferent values of @ are rather small; the stress depends
mainly on the strain level at the moment.

5. Summary and conclusions

Numerical investigation of the concrete creep model
in the presence of cracks have been carried out. The in-
cremental form of creep relations, based on the creep
compliance function, was used throughout. Computer
code was dcvcloped to evaluate the tensile stresses of
cracked concrete, subjected to the long-time axial strain,
growing according to a given law.
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Deformation path 1

Deformation path 2

Deformation path 3

\"@.‘.,

[ 0.0002 0.0004 0.0006 0.0008 0©.001 0.0012 0.0014 0.0016 0.0018 0.002

Strain

Fig. 4.3. Stress histories for different deformation paths

The following conclusions may be drawn from this

study:

1.

[F8]

The non-lincar serics model for concrete crecp in the
presence of tensile cracks have shown good conver-
gence.
The creep has rather small influence on the cracking
and strain-softening behaviour of concrete in tension.
Simplified model of the cracking, based on the linear
approximation of the creep component of strain, can
be suggested.

The numerical procedurcs, presented herein, are

intended to introduce into the finite element computer

code for creep analysis of reinforced concrete beams and
frames. That will be the subject of subscquent publica-

tions.
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VALKSNUMO SKAITMENINIS MODELIAVIMAS
GELZBETONINIO ELEMENTO TEMPIMO ZONOJE

L. Cypinas
Santrauka

Apra$ant tempiamo betono valk§numg, bitina at-
minti, kad jau ankstyvose darbo stadijose betone atsiranda
plySiai. Yra Zinomi du analitiniai modcliai, apralantys
tempiamos armatiros ir pleiS¢janéio betono sgveiky. Pir-
masis, labiau tradicinis modelis postuluoja staigiai atsiran-
dandius i$tisinius plySius, tarp kuriy licka ncsupleis¢je be-
tono blokai, dalyvaujantys tempiamos zonos darbe dcka
armatiros ir betono sukibimo. Augant deformacijoms
toliau, palaipsniui nyksta armatiros sukibimas su betonu ir
tempiamas betonas palaipsniui iSsijungia i§ darbo. Kitame
modelyje pleiS¢jantis betonas traktuojamas Kaip iStisinis
kiinas, o tarp betono ir armatiros yra iSlaikomas defor-
macijy vientisumas. Betonui pasickus pleiScjimo ribg, jo
jlempimal pradeda kristi pagal tam tikrg kreiving parei-
namybg ir palaipsniui maZéja iki nulio. Tikrumoje tempia-
mos zonos darbg nusako rciskinial, badingi ir vienam, ir
kitam modeliui. Litcratiroje nurodoma, kad antrasis
modelis yra ne maZiau rcalistiskas uZ pirma)j, tradicinj
modelj.

Darbe pasircnkamas antrasis modelis, kuris yra al-
goritmikai patogesnis. Dcformacijos Cia atvaizduojamos
susidedandios 1§ tiesincs, §iuo atveju, valk§numo deda-
mosios, ir netiesings, pleid¢jimo deformacijy dedamosios.
Pastaroji &a, kaip ir trumpalaikés apkrovos atveju yra

laikoma nepriklausanti nuo laiko. Betonas traktuojamas
kaip scncjanti medZiaga, jo valkdnumas yra apraSomas
integraline parcinamybe su analitiSkai ireik$ta valk§numo
funkcija. Skaitiuojamasis laikotarpis yra sudalinamas | cilg
laiko Zingsniy, intcgralas pakeitiamas baigtine suma, ir
tokiu biidu gaunamos algebrinés parcinamybés tarp jtem-
pimy ir deformacijy pricaugiy atitinkamuose laiko inter-
valuose. Sios pareinamybés priklauso ne tik nuo pricaugiy
paskutiniame laiko Zingsnyje, bet ir nuo visos apkrovimo
istorijos. Tai yra nei§vengiama senéjantios medZiagos
savybe. Kadangi rySys tarp pleid¢jimo deformacijy ir jtem-
pimy yra netiesinis, tai minétosios pricaugiy lygtys
sprendZiamos iteraciniu biidu.

Yra sudaryta kompiuterio programa ir sumodeliuotas
gelzbetoninio clemento tempiamos zonos valk§numas,
csant jvairiems priverstinés deformacijos did¢jimo reZi-
mams. [teracinis procesas parode gera konvergencijg. Pasi-
rodé, kad valk§numas turi palyginus nedidele jtakg Sio
modelio plei$¢jimo deformacijai. Sudarytosios skaitme-
ninés procediros yra skirtos jvesti | baigtiniy elementy
metodo programg sijy ir rémy valk§numui skai¢iuoti.

Igoris CYPINAS. Doctor, Associate Professor. Kaunas
University of Technology. Department of Structural Engi-
neering. 48 Studentu St, 3028 Kaunas.

Graduate of road engineering studies in 1957 at Kau-
nas University of Technology (formerly Kaunas Polytech-
nic Institute). Doctoral degree in structural mechanics at
the same University in 1966. Since 1963 with interruptions
he worked at Kaunas University of Technology. Research
interests: non-linear and time-dependent structural analy-
sis, finite element programming, structural stability and
optimization.

-12-





