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Building structures 

NUMERICAL MODELLING OF REINFORCED CONCRETE CREEP 
IN THE TENSION ZONE 

I. Cypinas 

1. Introduction 

The creep of concrete in compression is adequately 

described by the integral-type stress-strain relation ac­

cording to ageing linear viscoelasticity. The linear creep 

law can be used for a compression zone, because the 

long-time loading of structures rarely exceeds a half of a 

total load. The failure of the structure is usually caused 

by a sudden overloading, and creep phenomenon is not 

involved in the failure stage. Linear creep law can also 

be applied to concrete in tension. However, cracks occur 

in the tension zone of reinforced concrete members in 

early stages of deformation, and the influence of cracks 

must be accounted for when evaluating the deformation 

of the tension zone. 

There are two different approaches to this issue. 

First, more traditional one, is based on the assumption 

that in the tension zone suddenly occur sharp continuous 

cracks, but intact concrete blocks between the cracks 

work together with the tensile reinforcement. The contri­

bution of the concrete in tensile zone depends on the 

bond stress distribution along the length of the un­

cracked concrete block. This phenomenon is known as 

tension-stiffening, and there are many publications on 

this problem. In Ref. [I] an experimentally based bi­

linear bond stress-slip curve is used to obtain an analyti­

cal solution for cracking behaviour of a reinforced con­

crete member. Ref. (2] contains analytical solution based 

on certain non-linear bond-slip relations [3]. In Ref (4] 

an a priori bond stress distribution is assumed. That ap­

proach was widely known in Russia from early fifties (5], 

and later it became very popular in other countries too. 

Slightly different approach is used in Eurocode 2 

16]. The concrete segment between the cracks is divided 

into two regions: region I, where concrete interacts with 

the reinforcement fully, and region II, close to the crack, 

where bond is damaged and concrete docs not interact 

with the reinforcement at all. The relative length of these 

two regions is defined by the parameter 

(1.1) 

where o-,. is steel stress at cracking, o-,- steel stress 

under the actual loading, the both stresses being evalu­

ated on the basis of a cracked section. Empirical coeffi­
cient P1 characterizes the bond properties of reinforce-

ment bars, P1 = 0.5 for plain bars, P1 = 1.0 for ribbed 

bars, and P2 is a coefficient taking account of load du­

ration. For a short-term loading P2 = 1.0, for a long­

term or repeated loading P2 = 0.5 . Theoretical justifica-

tion for this approach can be found in Ref. [7]. 

In all these sources concrete in tension as well as in 

compression is treated as linearly elastic. But concrete in 

tension does not behave as ideally elastic brittle material. 

Thoroughly conducted experiments pointed out that ten­

sion test specimens exhibit long descending branch of 

their stress-strain curve before they break. That is be­

cause of microcracks, occurring in early stages of tension 

and gradually coalescing into the major cracks when 

stress approaches the tensile strength. This phenomenon 

is known as strain-softening. Its analytical description 

for the short-time loading is presented in Ref. (8]: 

CY- E• p X 
-Jcp 1 P' - +X 

II 
X=­

&' 
I 

(1.2) 

where /,' is tensile strength of concrete, &1'- the strain 

at !,' , p-an empirical parameter. 

It is known that the deformation process with the 

falling stress-strain curve is unstable (9]. The tension 

reinforcement and adjacent concrete in compression zone 

of a beam stabilizes the tensile deformation of concrete. 

The stabilizing effect depends on the character of rein­

forcement and the depth of the tension zone. These fac­

tors determine the magnitude of panda-in (1.2). ln Ref. 
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[IU 1 a slightly simplified stress-strain curve is presented 

for practical usc : 

l 
6' 

f/x, x=--;-, 
t:. 

(}= • 

fJx 

if X S 1, 

(1.3) 

if X > 1. 

The value of fJ, adjusted to the experimental results, 

is expressed as 

fJ= 100A, b(h-x,u) (::_)
0

.
116 

( J 
0.%6 ( J 0.3~36 

b(h-x,.) n;rrcd s 
(1.4) 

where A,- area of tensile reinforcement, b, h - width 

and depth of the rectangular cross-section, n - number 

of reinforcing bars, d- diameter of the reinforcing bars, 

c - concrete cover to reinforcement, s - reinforcement 

spacing; X
111 

is the neutral axis depth, computed neglect-

ing tension in concrete. It must be noted that there is a 
rather weak dependence between the f3 and xm, and so 

the value of xnr may be taken approximately. 

For the descending branch of a stress-strain curve 

may also be used a simplified linear representation, as it 

is done in Refs. (11], [12): 

(1.5) 

Here Ec- initial modulus of concrete, t-' 1P = fr' IE c , &tf 

- ultimate strain when the tensile stress is reduced to 

zero. In this formula strain-softening modulus E1 is 

E = 0.483Ec . 
1 

0.393 + fc' 
(1.6) 

As to the creep deformations in the presence of 

cracks, there arc rather few publications on this issue. In 

the monograph [ 13) an usual tension-stiffening approach 

is employed to the creep phenomenon. Z. P. Baiant and 

co-authors in Refs. [11), [12) substantiates the strain­

softening approach. Experimental evidence shows that 

strain-softening is a primary mechanism of concrete­

reinforcement interaction in the tension zone. In Ref. 

[1-l] author applies this concept to tension creep defor­

mation in the cracking stage. Deformations due to 

cracking and linear creep deformations arc treated as 

additive quantities. Substituting creep strains for the 

clastic component of strain in constitutive relation (1.3), 

one obtains the strain-softening relation in the case of 

creep. In Ref. [ 15] strain-softening concept is also ap­

plied to creep deformation of structures. 

2. Incremental Form of Creep Relations for Concrete 

The creep of concrete in compression is described 

by the linear integral relation 

(2.1) 

Here J(t,t') is a creep compliance function. Superscript 

+over the lower limit of integration means that the point 

t=t0 docs not include in the integration interval. 

When solving non-linear deformation problems one 

must formulate them in an incremental form. In the case 

of creep deformation that can be achieved in a natural 

way by using a finite difference representation of integro­

differcntial equation (2.1) under the condition that the 
stress history of the structure (} = (} (t) is represented by 

the broken line: 

Lit; =t; -ti-l, Llf:l =f:(tl)-f:(ti-1), 

Llcr; = cr(t;)- cr(ti-1 ), 

Ll l(ti' t') = l(ti. t ')- l(ti-1' t'). 

Eq. (2.2) can be regarded as a quasi-clastic relation 

Ll (}i ' . 1 N Ll&i=E+LI&i, l= , ... , , 
I 

(2.2) 

(2.3) 

where the first term represents strain increment due to 

Ll (}i ' 

1 1 f.'j l( ') d I -=-- t,,t t. 
E.' L1 t. ,,._! · . 

I I 

(2.4) 

and the second one is deformation due to all previous 

stress increments: 

Eq. (2.3) is exact under the condition that the strain his­

tory is in the form of the broken line. That formula ne­

cessitates the storing of all stress histOI)', but this task is 

simplified when stress is distributed linearly over the 

cross-section of the member. 
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When a problem is formulated in terms of dis­

placements, the explicit representation of stresses is re­

quired, and principal constitutive relation (2.1) ought to 

be inverted. That can be achic\·cd by usc of a relaxation 
function R(t, I'). In that case the constitutive relation 

reads as 

(2.6) 

and incremental form of this relation is 

(2.7) 

Here the first term is the stress increment due to the 

strain increment at the last time interval, and the second 

one is due to all previous strain increments. 

Incremental relation Eq. (2.3), as well as Eq. (2.7), 

can be inverted: both relations arc equivalent. The strain 

history of member in flexure can easily be stored owing 

to the linear distribution of strains over the cross­

section. The first formulation, however, is more prefer­
able, because the creep compliance function I (t ,t') is 

formulated analytically, while the relaxation function 
R(t,t') must be computed by the numerical integration. 

3. Analytical model for creep of tension zone in the 

cracking stage 

As it was mentioned above, numerical modelling of 

the reinforced concrete tension zone can be accom­

plished either by usc of the strain-softening concept or 

traditional stress-stiffening approach. Here we shall gcn­

crali;.c the former concept to the case of creep dcfonna-

mation E: c of concrete between the cracks, and cracking 

deformation ¢due to the opening of these cracks: 

(3 .1) 

Last component in this equation represents the strain­

softening effect, and it is assumed to be the time­

independent, such as in the case of short-time loading. 

Analjtical model is constructed analogically as in Ref. 

[14]. The model can be seen as two elements, coupled in 

series. First of them is a linear creep clement, undergo­

ing long-time deformation, and another is the clement, 

undergoing deformation ¢, that is the inelastic compo­

nent of the short-time strain after the occurrence of 

cracks. 

Linear creep component of the total strain causes 

the stress, determined by the relaxation law: 

(3.2) 

This equation results in the incremental relation (2.3). 
The stress a(t) must also satisfy the strain softening law 

according Eq. (1.3): 

fJx 
() = fr'-fJ--=-1---.,...p ' 

- +X 

s' 
X=-. 

s; (3.3) 

Here s ' is a certain imaginary short-time strain, 

s '= s e + ~ , containing the same value of ~, as long-

time strain in Eq. (3 .1) (see Fig. 3 .I a). Combining the 

last equality with Eq. (3.1), we obtain the following ex­

pression, relating t: ' to the imposed total strain £: 

t:'=t: -t:c+c'e (3.4) 

tion, because this concept is more convenient computa- b) 

tionally. 

Time-dependent tensile deformation of concrete is 

governed by the linear creep law until the tensile 

strength is reached and tensile cracks occur. Then the 

total strain is expressed as a sum of linear creep defor-

Cr I s' = £" +,; 
a) 

------------------------------.. 
Fig. 3.1. Cracking behaviour of concrete: a) cracking without time c!Tcct, b) coupling of creep and cracking deformations. 

- 8 -



Elastic strain r; ', as a component of ~.· ' is seen in 

Fig. 3. I b. It equals 

t: e ] .. = !/ 
J ( I . 

c, 
(3.5) 

Eqs. (3.2) to (3.5) determine the time-dependent 

deformations of concrete after the occurrence of cracks. 

First of this set is intcgro-diffcrcntial equation, hence, 

the numerical solution must be of incremental form. Re­

arranging Eq. (3.4) to an incremental form, and insert­

ing into it constitutive relations in the form of Eqs. (2.3) 

and (3.5), one obtains: 

, Llcr; Llcr; , 
Llf-·. = Llc. +------Llc, 

' ' Ec E; · 
(3.6) 

Further, denoting expression Eq. (3.3) as cr = cr ( li '), 

d · d · · 1··rg dcr ·11 b · an 1ts envat1ve as : = -- , one WI o tam ap-
d&' 

I . ' L1 CT i proximate equa 1ty L1 £ , = -- . . L'fg In the sequel, incrc-

mental tangent relation for L1 cr; will be derived from 

Eq. (3.6): 

L1 CT (-
1
-- -

1
- + _!:_J = L16· - Ll6·' (3.7) 

J E';8 Ec E/ j l 

It should be noted that in reality the quantity in 
brackets at L1 cr; is negative; hence, cr; must be positive, 

if L1 &; = 0 in the right-hand-side of the Eq. (3.7). Posi-

tive increment of stress with the constant strain in the 

range of falling stress-strain curve is physically unjustifi­

able. To avoid that discrepancy an appropriate reloading 

law must be introduced for cracking strain r; . We shall 

circumvent that difficulty excluding the case of constant 

strain from the consideration and imposing a small 
strain increments L1 E; > L16·;' to ensure the negative 

stress increments in the Eq (3.7), and non-negative in­

crements of r;. 
The solution cr; at the end of the i-th time step 

must satisfy the relation 

mental solution according the Eq. (3. 7) must be refined 

after every time step. The refinement may be performed 

by direct iteration, using a recurrent expression 

a (c s ) 
S II (JJ [;(. ) = [;. + 
;+t , E~' 

I 

(3.9) 

where 

1 1 1 
(3.10) 

The iteration process is shown in Fig. 3.2. In the case of 

linear falling branch of the stress-strain relation (I. 5) 

above described iterative refinement will become unnec­

essary. 

1 

Fig. 3.2. 1be iterative solution ofEq. (3.9). 

4. Computer implementation and numerical results 

In order to investigate the behaviour of the proposed 

creep model, the FORTRAN computer program was 

written. It was important to ascertain the influence of the 

creep strain component on the cracking process. 

Until the cracks appear, the linear incrementation 

scheme is valid. After the tensile stress reaches its 
maximum value /,', the cracking strain component r; 
appears, and the falling branch of the stress-strain rela­

tion comes into effect. The computer program contains 

two loops, enclosed one into another, the outer loop per­

forming the time steps over the lifetime of the structure, 

s c A , CT i-1 ( 1 1 J E-=E:.-&. 1 -LJf-'.+--+CT- ---
l J J- J E/ J Ec J!;f • 

and the inner one performing the iterative refinement of 
(3.8) the incremental solution cr(t;) according Eq. (3.9) for 

which is obtained from the strain compatibility equation 

(3.4). Substituting cr; , as a function of c;' into the 

right-hand-side of the last equality, we arrive at the 

equation for the unknown quantity c;'. Since the rela-

tion between the cr; and s; is non-linear, the incre-

the time moments t;, i = 1 .... , N. 

The algorithm is presented below. 

I. Beginning of the strain incrementation loop. Set i ~ I. 
2. Calculate E'; from Eq. (2.-l), and Llc-'; according to 

Eq. (2.3). 
3. Calculate the stress increment L1 cr; from Eq. (2.3). 

- 9 -



-l. If cr; < [', then assume i - i + I and go back to Step 

2, else assume i~ = i . 

5 Determine by linear interpolation the time 1 = 1~, 

when the stress cr ~ = I'r is reached. 

6. Beginning of the cracking stage Assume i = i~ + 1 . 

7. Calculate E"; from Eq. (310). 

8. If i = i~ + 1 then go to Step II. 

9. Calculate E;8 = dcr/dt:' from Eq. (13). 

10. Calculate Ll CJ; from Eq. (3.7). 

II. Calculate &"; according to Eq. (3 10). 

12. Beginning of equilibrium iterations. Set j " 1. 

13. Calculate '-·~.J from Eq. (3.9). 

1-l. Calculate crj+l from Eq. (1.3). 

15. If conyergence is not attained, then go back to Step 

13. 

16. If ultimate strain is not reached, then go back to Step 

7. 

A separate layer of the reinforced concrete beam 

was analysed, using that algorithm. The cross-section of 

the beam is shown in Fig. -l.l. 

h = 0.50 m 

b = 0.25 m 

c = 0.0-l m 

d=O.Ol3m 

s = 0.05 m 

x., ,Q.Sh 

7r d2 
A =n-- n=4 s 4 , 

d- diameter of reinforcement bars 

Fig. 4.1. The cross-section and parameters of the beam 

The creep parameters of concrete were evaluated 

according to the analytical prediction model Ref. [ 16 j. 

The 28-day cylinder strength of concrete was assumed 

J, '= 27.58 MPa. Concrete mix composition parameters 

were as follows: 

C = 320.4 kg/m3
- specific contents of cement, 

WIC = 0.5- water/cement ratio by weight, 

a/C = 0.71- aggregate/cement ratio by weight. 

The tensile strength of concrete was determined by 

a formula 

1''-0374 3 [(:2 it - ... .... V lc · (41) 

The model was subjected to forced deformation 

process. ScYeral different regimes of deformation were 

selected, as it is shown in Fig. 4.2. The regimes arc 

characterised by the ratio 

t &(t)dt 
(4.2) 

The concrete strength increase during the time in­

terval is neglected for the sake of simplicity. The first 

form of the process represents the case of almost constant 

strain, OJ = 0.95. Strictly constant regime was excluded 

to avoid the reversal of the crack strain component .;. 

The second strain-versus-time curve is the linear growth 

of strain, OJ = 0.5, the third curve is the sudden growth 

of the strain ncar the end tN of the lifetime, OJ = 

0.07625. 

/I • 
~---+----+----+~--~---: 

0. 0012 

0. 001 ++------+----~- ----+---:'-
0. ooos +1----+----F---+----t---;-­
o . a o a o H----+---:-'-"'-+' ----t----!---...'---1 
0.0004 1 / _l r-

0.0002 "' I 1 L-_;__ 
0 --"' • -----1-.---------. +..:...::-.:---1 

200 400 600 800 1000 

De formation 

paths: 

--Path 1 

---Path 2 

• • • • ··Path 3 

:I'irr:e, days 

Fig. 4.2. Characteristic strain histories, adopted in example 
calculations 

The stress history was computed by means of the 

above mentioned computer program for all strain re­

gimes. Results are presented in the Fig. 4.3. It is seen 

that the stress differences at an ultimate state due to dif­

ferent values of OJ are rather small; the stress depends 

mainly on the strain level at the moment. 

5. Summary and conclusions 

Numerical investigation of the concrete creep model 

in the presence of cracks have been carried out. The in­

cremental form of creep relations, based on the creep 

compliance function, was used throughout. Computer 

code was developed to evaluate the tensile stresses of 

cracked concrete, subjected to the long-time axial strain, 

growing according to a given law. 
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·t~~-~-- ~--

1 

0-: 

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002 

Strain 

Fig. 4.3. Stress histories for different deformation paths 

The following conclusions may be drawn from this 

study: 

1. The non-linear series model for concrete creep in the 

presence of tensile cracks have shown good conver­

gence. 

2. The creep has rather small influence on the cracking 

and strain-softening behaviour of concrete in tension. 

3. Simplified model of the cracking, based on the linear 

approximation of the creep component of strain, can 

be suggested. 

The numerical procedures, presented herein, are 

intended to introduce into the finite clement computer 

code for creep analysis of reinforced concrete beams and 

frames. That will be the subject of subsequent publica­

tions. 
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VALKSNIJMO SKAITMENINIS I\10DELIAVIMAS 
GELZBETONINIO ELEMENT<> TEI\11'11\10 ZONOJE 

I. Cypinas 

Santrauka 

Aprasant tcmpiamo bctono valksnumq, butina at­
minti, kad pu ankstyvosc darbo stadijosc bctonc atsiranda 
plysiai. Yra zinomi du analitiniai modcliai, aprasantys 
t<.:mpiarnos armaturos ir plciscjancio bctono s<lvcikq. Pir­
masis, labiau tradicinis rnodclis postuluop staigiai atsiran­
Jancius istisinius plysius, tarp kurit! licka ncsuplciscj<; be­
tcmo blokai, dalyvaujantys tcmpiarnos zonos darbe dcka 
armaturos ir bctono sukibirno. Augant deformacijoms 
toliau, palaipsniui nyksta armatC1ros sukibimas su bctonu ir 
tcrnpiamas bctonas palaipsniui issijungia is darbo. Kitarnc 
modclyjc plciscjantis bctonas traktuojamas kaip iStisinis 
kunas, o tarp bctono ir armaturos yra islaikomas dcfor­
maciJl! vicntisumas. llctonui pasickus plciscjimo rib<!, jo 
itcrnpimai pradcda kristi pagal tam tikrq krcivin<; parei­
namyb<; ir palaipsniui mazcja iki nulio. Tikrumoje tempia­
rnos zonos darb<! nusako rciskiniai, budingi ir vienarn, ir 
kitam modcliui. Litcratllrojc nurodoma, kad antrasis 
rnodclis yra ne maziau rcalistiskas uz pirm<j]j, tradicinj 
modclj. 

Darbc pasircnkamas antrasis modclis, kuris yra al­
goritmi.Skai patogesnis. Dcformacijos cia atvaizduojamos 
susidcdancios is tiesincs, siuo atvcju, valksnumo deda­
mosios, ir ncticsincs, plciscjimo dcformacij4 dcdamosios. 
l'astaroji cia, kaip ir trumpalaikcs apkrovos atvcju yra 

laikoma ncpriklausanti nuo laiko. Bctonas traktuojamas 
kaip scncjanti mcdziaga, jo valksnumas yra aprasomas 
intcgraline parcinamybe su analitiskai i.~reiksta valksnumo 
funkcija. Skaiciuojamasis laikotarpi.~ yra sudalinamas j cil<; 
laiko zingsnil!, intcgralas pakeiciamas baigtinc suma, ir 
tokiu budu gaunamos algcbrincs parcinamybcs t.arp jtcm­
piml! ir deformacij4 prieaugi4 atit.inkamuose lai.ko inter­
valuose. Sios pareinamybcs priklauso ne tik nuo prieaugi4 
paskut.iniame laiko zingsnyje, bet ir nuo visos apkrovimo 
istorijos. Tai yra neisvengiama senejancios medziagos 
savybe. Kadangi rysys tarp plci.Scjimo dcformacij4 ir jtem­
piml! yra netiesinis, t.ai minetosios prieaugi4 lygtys 
sprendziamos iteraciniu budu. 

Yra sudaryta kompiuterio programa ir sumodeliuotas 
ge!Zbetoninio elemento tempiamos zonos valksnumas, 
esant jvairiems priverstincs dcformacijos didcjimo rdi­
mams. Itcracinis proccsas parade ger'l konvcrgencii'l· Pasi­
rodc, kad valksnumas t.uri palyginus nedidcl<; jtak'l sio 
modelio plci.Scjimo dcformacijai. Sudarytosios skaitme­
nines proceduros yra skirtos jvesti j baigtini4 element4 
mctodo program'! sij4 ir remt! valksnumui skaiciuoti. 
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