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1. Introduction 

Direct time-integration methods for structural 

dynamics problems have long been a subject of 

various investigations. Most finite element 

techniques for the solution of structural dynamics 

problems are traditionally based on semi­

discretisations: finite element approach is used only 

for spatial domain to reduce the partial differential 

equations to a system of second order ordinary 

differential equations in time. Then, the semi­

discrete equations are further solved using mode 

superposition method or the step-by-step direct time 

integration methods. Most commonly used 

algorithms of direct integration for transient analysis 

are based on the traditional finite difference methods 

[1,2]. Alternatively, the finite element method has 

come to be recognized as powerful tool for structural 

dynamics problems [3,4]. The underlying concept of 

their formulations is that , using continuous functions 

in time, the ordinary differential equations ema­

nating from semi-discretisations are multiplied by 

weighting functions and integrated over time 

intervals. Many traditional direct time integration 

algorithms were rederived in this manner. 

Another approach, working from the viewpoint 

of the solution of the differential equations, has 

evolved during the last two decades. The main idea is 

to permit the unknown parameters to be 

discontinuous at the discrete time levels. The time­

discontinuous Galerkin (DG) method was originally 

developed for solution of scalar linear hyperbolic 

equations [5]. Since then, it has been successfully 

applied to second order hyperbolic problems [6] and 

the solution first order ordinary differential 

equations (7]. It has been shown that DG method 

possesses properties not present in the traditional 

semi-discrete algorithms. In particular, it leads to A­

stable, higher order accurate solution procedures for 

ordinary differential equations and provides a new 

possibilities for the development of adaptive 

strategies. This is in contrast to the conditional 

stability of some time-continuous Galerkin methods 

[ 4]. Much research was conducted by Hulbert [8] to 

apply time discontinuous Galerkin methods to 

computational structural dynamics. While stability is 

easily proved for this method, convergence has been 

proved only for 1'1 polynomials, that is for linear 

elements in time. So Hulbert [8] proposed time­

discontinuous Galerkin/least squares approach to 

circumvent this limitation. From a computational 

view point, the additional least squares terms destroy 

the banded structure of the matrices and cost of the 

solution of structural dynamics problems increase 

compared with the original DG time finite element 

method. 

The proposed DG scheme is constructed using 

weighting exponential function for the inner product 

introduced by French [9] for space-time finite 

element method for second order hyperbolic 

problems. This weighting function is used when the 

basis functions of temporal domain have degree two 

or higher. The proposed time finite element strategy 

enables us to overcome aforementioned disadvantage 

of Galerkin /least squares approach, the case when 

the least squares terms destroy the banded structure 

of the system of equations. 

We will consider a system of the ordinary 

differential equations associated with the semi­

discrete form of linear elastodynamics 
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[M]u + fCJu + [KJu = F(t), t E (O,T) (I) 

with the initial conditions 
(8) 

u(O) = Uo, u(O) = u0 (2) By the construction, the interpolation functions 

where [M], [C] and [K] are the mass, damping and 

stiffness matrices, respectively; F(t) is the prescribed 

vector of external load and u is the vector of 

unknown nodal displacements. A superposed dot 

denotes differentiation in respect to time. [M] is 

assumed to be symmetric positive-definite while [C] 

and [K] are assumed to be symmetric positive semi­

definite. 

2. Variational equation 

In order to define the DG method, we consider 

sequence of discrete time level 

tn (O=to <t1 < ........ <tn =T) with the 

corresponding time steps !::..tn =tn -tn-1· We assume 

the function v(t) to be discontinuous at time tn , the 

temporal jump operator is defined by 

(3) 

where 

are continuous within each time interval and can be 

discontinuous across the time intervals. Since the 

initial conditions are weakly enforced, the 

displacement weighting function space is identical to 

the trial displacement space. 

The formulation of the proposed time­

discontinuous Galerkin approach is: 

Find u E '&' such that \tv E '&' , 

A (u, v Jn = L (v )n , n=1,2 .......... N (9) 

where 

(10) 
.+ [MJ.+ + [KJ + + vn-1 "n-1 + vn-1 "n-1 

(11) 
+ + -

+vn-1 [MJ u~-1 + vn-1 [K] "n-1 

n=2, ....... N 

(4) L ( v h = ( vfln, F h
1 

(5) 

The weight function is defined by 

For the sake of simplicity, the inner products can 

be expressed by 

(v, uh. = fvudt (7) 

I. 

The finite dimensional space of the interpolation 

functions for trial displacements can be presented as 

follows 

+ . + 
+v0 [MJ u0 + v0 [KJ U0 

(12) 

and 

Lu = [M]u + [C]u + [K]u (13) 

Note L(v)] is defined from the general 

expression L(v)n by replacing u~-1 and u~-1 by the 

initial conditions if 0 and U 0 , respectively. The last 

two terms of (10), in combination with the last two 

terms of (11), weakly enforce the initial conditions 

for each time interval. These jump terms are 

stabilizing operators of proposed DG method. 

Problem (9) leads to a system of the linear equations 

with square coefficient matrix since u and v belong to 

the same finite dimensional space. 
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3. Hierarchical family of algorithms 

This time-discontinuous Galerkin approach 

enables us to construct a family of the algorithms for 

direct time integration. The main feature of this 

family is that the algorithms have a hierarchical 

structure. This means that the system of equations of 

a particular order contains as a subset the equations 

of all methods of lower order or in other words, the 

increased accuracy by this approach is obtained by 

adding one or more terms in the interpolation 

function, without modification of the previous ones. 

This is in contrast to traditional single-step 

integration methods, where increased accuracy may 

be obtained by reducing the time step length or by a 

change of integration methods, in this case a 

completely new system of equations has to be 

established and solved. Design of the hierarchical 

family of algorithms is based on single-field 

formulation of time finite element approach. Using 

typical finite element procedure, the basis 

interpolation functions are defined in terms of 

Lagrange polynomials, a k-th order polynomial in 

time may be expressed in terms of nodal values at 

k+ 1 time levels. Alternatively, a k -th order 

polynomial may be constructed from k+ 1 terms of a 

Taylor series expansion in time. Linear in time 

interpolation of the displacement can be written as 

(14) 

The constant in time value u:;_1 defines the 

displacement at the beginning of the n-th time 
interval, v n is the constant velocity in the time 

interval. In the same way, quadratic interpolation 

function of displacement may be constructed as 

follows 

where v~-1 defines the velocity at the beginning of 

the time interval, an is the constant acceleration. In 

this case, velocity varies linearly and is calculated 

using 

(16) 

These expansions are used in variational 

formulation for the trial displacements and weighting 

functions in (9). Displacements, velocities and 

accelerations are then obtained by solving the 

resultant system of equations. Substitution of the 

linear interpolation function for displacements (14) 

into (9) yields 

l [K] 0 l {u:;_1 ) _ { [K]u~_1 ) 

lbJlK] [Mj+bl [C]+b2fCJJ Vn - [MJvn +Fin 

(17) 

where the coefficients b 1 , b2 and F1n are defined 

as follows 

1- e -a!'>! 

bl=---

Fln = J ~Fdt, In = J tn-1' tn[ 
Jn 

(18) 

(19) 

(20) 

The system of equations obtained from (9) using 

quadratic interpolation function for displacements 

can be expressed as 

r b~;~J 0 
0 1 { + l { {K]u~-I l 

bJfMJ+b,{C/+ib,[K] I :~~; [Mj+b1 [Cj+b2 [K] [M]v~-1 + Fln (21) 

lb2[Kj b2[M]+b3[Cj+2b4 [KJj n · 
F2n 

b2[C]+b3 [Kj 
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where v~-l is the velocity at the end of the previous 

(n-1)-th interval and the values of the 
coefficients b1 and b2 can be written as 

F2n =fJ.LF(t-tn-J)dt, In= ]tn-l•tn[ (24) 

/n 

It is not difficult to observe that the higher order 

interpolation functions of time finite elements 

provide hierarchical structure of the governing 

equations. It follows that the matrix in (17) 

corresponding to the linear in time interpolation of 

the displacement is a submatrix of the matrix in (21) 

corresponding to a quadratic in time interpolation of 

the displacement. In relation to advantage we can say 

that the hierarchical formulation is optimal because it 

allows for all information to be passed from one 

discretisation level to the second discretisation level 

and enables a convenient design of predictor­

multicorrector algorithms which retain the stability in 

all phases of the numerical procedure. 

4. Stability and error analysis 

Since any n degrees of freedom coupled system 

can be decomposed into n uncoupled scalar 

equations, it can be established that the entire 

coupled system reduces to consideration of the 

individual model equation [10]. Thus the analysis is 

performed on the scalar single degree of freedom 

harmonic oscillator model problem with no damping 

or friction 

.. h 2 
d+(ro ) d=O (25) 

with 

d(O)=do andd(O)=v0 (26) 

where roh is the natural frequency of the system and 

d is the magnitude of the displacement. 

In the present analysis a particular emphasis is 

placed on the dissipative properties and the temporal 

accuracy of the proposed family of algorithms. 

For the purposes of analysis, it is useful to 

transform each of the numerical formulations to the 

discrete form, that is to express the values at the end 

of the time interval ( u;; and u;;) in terms of the 

values at the end of the previous time interval. This 

can be written in the form 

(27) 

where [A] is the numerical amplification matrix. 

Convergence of a numerical formulation 

requires consistency and stability. Consistency can be 

determined from the truncation error. Stability is 

determined by spectral radius of the numerical 

amplification matrix which is defined by 

p ([A]) =maxi J A.i ([A]), i=1,2, ... ,NJ (28) 

where N is the dimension of the amplification matrix. 

The formulation is unconditionally stable if the 

spectral radius is less than or equal to unity, i.e. 

p ([A}) :::; 1 (29) 

Fig. 1 depicts spectral radii for the time­

discontinuous Galerkin method obtained using the 

different interpolations. Also it is shown spectral 

radius for the Galerkin/least squares approach using 

quadratic interpolation function developed by 

Hulbert [8]. The following notation is adopted: 

Galerkin/least squares method -(GLS), the present 

approach with linear -(DGLL), with quadratic -

(DGLQ) and with cubic -(DGLC) interpolations of 

the displacement. Differences between numerical 

formulations using linear and quadratic or cubic 

interpolation functions may be easily observed in the 

low frequency region. The numerical formulations 

based on quadratic and cubic interpolation functions 

provide very close results. 
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Fig.l. Spectral radii for Galerkin/least squares and 
the proposed approach 

When solving dynamical problems it is common 

procedure to separate the error in numerical 

schemes, into dissipation, namely, amplitude error, 

and dispersion, namely, phase error. Provided that 

the eigenvalues of [A] remain complex 
(') ... 1,2 ([A])= A± iB, B =t 0), algorithmic damping ratio 

provides a measure of the numerical dissipation and 

can be expressed 

(30) 

Fig. 2 depicts algorithmic damping ratios of 

Galerkin/least squares and the different numerical 

formulations of the present approach. The same 

notation is adopted as in the previous figure. The 

numerical formulation based on linear interpolation 

function (DGLL) is clearly too dissipative to be of 

practical interest. It is observed that quadratic 

(DGLQ) and cubic (DGLC) interpolation functions 

for the proposed time-discontinuous Galerkin 

method provide less dissipation than Galerkin}least 

squares approach. It is important to recall that these 

formulations (DGLQ and DGLC) have very little 

dissipation in the low frequency domain. 
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Fig. 2. Algorithmic damping ratios for time element 
methods 

Dispersion in waves is generated when the phase 

velocity is a function of the frequency. The physical 

measure of the dispersion in one dimension (time), is 

the difference between analytical natural frequency 

and the numerical frequency. The relative frequency 

error provides a measure of the numerical dispersion 

and in the numerical expression it is given by 

~: -1, where ·;;/ =At -I tan -I ( ~) (31) 
{I) 

Relative frequency error in the low frequency 

domain is shown in Fig. 3 for Galerkin}least squares, 

present time-discontinuous Galerkin with the 

different interpolation function<> and trapezoidal rule 

(Newmark) algorithms. It is proved that, for 

unconditionally stable linear multistep methods, the 

trapezoidal rule algorithm provides the smallest error 

in frequency (11 ]. Time-discontinuous Galerkin and 

Galerkin/least squares formulations do not result in 

linear multistep approaches and thus can generate 

unconditionally stable algorithms which have Jess 

dispersion than the trapezoidal rule. The results 

shown in Fig. 3 demonstrate smaller relative 

frequency errors of the quadratic and cubic 

formulations. 
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Fig. 3. Relative frequency errors for time element 
methods 

To establish the results of the global truncation 
error, a posteriori convergence rate in 11-111 norm is 

evaluated, where the error is defined by 

T 

llelll =Jabs(U-u)dt 
0 

(32) 

where U and u are the exact and approximate 

solutions respectively. 

The results of rate of convergence obtained 

using different numerical formulations are shown in 

Fig. 4. The numerical procedure with linear 

interpolation function exhibits O(Llt) order of 

accuracy, quadratic formulation - 0( & 3
) and cubic 

formulation - 0( !!.t 4·
5

). 

5. Conclusions 

Time finite element method for solving second 

order ordinary differential equations associated with 

structural dynamics is presented. The proposed 

approach is based on time-discontinuous Galerkin 

method. All formulations were characterized by the 

stability condition phase, dissipation and frequency 

errors, a posteriori convergence rate. 
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Fig. 4. A posteriori rate of convergence by different 
numerical formulations 
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AUKSTESNES EILES INTEGRAVIMO MEfODAI 
STRUKTURINES DINAMIKOS UZDAVINIAMS 
SPRF;STI 

R. Bausys 

Santrauka 

Laiko baigtiniq elementq metodai leidzia sudaryti 
efektyvius struktiirines dinamikos uzdaviniq sprendimo 
algoritmus. Jq vanacmes formuluotes sudaromos 
panaudojant tolydines laiko funkcijas. Paprastosios 
diferencialines lygtys, gautos po diskretizacijos erdveje, yra 
padauginamos iS svorio funkcijq ir integruojamos laiko 
intervaluose. 

Pastaruoju metu placiai tyrinetas triikus laike 
Galiorkino metodas, sukurtas remiantis diferencialiniq 
lygciq sprendimo teorija. Jo pagrindine ideja yra ta, kad 

diskretiniais laiko momentais ieskomieji parametrai gali 
biiti triikiis. Triikio operatorius pateiktas lygtyje (3). Svorio 
funkcija aprasoma lygtimi (6). Triikaus laike Galiorkino 
metoda, skirto struktiirines dinamikos uZdaviniq 
sprendimui, variacine formuluote yra pateikta lygtyse (9-
13). ~i formuluote igalina sukurti hierarchincr algoritmq 
seimll, panaudojant skirtingos eiles laiko interpoliacines 
funkcijas. Lygciq sistema, gauta panaudojant tiesines laiko 
interpoliacines funkcijas, yra pateikta lygtyje (17). 
Kvadratines laiko interpoliacines funkcijos sukuria lygciq 
sistemll (21). Aukstesnes eiles laiko interpoliacines 
funkcijos sukuria hierarchincr lygciq sistemas struktiirll. 
Lyciq sistemas (17) koeficientq matrica, atitinkanti tiesines 
laiko interpoliacines funkcijas, yra lygciq sistemas (21), 
atitinkancios kvadratines laiko interpoliacines funkcijas, 
koeficientq submatrica. Pagrindines algoritmq seimos 
charakteristikos nustatomos klasikiniais modalines analizes 
biidais. Pateikiami gautq charakteristikq palyginimai su 
kitais metodais. 
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