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ON RELIABILITY-BASED OPTIMIZATION IN RIGID-PLASTIC FRAME DESIGN

A. Norkus

1. Introduction

The aim of structural design is to achieve a
structural system in an optimal fashion, fulfilling a set
of safety requirements and predefined needs. Steel
frames, in some cases reinforced concrete frames, can
be approximated when close to collapse as rigid-
plastic frames [1].

There are two basic ways for reliability analysis
of such structures, namely the kinematic and static
approaches. The first deals with evaluation of all
plastic collapse mechanisms as failure modes and is
easy to grasp. If a set of mechanisms to be evaluated
is complete, the system failure probability coincides
with exact reliability to plastic collapse. But for large
structures it becomes intractable, because of the
difficulties to evaluate all possible mechanisms.
Therefore, the main problem here is determination
of the most stochastically important mechanisms in
calculating the failure probability. Automatically this

yield the lower bound of the system failure
probability, Pf. On the other hand, the static

approach does not deal with failure modes and yields
naturally to the upper bound of P,. But for small

values of P, we deal with tightness problems [1,2,3].

While the absolute safety evaluation by itself is
problematic, the approximate methods, ensuring
sufficient accuracy for reliability-based engineering
design purposes is of interest. The paper considers
two possible solution ways, based on kinematic and
static approaches.

2. Formulation of the problem

A discrete model of frame structure, the carrying

capacity of which is described by the vector of limit
bending moments, M, is under consideration. The

components of the vector M, depend on the cross-

section dimensions and the yield limit of material.

Geometry of the structure, external loads application
places, position of critical cross-sections are specified
in a deterministic manner. Behaviour of material is
assumed to be ideal rigid-plastic. External loads and
material are random. The only possible collapse
mode is plastic collapse. The only stress component,
causing the plastic collapse, is the bending moment
(no shear and torsion effects are taken into account).
External loads are quasistatic (no dynamic effects are

evaluated).
Optimization problem can be stated as:
min@ (Mo ) (1)
m
Pf =P’. UZ, <0 SPfd’ (2)
i=1
where:
P_ - probability,
Z; - certain performance function, containing

M

o

Pgy - prespecified design overall structure
failure probability.

Conservative approximation of Py according

A.Cornell [4] can be expressed by:

m
m
maxF,(Z;)< Py < 2 B(Z). A3)
= i=1
3. Kinematic approach
Performance function, Z; for any plastic

collapse mode, can be expressed by means of internal
and external works as:

Z’_:Ui—VVi=Mgé—FTﬁ, (4)

where:
U, - internal work;

W, - external work;
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@ - vector of deformation (deviation) rates,
u - vector of displacement rates,
F - vector of external forces.
Introducing the reliability index [5]:
Z-Z,
by ==

i

in the reduced normalized random variables

coordinate space, the i-th failure is calculated as:
Pp=2(67), ®)
where:

?()

- the standardized normal distribution

function,
oz, - thestandard deviationof Z,,
Z, - the mean value of Z;.

When the variables to be considered are not
normal, the Rosenblatt transformation [6] can be
applied.

Determination of failure modes Z; can be

realized by minimizing the reliability index:

o 6
VA+B ©)
A = OTO’LO [KMO ]GMO é,
B=u'ok[Kp]oF 4,
subject to geometrical equations:
[4] a-6=0, )
u20, 620, (8)

where:

[K Mo] - correlation matrix of limit bending

moments,
[Kr] - correlation matrix of external forces,

[4] - matrix of equilibrium equations.

The problem (6)-(8) can be solved applying, for

instance, the concave minimization technique,
presented in [7]:
. 1]
min [——2—J =-A4-B, ©)]
B
ST T
A=0 O'MG[KM ]GM @,

B=ﬁTc£-[KF]cF u

subject to:

MI6-F u=) (10)

and linear constraints (7) and (8).

The presented above problem is nonconvex,
because of the possibility of nonglobal local
minimum. Every local minimum represents the
certain kinematic mechanism w,, é, and reliability
index f; due to this mechanism.

Having determined and enumerated the most

important mechanisms (due to prescribed reliability
level P;), we can solve the optimization problem

(1)-(2). The deviations o M, OF> correlation
matrices [K Mo] , [Kr], vector of mean values, F
and prespecified overall failure probability, Py are

prescribed as known values. The vector of limit
bending moment mean values M, is to be
determined.

While the usual aim of many engineering
structures is minimization of theoretical weight
(mass), the objective function actually can be realized

by (8}

min M. 1, (11)
" where 1 - the vector of weighting values, for
instance, the lengths of corresponding bars.

Optimization problem is stated as:
min M- 1, (12)

subject to:
MI&-F uzpJA+B (13)

i=lu.m,
- T T .
A=0 cMo[KMo]cMoe’

B=uw'oL[Kp]opu,

where m is the number of failure modes, taken into
account to satisfy the condition:
m
Py <Y (Pr=o8)) (14)
i=1

which for great values of f; can be replaced as [9):
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nY ¢ .e—2,3-c2-ﬂ;3 <inPy (15)
where - ¢, ¢;, ¢3 - certain empiric coefficients.

At the first step, fixing the design variables, M,
the problem (9)-(10) - (7)-(8) is solved to identify the
most relevant modes. In the second step, the
solved. This
until

optimization problem (12)-(14) is

iterative process is repeated required

convergence is achieved.

4. Static approach

Applying static approach, performance function
is replaced by equations of statical admissibility [8].
One of the first works based on static approach was
proposed by A.Cyras [10]. It must be noted, that in
the paper the problem was formulated and solution
algorithm presented for general, variable plasticity
case. Actually, loads may or may not induce plastic
failure individually, although their change in time can
produce cycles of plastic deformations which lead to
an unrestricted growth of plastic deformations or to
an alternation of their sign that result in plastic
failure. The first case is usually referred to as
progressive failure, and the second one, which is of a
is called variable
plasticity. Referring to the both cases of limit state of

low cycle fatigue character,

structure as cyclic plastic failure, the optimization
problem in [10] was stated as:

min(‘lﬁfl - V), (16)
subject to:
Pr (M‘f 1> V) =q,, a7
v +
Pr(GM, -M, 2M})24q, (18)
Pr(GIM, +M, > M} )2 q, (19)
[4]M, =0, (20)
M, >0, (21)
where:

V' - theoretical weight,
[G] - structure configuration matrix,

M, - vector of residual stresses,

r

q9=(gy,..-,9,)- vector of prescribed failure
reliabilities (0<g; <1),

g, - fixed reliability for objective function,

n - total number of stresses of discrete model

Applying the chance constrained technique, the
problem is replaced with the deterministic one and
solved by usual mathematical programming methods.
The problem formulated and solution method
presented in the paper is related to random material
and determined loads, but they can be expanded
taking into account the random nature of variable
loads and material simultaneously.

The same approach for constant random loads
and random material was applied in [11].

5. Conclusions

The methods, based on static approach, seems
to be more applicable for practical engineering
design. It ensures good enough reliability accuracy for
practical design purposes, which exceeds with the
increase of correlation of limit bending moments and
external loads. The approach presented in [10] is
general, while it involves also variable plasticity
failure modes, practically not possible to evaluate
using the kinematic approach.
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APIE TIKIMYBINE OPTIMIZACIJA STANDZIUJY-
PLASTINIU REMU SKAICIAVIME

A.Norkus

Santrauka

Straipsnyje  nagrinéjamas duoto  patikimumo
diskretinés réminés konstrukcijos projektavimo uZdavinys.
Konstrukcijos geometriniai parametrai, apkrowy pridéjimo,
pavojingy pjiviy vietos yra apibréZiamos fiksuotai
(determinuotai). ISorinés apkrovos ir konstrukcijos
medZiaga - stochastinés. Nagrinéjamas vienintelis galimas
konstrukcijos suirimo tipas - plastinio suirimo mechanizmo
susidarymas. ISorinés apkrovos apibidinamos kaip
kvazistatinés, nesukeliancios dinaminiy efekty. Konstruk-
cijos jtempimy biivis charakterizuojamas lenkimo momenty
vektoriumi M, ie. nejvertinant Slyties ir sukimo efekty.
Taigi konstrukcijos laikomoji galia apibiidinama ribiniy
lenkimo momenty vektoriumi M, kurio komponentai

priklauso nuo skerspjivio charakteristiky ir medZiagos
takumo ribos. Konstrukcijos plastinio suirimo mecha-
nizmas apibtidinamas deformacijy (deviacijy) ® i
poslinkiy u grei¢iy vektoriais.

Optimizacijos uZdavinys (1)-(2) gali bati formu-
luojamas naudojantis kinematiniu ir statiniu principais.

Naudojant kinematinj principa ribinj biivj aprasancios
Iygtys (4 ) Srei8kiamos per deformacijy ir grei¢iy vektorius.
Atskiry plastiniy suirimo mechanizmy tikimybés (5) yra
nustatomos naudojant patikimumo indeksus f;. Siy

mechanizmy identifikavimui sprendZiamas uZdavinys (6)-
(8). 8j uZdavinj galima spresti formuluojant jj kaip
neifkiliojo matematinio programavimo uZdavinj (9)-(10) -
(7)-(8). Sprendinio lokalinius minimumus atitinka galimi
suirimo mechanizmai, atitinkantys patikimumo indeksus
p;. Nustadius visus suirimo mechanizmus, atitinkan¢ius
reikiamg patikimumo lygj (3), sprendZiamas optimizacijos
uZdavinys (11)-(14). Sprendimo eiga: fiksuojant vektoriy
ﬁo sprendZiamas uZdavinys (9)-(10) - (7)-(8), randami
pagrindiniai plastiniai suirimo mechanizmai; po to
sprendZiamas uZdavinys (12)-(14). Sis iteracinis procesas
kartojamas tol, kol pasickiamas reikiamas konvergavimo
tikslumas.

Naudojant statinj principg, ribinj biivj apibiidina
statinio leistinumo  sglygos. Pagal A.Cyro pasiiilyts
sprendimo biidg optimizacijos uZdavinys formuluojamas
kaip matematinio programavimo uZdavinys (16)-(21). Taip
formuluojant uZdavinj galima jvertinti ir kintamo
plastiSkumo sglygotus suirimo biidus. SprendZiant §j
stochastinj uZdavinj jis pakeifiamas determinuotu
matematinio programavimo uZdaviniu. Toks sprendimo
biidas yra labiau taikytinas praktiniams projektavimo
uZdaviniams spresti.
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