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ON RELIABH.TIY-BASED OPTIMIZATION IN RIGID-PLASTIC FRAME DESIGN 

A. Norkus 

1. Introduction 

The aim of structural design is to achieve a 

structural system in an optimal fashion, fulfilling a set 

of safety requiremeats and predefined needs. Steel 

frames, in some cases reinforced concrete frames, can 

be approximated when close to collapse as rigid

plastic frames [1]. 
There are two basic ways for reliability analysis 

of such structures, namely the kinematic and static 

approaches. The first deab with evaluation of all 

plastic collapse mechanisms as failure modes and is 

easy to grasp. If a set of mechanisms to be evaluated 

is complete, the system failure probability coincides 

with exact reliability to plastic collapse. But for large 

structures it becomes intractable, because of the 

difficulties to evaluate all possible mechanisms. 

Therefore, the main problem here is determination 

of the most stochastically important mechanisms in 

calculating the failure probability. Automatically this 

yield the lower bound of the system failure 
probability, Pr. On the other hand, the static 

approach does not deal with failure modes and yields 
naturally to the upper bound of P f . But for small 

values of P f we deal with tightness problems (1,2,3]. 

While the absolute safety evaluation by itself is 

problematic, the approximate methods, ensuring 

sufficient accuracy for reliability-based engineering 

design purposes is of interest. The paper considers 

Geometry of the structure, external loads application 

places, position of critical cross-sections are specified 

in a deterministic manner. Behaviour of material is 

assumed to be ideal rigid-plastic. External loads and 

material are random The only possible collapse 

mode is plastic collapse. The only stress component, 

causing the plastic collapse, is the bending moment 

(no shear and torsion effects are taken into account). 

External loads are quasistatic (no dynamic effects are 

evaluated). 

Optimization problem can be stated as: 

minq>(M0 ) (1) 

(2) 

where: 
Pr - probability, 

Z1 - certain performance function, containing 

P fd - prespecified design overall structure 

failure probability. 

Conservative approximation of P f according 

A Cornell [4] can be expressed by: 

(3) 

two possible solution ways, based on kinematic and 3. Kinematic approach 

static approaches. Performance function, Z1 for any plastic 

collapse mode, can be expressed by means of internal 

2. Formulation of the problem and external works as: 

A discrete model of frame structure, the carrying 

capacity of which is described by the vector of limit 
bending moments, M 0 is under consideration. The 

where: 

components of the vector M 0 depend on the cross

section dimensions and the yield limit of material. 
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U1 - internal work; 

Wj - external work; 

(4) 



8 -vector of deformation (deviation) rates, 

u -vector of displacement rates, 

F - vector of external forces. 

Introducing the reliability index [5]: 

P 
- Z; -Z; 

z.- ' 
' crz; 

in the reduced normalized random variables 

coordinate space, the i-th failure is calculated as: 

(5) 

where: 
<t>(·) -the standardized normal distribution 

function, 
a Z; - the standard deviation of Z1 , 

Z; -the mean value of Z;. 

When the variables to be considered 

normal, the Rosenblatt transformation [6] 
applied. 

are not 

can be 

Determination of failure modes Z1 can be 

realized by minimizing the reliability index: 

(6) 

· T T [ ] · A =8 aM KM aM 8, 
0 0 0 

B=uTa~[KF]aFu, 
subject to geometrical equations: 

T . 
[A] u-8 = o, (7) 

u ~o. e~o, (8) 

where: 

[KMJ - correlation matrix of limit bending 

moments, 
[ K F] - correlation matrix of external forces, 

[A] - matrix of equilibrium equations. 

The problem (6)-(8) can be solved applying, for 

instance, the concave minimization technique, 

presented in [7]: 

m+ ;,) =-A-B, (9) 

· T T [ ] · A =8 aM KM aM e, 
0 0 0 

subject to: 

(10) 

and linear constraints (7) and (8). 

The presented above problem is nonconvex, 

because of the possibility of nonglobal local 

minimum Every local minimum represents the 

certain kinematic mechanism u1 , e1 and reliability 

index P1 due to this mechanism 

Having determined and enumerated the most 

important mechanisms (due to prescribed reliability 
level P 1 ), we can solve the optimization problem 

(1)-(2). The deviations aM , a F, correlation 
0 

matrices [ K Mo ] , [ K F], vector of mean values, j 

and prespecified overall failure probability, Pfd are 

prescribed as known values. The vector of limit 
bending moment mean values M 0 is to be 

determined. 

While the usual aim of many engineering 

structures is minimization of theoretical weight 

(mass), the objective function actually can be realized 

by [8]: 
-T minM0 I, (11) 

where I - the vector of weighting values, for 

instance, the lengths of corresponding bars. 

Optimization problem is stated as: 

subject to: 

-T minM0 I, 

i=l, ... ,m, 

· T T [ ] · A=e aM KM aM 8, 
0 0 0 

(12) 

(13) 

where m is the number of failure modes, taken into 

account to satisfy the condition: 

m 

pfd ~ L (Pfi = «D(PJ), (14) 
i=l 

which for great values of P1 can be replaced as [9]: 
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(15) 

where - c1, c2 , c3 - certain empiric coefficients. 

At the first step, fixing the design variables, M 0 

the problem (9)-(10) - (7)-(8) is solved to identify the 

most relevant modes. In the second step, the 

optimization problem (12)-(14) is solved. This 

iterative process is repeated until required 

convergence is achieved. 

4. Static approacla 

Applying static approach, performance function 

is replaced by equations of statical admissibility [8]. 

One of the first works based on static approach was 

proposed by ACyras [10]. It must be noted, that in 

the paper the problem was formulated and solution 

algorithm presented for general, variable plasticity 

case. Actually, loads may or may not induce plastic 

failure individually, although their change in time can 

produce cycles of plastic deformations which lead to 

an unrestricted growth of plastic deformations or to 

an alternation of their sign that result in plastic 

failure. The first case is usually referred to as 

progressive failure, and the second one, which is of a 

low cycle fatigue character, is called variable 

plasticity. Referring to the both cases of limit state of 

structure as cyclic plastic failure, the optimization 

problem in [10] was stated as: 

subject to: 

where: 

min(M~ I= v), 

Pr([G]M0 -Mr ~M;)~ q, 

Pr([G]M0 +Mr ~M~ )~ q, 

V - theoretical weight, 
[ G] -structure configuration matrix, 

Mr -vector of residual stresses, 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

q=(q1, ••• ,qn)- vector of prescribed failure 

reliabilities ( 0 s; qi s; 1), 

qv -fixed reliability for objective function, 

n - total number of stresses of discrete modeL 

Applying the chance constrained technique, the 

problem is replaced with the deterministic one and 

solved by usual mathematical programming methods. 

The problem formulated and solution method 

presented in the paper is related to random material 

and determined loads, but they can be expanded 

taking into account the random nature of variable 

loads and material simultaneously. 

The same approach for constant random loads 

and random material was applied in [11]. 

5. Coaclusioas 

The methods, based on static approach, seems 

to be more applicable for practical engineering 

design. It ensures good enough reliability accuracy for 

practical design purposes, which exceeds with the 

increase of correlation of limit bending moments and 

external loads. The approach presented in [10] is 

general, while it involves also variable plasticity 

failure modes, practically not possible to evaluate 

using the kinematic approach. 
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Santrauka 

Straipsnyje nagrmeJamas duoto patikimumo 
diskretines remines konstrukcijos projektavimo uzdavinys. 
Konstrukcijos geometriniai parametra~ apkrovq pridejimo, 
pavojingll pjiiviq vietos yra apibreziamos fiksuotai 
( determinuotai). ISorines apkrovos ir konstrukcijos 
medZiaga - stochastines. Nagrinejamas vienintelis galimas 
konstrukcijos suirimo tipas - plastinio suirimo mechanizmo 
susidarymas. ISorines apkrovos apibiidinamos kaip 
kvazistatines, nesukeliancios dinaminiq efektq. Konstruk
cijos itempimq biivis charakterizuojamas lenkimo momentq 
vektoriumi M, i.e. neivertinant slyties ir sukimo efektq. 
Taigi konstrukcijos laikomoji galia apibiidinama ribiniq 
lenkimo momentq vektoriumi M0 , kurio komponentai 

priklauso nuo skerspjiivio charakteristikq ir medziagos 
takumo ribos. Konstrukcijos plastinio suirimo mecha-

nizmas apibiidinamas deformacijq ( deviacijq) e ir 
poslinkiq u greiciq vektoriais. 

Optimizacijos uzdavinys (1)-(2) gali biiti formu
luojamas naudojantis kinematiniu ir statiniu principais. 

Naudojant kinematini principii ribini biiyt apra8ancios 
lygtys ( 4 ) iSreiSkiamos per deformacijq ir greiciq vektorius. 
Atskirq plastiniq suirimo mechanizmq tikimybes (5) yra 
nustatomos naudojant patikimumo indeksus P;. Siq 

mechanizmq identifikavimui sprendziamas uzdavinys (6)
(8). Si uzdavini galima sprc;sti formuluojant ji kaip 
neiSkiliojo matematinio programavimo uzdavini (9)-(10) -
(7)-(8). Sprendinio lokalinius minimumus atitinka galimi 
suirimo mechanizma~ atitinkantys patikimumo indeksus 
P; . Nustacius visus suirimo mechanizmus, atitinkancius 

reikiamll patikimumo lygi (3), sprendziamas optimizacijos 
uzdavinys (11)-(14). Sprendimo eiga: fiksuojant vektoriq 

M0 sprendziamas uzdavinys (9)-(10) - (7)-(8), randami 

pagrindiniai plastiniai suirimo mechanizmai; po to 
sprendziamas uzdavinys (12)-(14). Sis iteracinis procesas 
kartojamas tal, kol pasiekiamas reikiamas konvergavimo 
tikslumas. 

Naudojant statini principii, ribini biiyt apibiidina 
statinio leistinumo slilygos. Pagal ACyro pasiii}ytl\ 
sprendimo biid~i optimizacijos uzdavinys formuluojamas 
kaip matematinio programavimo uzdavinys (16)-(21). Taip 
formuluojant uzdavini galima ivertinti ir kintamo 
plastiSkumo S!llygotus suirimo biidus. Sprendziant si 
stochastini uzdavini jis pakeiciamas determinuotu 
matematinio programavimo uzdaviniu. Toks sprendimo 
biidas yra labiau taikytinas praktiniams projektavimo 
uzdaviniams sprc;sti. 
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