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LOCKING CONDITIONS FOR FINITE ELEMENT MODELS

S. Kalanta, R. Fliotoviené

1. Introduction

Mathematical models of a locking body stress
and strain analysis and optimization problems include
the locking conditions [1,2]. The locking conditions
must be satisfied at all points of the body. It is
impossible to realize these conditions by solving such
problems by means of munerical methods. By using
the finite element method the locking conditions
usually are satisfied only in the nodals of the finite
elements, where the so-called point locking
conditions are introduced {3,4]. However, the point
locking conditions are only one of the possible
discrete  locking expressions. The classical
discretization methods, namely point collocation,
area collocation and Bubnov’'s-Galerkin’s methods
for the discretization of elastic-plastic body yield
conditions are proposed in papers [5,6]. On the basis
of the above methods, three forms of discrete yield
conditions are developed, namely the point, the
clement-integral and the point-integral yield
conditions. It has been shown that the most stable
and exact design results are obtained by using the
point-integral yield conditions [6,7]. In this article
three new discrete locking conditions for the finite
element models are developed on the basis of the
three above techniques.

2. Locking conditions for the finite element
The finite element of volume ¥, of a linearly
locking body is analysed in the xs{xl,xz,xg,}T

coordinate system. The any point strain state of the
element is described by the vector €,(x), then the

locking conditions read

P =<p0(80k(x))—cp(ek(x))+[D]kk(x)20 , ()

where (p(e k(x)) is a locking function , go(x) is the

function of locking constants (the extreme

compression deformations), [D] is a locking surface
translation (locking) matrix, A.(x) is a multiplier
function, related to the locking function €4(x). In

general, all the functions are described as vector-
functions. The multipliers A ;(x) are related to the

associated law of locking function by

w) ]
G k (X) = l:—"‘_apa!(::(x; )] A k (X)’

where &,(x) is a vector function of the stress rates,

[&P(‘k(x))} . . . . .
—7~ | is a locking functions gradient matrix.
de k(x)

The locking conditions (1) must be satisfied in the all
points of the finite element. But it is impossible to
solve analysis and optimization problems of the
locking body by means of numerical methods.
Therefore this strong requirement is weakened.
Verifying the locking conditions only at the nodes of
the finite elements, the locking conditions (1) at
many points of the element are not satisfied. But one
must note that the point locking conditions

9i =00i(soi)-0:lei)+ DI 20 @)

are only one of the forms of the weak locking
conditions. By using the collocation method, the
general form of the weak locking conditions is
developed:

| [Gk (x)]{% (S Ok (X)) - <p(8 k (X))} +[D]r(x)20,(3)
Vk

where [Gk(x)] is a weight functions matrix formed

from the diagenal submatrices [Gki (x)], related to
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the nodes i=1,2,...,s of the finite element. The

discrete expression of the conditions (3) is developed
further. The approximation functions for the
displacements u(x) and multipliers A,(x) are

presented as

u,(x)= [Huk (X)] U, 4)
Ak () = [ Hye (0] 1 (5)

while for the locking constant as

T

80k(x)={HOk(x)} €0k - (6)
T
Here By (x) = {Hopy (%), Hogg %)y, Hos®)} is 2
vector of shape functions of locking constant;
[Huk(x)], [H,k(x)] are the approximation matrices
for the displacements and the multipliers A, (x) ,
formed from the submatrices [Huk,-(x)], [Hw (x)]
respectively. The vectors wy,A; ,eqx are vector of
the displacements, vector of the multipliers and
vector the locking constants for the individual finite
clement respectively. The components of these

vectors are the vectors of the nodal displacements
uy; , the vectors of muitipliers A ;; and the vectors of

the locking constants
i=12,...,s.

€or; Tespectively, where

By using the geometric equations, the strains are
expressed via the displacements:

g, (x) = [ ]Tuk(x) = [Bk(x)]uk , @)
where
[B®)] = [ 17 [ H, ).

Here [e% ]Tis a differential operator of geometric

equations. The locking function

‘P(Sk (X)) =@, (uk (x)) )

By integrating the conditions (3) and by taking
into account the relationships (5)-(7), the following
discrete expression of locking conditions for the finite
clement is obtained:

<P0k(80k)-¢k(“k)+[Dk]lk 20, (8)

where

Pr (“k) = J[Gk (x)] (p(sk (x))de =

k

= J, [Gk (X)] Py (“k (x))de ’ (9)

k

<P0k(90k)= I;f [Gk(x)]‘PO("'Ok(x))der (10)

[Di]= [k W) DI Hy @] av,. 1)
Vk

Choosing various weight functions, one obtains
various discrete locking functions (8) with the
different expressions of the vectors ¢ k(“k)y

<p0k(t-:0k) and of the matrix [Dk]. The weight

functions can be chosen by using the classical
collocation methods [6,8].
Applying the point collocation method, it is

taken that [Gk,- (x ,)] =[I] for the element nodal point
i and that [G,a- (x j)]=[0] for remainder it points
i#j.Here [I], [0] are the unit and zero matrices

respectively. Then the locking conditions of the

element are expressed via the locking conditions (2)
of its nodes i=1,2,...,5. The components of the

vectors ¢ k(uk) and Qg (501:) are the functions
cp;d(uk) » ®0ki (80 ) - The matrix [Dy | =[diag[D]].
By using the area (element) collocation method

for discretization of locking conditions, the unit
weight functions [Gk(x)]=[1] constant in the

element volume are applied. Then

¢k(uk)=l}f¢u(uk(x))de <ok (Eok ) +[Dic Jhi» 12

k

where %k(SOk) = J q’o(SOk(X))dV k, (13)
[Di]= J [D][Hy W)]av. (14)

An analysis of the yield conditions [6,7] provides
that the best approximation of the inequalities can be
obtained by choosing the weight function according
to the Bubnov’s-Galerkin’s method. Applying this
method the matrix [Gk,- (x)] =[r ][H jk,-(x)] is
introduced for the each node i=1, 2,...,5 of the

clement. Here [H j;d(x)] is a highest displacement
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order shape function corresponding to node i&. Then
the locking conditions (8) for the whole element are
expressed by the locking integral conditions of its
nodes:

=] [Gla'(x)]%(“k(X))de <
Y (15)

S¢01d(80k)+[Dki]7~k,
where
¢01d(80k)= | [Gld(x)]Q’o(SOk(x))dV ks (16)

k

[Di]= [[Gu@|D)Eu@]av,; a7
Vk

i=12,...,8
For this case

‘POk(SOk) = {q’Okl(SOk)v CPOkz(SOk), eees Poks (SOk)}T,

Q)k(“k)E {‘Pkl(“k)v‘sz(“k)s-""Plc(“k)}T

and the matrix [Dk] consists of the submatrices
[D;a-]. Thus the pattern of the vectors g (50k) and
) k(u k) in the discrete locking conditions (8),
formed by using the point collocation and Bubnov’s-
Galerkin’s methods are identic, but the component
expressions differ.

It is obvious that the simplest for an application
are the point collocation conditions, and the most
complicated are the point-integral ones (15). But it is

to build locking
conditions expressions, additionaly introducing the

possible simplified integral

approximation of the locking function:
‘Pk(“k(x)) = [H¢(X)]$k(“k),

where ak(“k)s{q’kl(“k)’Q’kz(“k),--w(sz‘(“k),---,
<P1g(llk)}T y @ k,-(uk) is the locking function of the

i-th node. Then the following simplified analogues
of the conditions (12) ir (15) are obtained:

Pk [‘Dk]CPk( 5¢ok(80k)+[Dk]9~k, (18)
Pii “k)=[¢’1a']$k(“k)5(Pozd(so,,)*'[Dld]lk, (19)

where

[0:]- I[Hq,k(x)]de []= j[G,a(x)][Hd(]de

Here the locking conditions of the element (18) and
the locking conditions of the i-th node (19) are
expressed by the algebraic sum of all element nodes
locking conditions (2), multiplied by certain weight
coefficients.

When the unknown values in the problem are
the residual displacements u, (x) and the strains

€, (x) instead of the total displacements functions
(4) the following function must be accepted:

“ek(x) = [Huk (x)]“ek ’ “rk(x) = [Huk (X)]ll,k.

Then the element discrete conditions
Pok (Go::)- ‘Pk(“ek +“rk)+[Dk]7vk 20 (20)

can be obtained from (8) by changing the arguments
of the functions according to the formulae
uy(X) =u(x)+u,(x) and wg =w, +uy . Here
u,. is the displacement vector, obtained by solving
the elasticity problem.

For the perfectly plastic-rigid body the matrix
[D]=[0]. Thus the finite clement locking conditions

for such body

<P0k(30k)—¢k(“k)20 (21)

also are obtained from (8) taking that [D]=[0].

3. Numerical example

In order to illustrate the discretization of the
locking conditions, the discrete expressions of the
energy locking conditions [2, 4]

ed () - (x) - 6% (%) + £ (X)py (x)-36% (x) 20

for the triangle finite element of perfectly plastic-
rigid body at the plane strain state wwe’ll develop.
Here the locking function has the form:

¢(8 k(X)) = 8% I(X) + 6‘%2 (X) -8 1(X)€22 (X) +

22
R TRNR L RS
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and ¢, (“"o;: (x)) = agk (x), where the strain vector is

e(x) = {eu(x), en(®, & (x)}T and

1 -050
[ml=|-05 1 o0].
0 0 3

The relation between displacements and strains is
described by geometric equations:

e11(x)= a"ai(lx) , e2(x) =i‘a¥’
e1a(x)= 2a00)  2a(0) (23)
&, g

The locking constant along the element is assumed to
be £o; (x) = &9 = const .

A first order triangle element. 1t is convenient to
consider the first order triangle element in the local

E= {61,62 & }T (area ratio) coordinate system [5, 8].

Applying this coordinate system, the position of any
point D of the element is described by rations of the
certain triangles Ay (Fig. 1) to the total area of the

element 4; :

Al Agz

The relation between the local and global coordinates
x is described by following relationships:

_ a; +b1x1 +Cy1Xp a a +b2x1 +Cr Xy

él - 2Ak ’ 2= 2Ak ’ 2
as +b3x1 +C3Xy ( )
3= 24,

Here the element area is
A =ay+ay +ay
and the coefficients are:
1 = X12%23 —X13X23,

a; =X13X31 —X11%X23,
a3 =X11X23 —X12X21,

€1 =X13 —X12,
€y =X11 —X13,
€3 =X13 —X11-

by = x93 —x33,
by =x33 — x5,
by =x3; ~ x5,

Fig. 1. The first order element

The displacements of the finite element are
approximated by linear functions

3

“1k(§) = Gy +Quyp + &3 = ;151'"1,',

3
u2k(§) =§qua +Quyy +&Huys = Zifiuzi, .
1=

The strains of the element are calculated by using the
complicated function differential formula

o) _au(e) 2,0 ault) am
& % & %, &
+8u,(§)6§3(x)
& &

The strains
1
11,k = —(blull +bouyy +b3“13),
24,
1
€2,k =% 4 Ay (CluZI +Clpy + Csuzs),
1
€12,k = —"(Clun +bupy +cuyy +
24,
+byuyp +c3u13 +b3u23)

are the costant in the area of the element, so the
locking conditions for all the points of the element
are the same. Thus for any discretization method we
have only one locking condition for each element:

{2 .2 2 2
Vi =7k (50k ~Eilk ~ €2k T E1LKERK ~ 3512,k) 20.
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The coefficient y; depends on the discretization
method: for the point collocation case y; =1, for the

element integral condition (the area collocation)

yr =A; and for the point integral condition
A
Yi= —3k— The solution of the problem independs on

the coefficient y; , that’s why it is convienent to take
that y, =1.

The order The
displacement functions of the second order element

second triangle  element.

(Fig. 2) are approximated by quadratic polynoms:
6 6
e (E) = ZiH By, ug(E)= _ziH (&
i= i=
The shape functions for the displacements
H,d(g) = 2§,2 -&; for the nodes i=12,3 and

Hyy() =488, Hys(E)=48585, Higle)=48.85.
The displacement approximation matrix [H uk(g)]
and the vector w; comsist of the submatrices
[4s()] =[N Hi(E) and of the subvectors uy,

when analysing the element in a clockwise direction,
starting from the first node. Here [I] is the second

order unit matrix

Fig. 2. The second order element

By differentiating the displacement functions,
the element relation matrix between strains & (&)

and nodal displacements u is obtained:

(110(140(120(150(130(160
0B, 0B40 B, 0PBs0 B30 B¢,
BiajPaagPrazPsasPsazPeag

[4(e)] =

where

*1 =2b71k(4§1 -1),  ay =-2(§Lflbi)’
o2 =Eb;f;‘(4§2 -1, s =3(§3_b2/1£§&),
3 =%(%3—1), g =_2(§_3’ii_1:_§@,
Proga (i~ B =£2“-1;1:—§L2),
B2 = chk (4g,-1),  Bs =_2(§_3°2A._:§L3)’
537%(453—1), B =3@AZ_§@.

Applying the formula (22), the locking function reads

olex(e)) = uf [Bi ()] us. 25)
where the matrix
[Be(®)] =[x @)m[4c(e)] . )

According to the formulae (8)-(15) the following
element conditions are obtained
a) the point conditions -

ou(ur) =“£[Ald(§i)][H][Ala' (§i)]T“k < &, @7
i=12,...6;

b) the intcgral conditions according to area

collocation method -
ox(ug)=uf [0 Ju, <4, (28)
or in the simplified version
T — ( ) 2
Hj @rlug)s Agegy, (29)

where

[‘Dk]= J [Bk(é)]dAk, Hy = J H«pk(i)dAk, (30)

5k(“k) = {<Pk1 (“k)s(PkZ (“k)’ ---"PkG(“k)}T,

i (ui)= "ﬂAId(éi)][m[A/d(h)]T“k =

@3
=“£[Bkz'(§i)]“k; X
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c) the point integral conditions according to the
Bubnov’s-Galerkin’s method

(p]d(llk)= uﬂtbk,-]uk SA/de(Z)k, i=12,...,6 (32)
or in the simplified version

HE®, ('lk) < Aeds, (33)

where

[®x]- [Ha(e) [Bi(®)|ate, A= [ Hgle)a,

ik k.
Hy; = [ Hy(6)Hp ().
Ak
The displacement shape functions Hy () are
accepted as the weight functions G;(E) in order to

form the point integral locking functions. The

simplified and the integral locking conditions for the
finite element nodes i=1,2,...,6 are developed. The

formula

b alb!c!
J‘g‘l’E.lZggdAk = (a+b+c+2)'2Ak
A, °

or the standard subroutines {9] can be used for the
numerical integration of the above matrices.

Due to the large amount one can not present
the all expresions of the matrices [@;] and [®4].
The locking condition matrix [®,,] for first node of
the element is presented only. Another matrices one
can obtain by integrating the denoted matrices.
Thereto one can form the second and the third nodes
locking matrices [®;] and [®;3] from the matrix
[©r] cyclically translating its element indices
respectively. For the matrix check one can use the
condition

(@] S[os]

The simplified locking conditions are presented:
a) the element integral condition -

ATk{‘Pk4(“k)+(Pk5(“k)+¢‘k6(“k)}SAkggk;

b) the point integral condition -

[I'k]Ek("k)SCOk,

where

(6 0 -1 -4 -1 0]

0 32 0 16 -4 16

A |-1 0 6 0 -1 -4

[rk]=ﬁ -4 16 0 32 0 16

-1 -4-10 6 0

| 0 16 -4 16 0 32]
Ake(z)k T
Cor =5 {0, 1, 0, 1, 0, 1}

Here the expressions of the functions ¢ k,.(u k) are

obtained according to the formula (31) inserting the
values of local coordinates.

4. Conclusions

Three clasic collocation techniques for the
locking conditions discretization are applied, namely
the point collocation method, the area collocation
method and the Bubnov’s-Galerkin’s method. On the
basis of the above methods three locking conditions
for the finite element are developed, namely the
point conditions, the integral element conditions and
Using the
approximation functions of the displacements and

the point integral conditions.
locking multipliers, this conditions are expressed by
nodal displacements and multipliers of finite element.
The simplest is the point locking function expression,
but the most exact are those of integral point
conditions. The locking function discretization is
illustrated by the numerical example. The discrete
locking condition for the first and the second order
plate element with the lincar and the parabolic
displacement distributions are developed. It has been
shown that all three discrete locking conditions for
the first order element coincide.
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STANDEJIMO SALYGOS BAIGTINIY) ELEMENTY
MODELIAMS

S.Kalanta, R.Flietoviené
Santrauka

SprendZiant standéjanéio kiino jtempimy-deformacijy
analizés ar optimizacijos uZdavinius, standéjimo sglygos

paprastai tikrinamos tik baigtiniy elementy mazguose, ty.
sudaromos  tadkinés standéjimo  salygos. Tadiau

plastifkumo teorijoje naudojami ir kiti takumo salygy
analogai, diskretizacijos metodai. Siame straipsnyje
standéjimo salygy diskretizacijos problema sprendZiama
panaudojant klasikinius matematikoje Zinomus kolokacijy
metodus. Taskinés kolokacijos, kolokacijy srityje ir
Bubnovo-Galiorkino metodais sudarytos trys bendros
diskretiniy standéjimo sglygy formos - taSkinés,
integralinés elementingés ir integralinés tadkinés standéjimo
salygos. Bendru atveju uZduodant poslinkiy, standéjimo
konstanty ir daugikliy aproksimavimo funkcijas, jos
reifkiamos per baigtinio elemento mazgy poslinkius,
standéjimo konstantas ir daugiklius. Kiino deformacijy
biivj tiksliausiai apralo integralinés taskinés standéjimo
sglygos, tadiau paprasliausia yra taSkinés standéjimo
salygos iSraiSka. Apradytoji standéjimo salygy diskretizacija
iliustruojama plok3tés pirmos ir antros eilés trikampio
elemento su tiesiniu ir paraboliniu poslinkiy pasiskirstymu
diskretiniy standéjimo sglygy sudarymu. Parodyta, kad
pirmos eilés elemento visos trys diskretiniy standéjimo
salygy iSraifkos sutampa iki pastovaus daugiklio.
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