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RELATIONS AND TRANSFORMATIONS OF EXTREMUM ENERGY PRINCIPLES FOR

DEFORMABLE BODY
S. Kalanta

1. Introduction

In the elasticity and plasticity theories the

extremum energy principles allow to create
variational formulations of problems and various
schemes of finite elements. The energy principles in
the theory of plasticity were created and improved by
such famous scientists as G. Colonnetti, H.
Greenberg, A. Cyras, A. Borkowski, D. Drucker, W.
Prager W. Koiter, E. Melan, A. Gvozdev etc. Some
of them are even called by the names of these
scientists. A. Cyras has formulated the energy
principles [1-5], defining a limit state of elastic-plastic
discrete structures and deformable body, and created
their mathematical models, determined dual
relations. He has also developed the static and
kinematic theorems of analysis and optimization of
body
increasing (simple) and repeated-variable loading.

the elastic-plastic under monotonically
The energy principles of the mechanics of the elastic-
plastic body formulated by foreign scientists are
published in a lot of articles and monographs [6-10
etc]. In the monograph [11] the extremum principles
of the dynamics of the perfectly plastic body are
investigated.
Though most
formulated independently, but later some relations of
them were observed. First of all, it was the duality of

extremum principles were

static and kinematic formulations, the equivalence of
some energy principles. For example, W. Prager and
H. Symonds [6], A. Procenko [10] have proposed the
principles of residual stresses equivalent for Haar-
Karman’s principle. Some principles, for example,
those of Colonnetti, Greenberg, Haar-Karman,
turned out to be separate cases of other general
principles [9]. The aims of this work are: a) to carry

out analysis of extremum energy principles of the

elastic-plastic body under monotonically increasing
loading and to illustrate new relations in one article;
b) to show that most energy principles in the elasticity
and plasticity theory, even principles defining the
limit state of a perfectly plastic body, can be received
from elastic-plastic body principle of a minimum of
total complementary energy or from dual to it the
principle of a minimum of total strain energy.

2. The principles of a minimum of total
complementary energy

Let’s assume that the elastic-plastic body is
cffected by an external load F(x), initial known
strains €o(x) and initial displacements (support
settlements) uo(x). Suppose that at its surface S
the intensity and direction of the load F(x) are
known, but the displacements u(x) are unknown. In
other parts of the surface S, displacements u(x)
are given (fixed), while the forces (reactions) F, (x)
are unknown. The body surface S=S,US,. In

order to abridge and simplify the expressions of
equations and functionals, further the dependence of
vectors-functions upon the coordinates x is not
indicated, i.e. the markings o(x)=0o, ux)=u etc.
are accepted.
The functional of total complementary energy
U, =—1-jcr[d]ch +IO’T80 av +

i g e
le,T T
+5£x [H]xalV-Sju0 [4;]ods,

where[d]is a flexibility matrix of body elementary
element; [H ] is the strengthening matrix; A is the

vector of plastic multipliers. The third member of this
functional expresses the complementary energy of
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strengthening. A statically admissible stresses vector-
function o is defined by the equilibrium equations

[#]c=0 eV, [4]o=F es; @
and the yield condition
f(C)-f(c)+[H]A20 eV, ©)

where C is function of material plasticity constant,
A 20. At the investigation moment T the vector of

plastic multipliers
T .
A.(x) = Il(x, t) dt,
0

where A(x,f) is the vector of plastic multipliers
velocities.
The principle of a
complementary energy is formulated in this way:
The actual vector of all statically admissible vectors
of stresses in the elastic-plastic body is the vector
for which the total complementary energy is a
minimurn,

minimum of total

This principle is expressed by the following
extremum problem:

1 1
Ei[cT[a!]miV +;‘;cTsOdV+Ei[lT[H]ldV—

—g[ug[A,]cdS =>min

under the conditions C))
f(C) -1(o)+[H]L 20, 120 eV;
~[#lo=0 <V, [4,]c=F es;.

This is the static formulation of stress-strain field
analysis problem of a linear strengthening body. This
formulation allows to determine the distribution of
stresses.

From this extremum principle, the whole line of
other energy principles can be deduced. Taking
[H]=[0], the principle of a minimum of total
complementary energy for perfectly elastic-plastic
body is:

%J.O'T[d]GdV-{-J.O'TSOdV— IuoT[A,]cdS = min
v v S,

under the conditions )

1,(C)-1(c)20 eV,
[#]lo=0 eV, [4,]c=F es;.

When initial deformations do not exist (gg =0), the

problem of mathematical programming (5) expresses
the Haar-Karman’s principle {[7,12]. If initial
deformations €; are identified with given plastic
deformations €,, we will receive Colonnetti’s
principle [7,13]:

When the plastic deformations are known, the

actual vector of all statically admissible vectors of

stresses in the elastic-plastic body is the one for

which the total complementary energy is a

..

In case of a lincar elastic body, when elastic
deformations are not limited and the plastic constant
is non-limited large (C=w), the problem (5)
expresses the classical Castigliano’s principle [14,15].
At last, when only an external load effects the elastic
body (g9 =0 and ug =0), the principle of a minimum
of total complementary energy formulated by us
coincides with Menabrea theorem [9] (a separate
case of Castigliano’s principle).

The extremum principle (4) can be expressed by
residual stresses o, . Using the relationships

o=0, +0,,

[dlo, + &g —[&]Tue =0 eV,
u,=uy €85,
and

[oF [d]e.av = [oT [#]" u,aV - [oTeqaV =
4 | 4 v
=-Iu£ [¥]o,aV + I“Z [4s]o,as +
v S,
+ qu [A,]c,dS - Ic{eodV,
s, v

the second expression of the functional of a total
complementary energy is received:
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=%j Tldle,dv +%ij[H]de +[olegav +
14 vV vV

+5.[°eT [dlo, av —gug[As]ce ds -
V u

T
- [wT[]o,av + [ul [As]c,dS,
v s,
where o,,u, are the vectors of stresses and

displacements elastic solution of the problem. When
the external effect is given, the stress o,,
displacements u, and the third, fourth and fifth
members of functional U, are fixed, and the last two
members of this functional are zero for statically
admissible stress. Hence the extremum principle (4)
and the problem

Lt 6T1dl6,av + L [AT[H]AdV = min
2 JorldledV +3
| 4 | 4

under the conditions (6)

£, (C)~1(c, +o,)+[H]L20, 120 eV;
-[#o, =0 eV, [4,]o,=0 es;

are equivalent to each other. And the problem (5) is
equivalent to the extremum principle

1
EIGf[d]o,dV => min
| 4

under the conditions @)

f(C)-1(c, +5,)20 &V,
-[#lo, =0 eV, [4,]0,=0 es;.

Generally it corresponds to the principle of a
minimum elastic potential of residual forces,
formulated by A. Cyras [4,5):
The actual vector of all statically admissible vectors
of residual forces in a structure that does not
achieve complete plastic failure is the vector for
which the elastic potential of these forces is a
minimum.
This principle generalizes the principle of Prager-
Symonds [6], which was formulated for a discrete
system. The simple load is a separate case of
repeated-variable load. That’s why the extremum
principle (7) can be deduced from analogous
extremum principle

1
EIG,T[d]c,dV =min
vV

under the conditions ®

~[eH]o, =0 eV, [As]c, =0 €Sy,
I'O(C)—f(c, +0':,-) 20,

eV, iel

6(C)-t(s, +05) 20 ’
which has been formulated for the body, effected by
repeated-variable load [4,5]. Here o}, o_; are the

extremal stress vectors corresponding to picks i
symmetric pair of elastic stress polygons; I is the set
clastic stress polygon symmetric picks pairs indices.

It will be shown further that the energy
principles of an ideal rigid-plastic body limit
equilibrium analysis and optimization can be derived
from the extremum principle (5). So not a few
extremum principles are connected with the principle
of a minimum of total complementary energy as its
separate cases. But this principle can be also obtained
from the mixed functional by analogy with
Castigliano’s principle as in the elasticity theory, the
latter is obtained from Reissner’s functional [15].

Using the Lagrangian multiplier method, the
minimization problem (5) can be transformed into
the problem of stationary point determination of
functional

,=;:I T[d]ch+IuT[<;zl]ch+'[cTsodV+
| 4 14 14
[T (A @Y + [ BT {f(0) - 1y(C) ~[H]AJav +
14 14

1
talk
J {—[As]c}dS—é.‘ug[As]ods, 9)

when A 20, p>0 V. For statically admissible stress

this has the
complementary energy. That’'s why taking the

functional physical sense of
preliminary conditions (2) and (3), the extremum
problem (4) and all earlier mentioned energy
principles can be derived from functional .

If the second member of functional &% is
reformed by the Gauss’-Ostrogradski’s formula, we
will receive the second form of mixed functional and

stationary point problem:
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&, = Ij/ o7 {%[d]o+eo - [gv]Tu}dV + Sj ulFds +

+ % [AT[H]rav + [BT {t(c)-to(C) ~[H]M}aV +

+ [{u-uo) [4,]odS = stac; 120, B20. (10)
S,

u

Under the conditions of Kuhn-Tucker, the following
relationships are for the problems (9) and (10):
£, (C)-1(c)+[HIA 20 eV;
—[e¥lo=0 €V, [As]c =F eSp;
B {f(0) -1(C)+[H A} =0, B=1
[d]o + o +[VIG) A ~[c# ] u=0 e¥;
[4,] {u-uo}=0 es,; 220, p20 ev.

eV; (1)

Here [Vl'(c)] is matrix of yield conditions gradients.

This equation system describes the elastic-plastic
body stress-strain field. In the relationships (9)-(11),
having taken [H]=[0], we will receive ideal elastic-
plastic body mixed functionals and the conditions of
Kuhn-Tucker, which correspond to the functionals. In
case of a linear elastic body (A =0, p=0), the
functionals &# and &% become the first and the
second form Reissner’s functionals.

We are going to show that the extremum energy
principles for the perfectly rigid-plastic body under
monotonically increasing loading [2,3] can be
obtained from the principles of a minimum total
complementary energy or total deformation energy.
Investigating the limit state of the body, we don’t
estimate elastic deformations and go over to the
velocities of displacements and deformations.

The static theorem of simple plastic failure. Let’s
assume that the velocities of body plastic
deformations are fixed as & p= £g, the velocities of
initial displacements w=0 and the distribution of

plastic constants C is unknown. The yield conditions
are also assumed to be uniform. The rate of energy
dissipation of deformable body

D=[eloav = [AT [Vi(o)]oar = [6Cav,
vV 1 4 Vv

where © is the fixed field of plastic deformations

velocities intensity. Then the following problem is
obtained from the extremum principle (5):

IGCdV =min
14

under the conditions 12)

fo(C)-f(c)20, C20 eV;
{H]o=0 eV, [A]o=F eS;.

It corresponds to the following extremum principle:

The velocities intensity of plastic deformations

being fixed, the actual field of all statically

admissible stress fields in a simple plastic failure is

the one for which the energy dissipation rate is a

minimum.

So the problem (12) in the case of fixed plastic
deformations velocities intensity expresses the static
theorem of simple plastic failure {2] formulated by A.

Cyras. It

distribution of plastic constant or the parameter of
plastic constant Cy (under the law C =pCy).

The static theorem of the limit load. Let’s say,
the initial deformations do not exist (g5 =0), the

allows to determine the optimum

distribution of external load is unknown (the
direction is known) and velocities of displacements at
the place of load operation are fixed. The surface of
the body , where the displacements or their velocities

are determined and unknown forces act, is signed as
S.. Hence the body surface S=S5, =S, US,, At the

surface S,; the power of operating external forces
W= [ufFds= [uj[A,]ods.
Sul Sul

Paying attention to these conditions the problem (5)
takes the form:

I ﬁg FdS = max
Sul
under the conditions (13)
fic)<t,(C), -[=]o=0 €V;
[4)o+F=0, -F<o es,.

This problem in the case of fixed displacements
velocities expresses the static theorem of the limit
load formulated by A. Cyras [2]:
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The actual functions of all statically admissible
stress functions in a simple plastic failure are those
which maximizes the power of external loading.

The problem allows to determine the distribution of
optimum limit load or the parameter F, of limit

load, when the law of load distribution is F=nF;.In

this case the problem (13) expresses Gvozdev’s
theorem [16].

3. The principles of a minimum of total strain energy

The total strain energy of linearly strengthening
elastic-plastic body:

I =%£0’T[d]ch—guTFdS+
’ (14)
+;[1.T[Vf(0')]ch— %‘{XT[H]XJV-

The first two members of this functional express the
total potential energy of the elastic body, while the
third member expresses the energy dissipation. The
last two equations of (11) determine the
kinematically admissible vectors of the displacements
w In the case of kinematically admissible
displacements, the functional <%, , multiplied by -1,
expresses the total deformation energy of elasto-
plastic body. That’s why the problem of stationary
point determination of functional (10) can be
transformed into the maximization problem

...;_i[aT[d]ch—Ij;).T[Vf(c)]ch+%£lT[H]XdV+

+ [uTFds + [AT {t(c) ~1(C) ~[H]A}dV = max

under the conditions (15)
[dlo + g +[Vf(c)]Tl -[#]fu=0 eV,
[4,)] {u-uo}=0 es,, 120 ev

or the minimization problem

- [AT{t(c) -1(C) +[H]A}dV = min
v
under the conditions (16)

[d]o +eq +[vE(o)] A -[e]Tu=0 &V,

[AS]T{u—uO}=0 €S,, A20 eV.

These problems correspond to the extremum
principle:
The actual vector of all kinematically admissible
vectors of displacements in a body is the one for
which the total potential energy of deformations is
a minimum,
This principle for the perfectly elastic-plastic body is
expressed by the following extremum problem:

juTFds-%ch[d]ch - [AT[v(o)]oav +
s, v v
+ 37 {t(c) - 1,(C)}dV = max

| 4

under the conditions a7

[d]o +€g +[Vl’(c)]Tl —[G%]Tu =0 eV,
[4,] {u-ug}=0 e5,, 120 V.

The problems (4),(15) and (5),(17) form the dual
pairs of stress-strain field analysis problems in static
and kinematic formulations for the strengthening and
perfectly eclastic-plastic body. When plastic
deformations are known (fixed), the problem (17)
expresses the Greenberg’s principle [9,17]. In case of
linear elastic structure this problem expresses the
classical variational principle of total potential energy
(Lagrangian principle).

Using the Lagrangian multiplier method, the
dual kinematic formulation for the static problem (6)
can be created:

—%f[of[d]c,dV—%i[xT[H]ldV—
- IXT[Vf(oe +c,)]o,dV +
14
+ flT{l’(ce +c,)—fo(C)—[H]X}dV = max
V

under the conditions (18)

[d]c, + [Vl’(oe +c,)]T). —[d]Tu, =0, A20 €V;
[4,] u, =0 €S,

It expresses the principle of a minimum of total
residual deformation energy:

Of all kinematically admissible vectors of residual
displacements in a system that does not achieve the
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complete plastic failure the actual vector is one for
which the energy of residual deformations is a
minimum.
Taking [H]|=[0], the extremum problem (18)
expresses the principle of a minimum of residual
deformation energy for perfectly elastic-plastic body.
Now we are going to investigate the kinematic
theorems for perfectly rigid-plastic body. They also
can be obtained from the principles of a minimum of
total complementary energy or total strain energy.
The kinematic theorem of simple plastic failure.
We create the dual kinematic formulation for the
problem (12) using Lagrangian multiplier method:

sjﬁTFds - lj,;LT{ [V1(o)] o - [Vto(C)] C} ¥ +

+ [AT{#(0) - 1(C)}dV = max

V
under the conditions (19)
[vro(c)]T ASO, A20 eV;
[Ve(e)] A~ [er]Ti=0 eV,

[4,] u=0 es,.

The first member of the objective function of this
problem means the power of extermal load, the
second and the third members in case of optimum
solution are equal to null and the constraints of the
objective function determine the sphere of
kinematically admissible displacements velocities.

Hence the problem (19) expresses the kinematic
theorem of simple plastic failure formulated by A
Cyras [2]:

The actual vector of all kinematically admissible

displacements velocity vectors in a simple plastic

failure is the one for which the power of the
external loading is a maximum.

The first condition (inequality) of the problem
(19) has the physical meaning of the intensity of
plastic deformation velocities and at once the
physical meaning of energy dissipation rate
constraint. Hence we can get this formulation of
extremum principle directly from the problem (17)

having fixed the energy dissipation rate. When the
law of plastic constant distribution is given C=pCj

and the extremum problems (12) and (19) expresses
the static and kinematic theorems of the plastic
constant multiplier [1, 2].

The kinematic theorem of the limit load. The
static formulation of the problem (19) can be
rearranged into the kinematic formulation by the
Lagrangian multiplier method:

‘J;XT[Vf(o)]c av - I_[XT {f(c) - fO(C)}dV = min

under the conditions (20)

~[vt@) i+ [ u=0, iz0 eV;

a2y €Sy [4,] 5=0 €S,
The first member of an objective expresses the rate of
energy dissipation and the second one for the optimal
solution of problem is zero. Hence the objective
function has the physical meaning of the rate of
energy dissipation. So the problem (20) corresponds
to the kinematic theorem of a simple plastic failure
formulated by A.Cyras [2):
The actual vector of all kinematically admissible
vectors of displacement velocities in a simple
Pplastic failure is the one for which the rate of energy
dissipation is a minimum.
The fixing of displacement velocities means a
constraint for the load power. Therefore the
kinematic theorem of the limit load can be deduced
directly from the problem (17) fixing the load power.
When F=nF; this extremum principle become the
kinematic theorem of the limit load multiplier [1, 2].
In Fig.1 the all relations of extremum energy
principles for deformable body are presented.

4. Conclusions

The extremum energy principles of the elastic-
body and limit
equilibrium problems in the case of monotonically

plastic stress-strain  analysis
increasing (simple) loading have been investigated.
The principle of a minimum of total complementary
energy (4) and the principle of a minimum of total
deformation energy (16) have been formulated. It has
been shown that the extremum principles of Haar-

Karman, Colonnetti, Prager-Symonds, Castigliano
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Principle of a minimum elastic

o (Principle of a minimum of

potencial of residual stress for
perfectly elastic-plastic body (7)

CTE)

\

Principle of a minimum

residual strain energy for

perfectly elastic-plastic body
~ A

Principle of a minimum of

complementary energy of residual | g

residual strain energy for

T3

stress for strengthening body (6) )

Principle of a minimum of total

strengthening body (18)
N~ A

(

Principle of a minimum of

complementary energy

|

total strain energy for

for strengthening body (4)

T

Z

Principle of a minimum of total \
complementary energy for perfectly
elastic-plastic body (5) y

1

Haar-Karman’s
principle

1

)

]
]
)

strengthening body (15)

8

Principle of a minimum of
total strain energy for perfectly
elastic-plastic body (7)

Colonnctti’? Greenberg’s principle
principle
/

\

- ~ )
Castigliano’s principles @« | Lagrange’s principles

\. J y,

( : ol . h
Static theorem of limit load (13) > Kinematic theorem

\_ L of limit load (20) )

(o . ) . . )
Static theorem of limit | Kinematic theorem

Qoad multiplier D ' of limit load multiplier )

(" Static theorem of simple \______> (" Kinematic theorem of simple )
plastic failure (12) | plastic failure (19)

\ J \. J

. . N . . .

Static theorem of plastic »| Kinematic theorem of plastic
constant multiplier ) - constant multiplier

Fig. 1. Relations of extremum energy principles of deformable body;
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and Menabrea are received from the principle of a
minimum of total complementary energy and the
principles of Greenberg and Lagrange are received
from the principle of a minimum of total deformation
energy. The energy principles of ideal rigid-plastic
body limit state analysis are derived from the
principle of a minimum of total complementary
energy. It has been also shown, that the kinematic
theorems of the limit load and the simple plastic
failure [2] can be received from the elastic-plastic
body principle of a minimum of total deformation
energy.
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DEFORMUOJAMO KUNO EKSTREMINIU
ENERGINIU PRINCIPU RYSIAI IR
TRANSFORMACLJIOS

S.Kalanta

Santrauka

Bnagrinéti tampraus plastifko kiino jtempimy ir
deformacijy analizés ir ribinés pusiausvyros bivio
ekstreminiai energiniai principai paprasto (vienkartinio)
apkrovimo atveju. Suformuluotas pilnutinés papildomosios
energijos minimumo principas (4) ir pilnutinés deformacijy
energijos minimumo principas (14), atsiZvelgiant j pradines
deformacijas ir medZiagos stipréjimg. Parodyta, kad Haro-
Karmano, Koloneéio, Pragerio-Saimondso, Kastiljano bei
Menabrea ekstreminiai principai gaunami i§ pilnutinés
papildomosios energijos minimumo principo, o Grinbergo
ir LagranZo principai - i§ pilnutinés deformavimo energijos
minimumo principo. Idealiai standaus plasti$ko kino
ribinio bivio analizés energiniai principai vesti i§
pilnutinés papildomosios energijos minimumo principo.
Taip pat parodyta, kad kinematinés teoremos apie ribing
apkrovg ir apie paprasta plastinj suirima gali biiti gautos i§
tampraus plasti§ko kiino pilnutinés deformavimo energijos
minimumo principo.
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