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RELATIONS AND TRANSFORMATIONS OF EXTREMUM ENERGY PRINCIPLES FOR 
DEFORMABLE BODY 

S. Kalanta 

1. Introduction 

In the elasticity and plasticity theories the 

extremum energy principles allow to create 

variational formulations of problems and various 

schemes of finite elements. The energy principles in 

the theory of plasticity were created and improved by 

such famous scientists as G. Colonnetti, H. 

Greenberg, A Cyras, A Borkowski, D. Drucker, W. 

Prager W. Koiter, E. Melan, A Gvozdev etc. Some 

of them are even called by the names of these 

scientists. A Cyras has formulated the energy 

principles [1-5], defining a limit state of elastic-plastic 

discrete structures and deformable body, and created 

their mathematical models, determined dual 

relations. He has also developed the static and 

kinematic theorems of analysis and optimization of 

the elastic-plastic body under monotonically 

increasing (simple) and repeated-variable loading. 

The energy principles of the mechanics of the elastic­

plastic body formulated by foreign scientists are 

published in a lot of articles and monographs [6-10 

etc]. In the monograph [11] the extremum principles 

of the dynamics of the perfectly plastic body are 

investigated. 

Though most extremum principles were 

formulated independently, but later some relations of 

them were observed. First of all, it was the duality of 

static and kinematic formulations, the equivalence of 

some energy principles. For example, W. Prager and 

H. Symonds [6], A Procenko [10] have proposed the 

principles of residual stresses equivalent for Haar­

Karman's principle. Some principles, for example, 

those of Colonnetti, Greenberg, Haar-Karman, 

turned out to be separate cases of other general 

principles [9]. The aims of this work are: a) to carry 

out analysis of extremum energy principles of the 

elastic-plastic body under monotonically increasing 

loading and to illustrate new relations in one article; 

b) to show that most energy principles in the elasticity 

and plasticity theory, even principles defining the 

limit state of a perfectly plastic body, can be received 

from elastic-plastic body principle of a minimum of 

total complementary energy or from dual to it the 

principle of a minimum of total strain energy. 

2. The principles or a miaimum or total 

complementary energy 

Let's assume that the elastic-plastic body is 
effected by an external load F(x), initial known 

strains s 0(x) and initial displacements (support 

settlements) u 0 (x). Suppose that at its surface Sf 

the intensity and direction of the load F(x) are 

known, but the displacements u(x) are unknown. In 

other parts of the surface Su displacements u 0 (x) 
are given (fixed), while the forces (reactions) Fr (x) 

are unknown. The body surface S =Sf U Su. In 

order to abridge and simplify the expressions of 

equations and functionals, further the dependence of 

vectors-functions upon the coordinates x is not 
indicated, i.e. the markings a(x) = a , u(x) = u etc. 

are accepted. 

The functional of total complementary energy 

U1 =.!_faT (d)adV +faT &o dV + 
2 v v 

+.!.fJ..T(H]A.dV- Ju~[As]adS, 
2 v s . 

(1) 

where [ d] is a flexibility matrix of body elementary 

element; (H] is the strengthening matrix; A. is the 

vector of plastic multipliers. The third member of this 

functional expresses the complementary energy of 
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strengthening. A statically admissible stresses vector­

function cr is defined by the equilibrium equations 

(2) 

and the yield condition 

fo(C)-r(cr)+[H)A~O eV, (3) 

where C is function of material plasticity constant, 
A ~ 0. At the investigation moment T the vector of 

plastic multipliers 
T 

A(x) = Ji(x,t)dt, 
0 

where i(x,t) is the vector of plastic multipliers 

velocities. 

The priaciple of a minimum of total 

complemeatary eaergy is formulated in this way: 

The actual vector of ail statically admissible vectors 

of stresses in the elastic-plastic body is the vector 

for which the total complementary energy is a 

minimum. 

This principle is expressed by the following 

extremum problem: 

.!_ f crT[d)crdV + f crT s0 dV +.!_ fAT[H)AdV-
2 v v 2 v 

- f ua[As)crdS ~miD 
s. 

under the conditions (4) 

r0 (C) -r{cr)+[H]A ~0, A ~0 eV; 

-[Gd]cr =0 eV, [As ]cr =F eS f· 

This is the static formulation of stress-strain field 

analysis problem of a linear strengthening body. This 

formulation allows to determine the distribution of 

stresses. 

From this extremum principle, the whole line of 

other energy principles can be deduced. Taking 
[H] =[0], the principle of a minimum of total 

complementary energy for perfectly elastic-plastic 

body is: 

~ f crT [d]crdV + f crT Eo dV- f ub[As]crdS ~miD 
v v s. 

under the conditions (5) 

r0 (C)-r(cr)~o eV, 

-[Gd]cr =0 eV, [As]cr =F eSt· 

When initial deformations do not exist ( s 0 =0 ), the 

problem of mathematical programming (5) expresses 

the Haar-Karman's principle [7,12). If initial 
deformations s 0 are identified with given plastic 

deformations E P , we will receive Colonnetti's 

principle [7,13): 

When the plastic defonnations are known, the 

actutJJ vector of all statically admissible vectors of 

stresses in the elastic-plastic body is the one for 

which the total complementary energy is a 

minimum. 

In case of a linear elastic body, when elastic 

deformations are not limited and the plastic constant 
is non-limited large ( C =co), the problem (5) 

expresses the classical Castigliano's principle [14,15). 

At last, when only an external load effects the elastic 
body (so =0 and u0 =0), the principle of a minimum 

of total complementary energy formulated by us 

coincides with Menabrea theorem [9) (a separate 

case of Castigliano's principle). 

The extremum principle ( 4) can be expressed by 
residual stresses cr r . Using the relationships 

and 

cr=cre +cr,, 

[d]cr e + s 0 -[Gd]T ue = 0 e V, 
Ue=Uo eSu 

f cr; [d)credV = f cr; [Gdf uedV- f cr; EodV = 
v v v 
=-f u; [Gd)cr,dV + f u; [As]cr,dS+ 

v s, 

+ Ju;[As]cr,dS- Jcr;sodV, 
s. v 

the second expression of the functional of a total 

complementary energy is received: 
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u2 = ~ f cr;[d]cr ,dV +~ f A.T[H]A. dV + f cr; EodV + 
v v v 

+~ f cr; [d]cre dV- f Db[ As ]cre dS-
v s. 

- f D;[G9/]cr,dV + f D;[A3 ]cr,dS, 
v s, 

where cre, De are the vectors of stresses and 

displacements elastic solution of the problem When 
the external effect is given, the stress cr e , 

displacements De and the third, fourth and fifth 

members of functional U2 are fixed, and the last two 

members of this functional are zero for statically 

admissible stress. Hence the extremum principle ( 4) 

and the problem 

under the conditions 

r0 (C)-f(cre +cr,)+[H]A.~O, A.~O eV; 

-[G9/]cr, =8 eV, [A,]cr, =0 eSt 

(6) 

are equivalent to each other. And the problem (5) is 

equivalent to the extremum principle 

~ f cr;[d]cr,dV =>mill 
v 

under the conditions 

fo(C)- f(cre +cr ,)~0 e V, 

-[G9/]cr, =0 eV, [A3 ]cr, =0 eSt· 

(7) 

Generally it corresponds to the principle of a 

minimum elastic potential of residual forces, 

formulated by A Cyras [4,5]: 

The actual vector of all statically admissible vectors 

of residual forces in a structure that does not 

achieve complete plastic failure is the vector for 

which the elastic potential of these forces is a 

minimum. 

This principle generalizes the principle of Prager­

Symonds [6], which was formulated for a discrete 

system The simple load is a separate case of 

repeated-variable load. That's why the extremum 

principle (7) can be deduced from analogous 

extremum principle 

~ f cr;[d]cr,dV :::>min 
v 

under the conditions (8) 

which has been formulated for the body, effected by 

repeated-variable load [4,5]. Here cr~, cr;; are the 

extremal stress vectors corresponding to picks i 

symmetric pair of elastic stress polygons; I is the set 

elastic stress polygon symmetric picks pairs indices. 

It will be shown further that the energy 

principles of an ideal rigid-plastic body limit 

equilibrium analysis and optimization can be derived 

from the extremum principle (5). So not a few 

extremum principles are connected with the principle 

of a minimum of total complementary energy as its 

separate cases. But this principle can be also obtained 

from the mixed functional by analogy with 

Castigliano's principle as in the elasticity theory, the 

latter is obtained from Reissner's functional [15]. 

Using the Lagrangian multiplier method, the 

minimization problem (5) can be transformed into 

the problem of stationary point determination of 

functional 

1 
r9; =2 f crT[d]crdV + f DT[G91]crdV + f crT e 0 dV + 

v v v 

+ ~ f A.T[H]A.dV + f ~T {r(cr) -r0 (c) -[H]A.}dv + 
v v 

+ f DT {F- [As]cr}dS- f Db[As]crdS, (9) 
s, s. 

when A. ~0, ~~0 eV. For statically admissible stress 

this functional has the physical sense of 

complementary energy. That's why taking the 

preliminary conditions (2) and (3), the extremum 

problem ( 4) and all earlier mentioned energy 

principles can be derived from functional ~ 

If the second member of functional efT, is 

reformed by the Gauss' -Ostrogradski's formula, we 

will receive the second form of mixed functional and 

stationary point problem: 
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~= JaT{.!.[d]a+s0 -[aw'{u}dV+ JuTFdS+ 
v 2 s, 

+ .!_ ft.T(H]t.dV + fJ3T{f(a)-f0(C) -(H]t.}dV + 
2 v v 

+ f{u-uof[As]adS =>stac; A. ~0, J3 ~0. (10) 

s. 

Under the conditions of Kuhn-Tucker, the following 

relationships are for the problems (9) and (10): 

fo(C)-f(a)+[H]A.~O eV; 

-[G91']a =0 eV, [As]a =F eSt; 

J3T{f(a)-fo{C)+[H]t.}=o, 13="- eV; (11) 

[d]a + s0 +[Vf(a)f A. -[G91']T u= 0 eV; 

[Asr {u- uo} =0 eSu; "'~0, J3 ~0 eV. 

Here [ Vf( a)] is matrix of yield conditions gradients. 

This equation system describes the elastic-plastic 

body stress-strain field. In the relationships (9)-(11), 
having taken [H) =[0], we will receive ideal elastic-

plastic body mixed functionals and the conditions of 

Kuhn-Tucker, which correspond to the functionals. In 
case of a linear elastic body ( A. = 0, J3 = 0 ), the 

functionals 9; and ~ become the first and the 

second form Reissner's functionals. 

We are going to show that the extremum energy 

principles for the perfectly rigid-plastic body under 

monotonically increasing loading [2,3] can be 

obtained from the principles of a minimum total 

complementary energy or total deformation energy. 

Investigating the limit state of the body, we don't 

estimate elastic deformations and go over to the 

velocities of displacements and deformations. 

The static theorem of simple plastic failure. Let's 

assume that the velocities of body plastic 
deformations are fixed as & P = &0 , the velocities of 

initial displacements ia =0 and the distribution of 

plastic constants C is unknown. The yield conditions 

are also assumed to be uniform. The rate of energy 

dissipation of deformable body 

iJ = f &~adV = f t.T (Vf(a))adV = f SC dV, 
v v v 

where 8 is the fixed field of plastic deformations 

velocities intensity. Then the following problem is 

obtained from the extremum principle (5): 

JecdV=>min 
v 

under the conditions 

f0 (C) -f(a) ~0, 

-(G9i']a =0 e V, 

C~O eV; 

(As]a =F eSt. 

(12) 

It corresponds to the following extremum principle: 

The velocities intensity of plastic deformations 

being fixed, the actual field of all statically 

admissible stress fields in a simple plastic failure is 

the one for which the energy dissipation rate is a 

minimum. 

So the problem (12) in the case of fixed plastic 

deformations velocities intensity expresses the static 

theorem of simple plastic failure [2] formulated by A 

Cyras. It allows to determine the optimum 

distribution of plastic constant or the parameter of 
plastic constant C0 (under the law C =pC0 ). 

The static theorem of the limit load. Let's say, 
the initial deformations do not exist ( s 0 =0 ), the 

distribution of external load is unknown (the 

direction is known) and velocities of displacements at 

the place of load operation are fixed. The surface of 

the body , where the displacements or their velocities 

are determined and unknown forces act, is signed as 
Su. Hence the body surface S = Su = Sul USuz .At the 
surface Su1 the power of operating external forces 

W = f ufi'FdS = f ufi(As ]adS. 
s.l s.l 

Paying attention to these conditions the problem (5) 

takes the form: 

f ufi'FdS =>max 
s.~ 

under the conditions (13) 

f(a)sf0 (C), -[G91']a=O eV; 

-[As]a+F=O, -F SO eSul· 

This problem in the case of fixed displacements 

velocities expresses the static theorem of the limit 

load formulated by A Cyras [2]: 
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The actual functions of all statically admissible 

stress jUnctions in a simple plastic failure are those 

which maximizes the power of external loading. 

The problem allows to determine the distribution of 
optimum limit load or the parameter F0 of limit 

load, when the law of load distribution is F = 11 F0 .In 

this case the problem (13) expresses Gvozdev's 

theorem [16]. 

3. The principles or a minimum of total strain energy 

The total strain energy of linearly strengthening 

elastic-plastic body: 

II=.!_ f crT(d)crdV- f uTFdS+ 
2 v s I 

+ JAT[vr(cr))crdV-! f)..T(H)1 •. dV. 
v 2 v 

(14) 

The first two members of this functional express the 

total potential energy of the elastic body, while the 

third member expresses the energy dissipation. The 

last two equations of (11) determine the 

kinematically admissible vectors of the displacements 

u. In the case of kinematically admissible 

displacements, the functional ~ , nmltiplied by -1, 

expresses the total deformation energy of elasto­

plastic body. That's why the problem of stationary 

point determination of functional (10) can be 

transformed into the maximization problem 

_.!_ f crr(d]crdV- f).T[vr(cr))crdV +! J:~T(H)A.dV + 
2v v 2v 

+ f uTFdS + fA.T {r(cr) -r0 (C) -(H)A.}dV =>max 
s, v 

under the conditions (15) 

[d]cr + &o +[Vr(cr)f A. -[~JT u = 0 eV, 

[Asf{u-u0}=0 eSu, A.;::O eV 

or the minimization problem 

II- f A.T {r(cr) -r0 (C) +[H)A.}dV =>min 
v 

under the conditions (16) 

[d)cr+&o+[vr(cr)r A.-(~f u =0 eV, 

[Asf{u-uo}=O eSu, A.2:0 eV. 

These problems correspond to the extremum 

principle: 

The actual vector of all kinematically admissible 

vectors of displacements in a body is the one for 

which the total potential energy of deformations is 

a minimum. 

This principle for the perfectly elastic-plastic body is 

expressed by the following extremum problem: 

1 f uTFdS -2 f crT[d]crdV- f A.T(vr(cr)]crdV + 
s, v v 

+ f A.T {r(cr) -f0 (c)}dv =>max 
v 

under the conditions (17) 

(d)cr+&o+[Vr(cr)rA.-(~fu=O eV, 

(Asf{u-uo}=O eSu, A.::!:O eV. 

The problems ( 4),(15) and (5),(17) form the dual 

pairs of stress-strain field analysis problems in static 

and kinematic formulations for the strengthening and 

perfectly elastic-plastic body. When plastic 

deformations are known (fixed), the problem (17) 

expresses the Greenberg's principle [9,17]. In case of 

linear elastic structure this problem expresses the 

classical variational principle of total potential energy 

(Lagrangian principle). 

Using the Lagrangian multiplier method, the 

dual kinematic formulation for the static problem (6) 

can be created: 

-~ f cr;[d]crrdV -~ fA.T[H]A.dV-
v v 

- fA.T[vr(cre +crr)]crrdV + 
v 

+ fA.T{r(cre +crr)-ro(C)-[HJA.}dV=>max 
v 

under the conditions (18) 

[d]crr+[vr(cre+crr)rA.-[~fur=O, A.;::o eV; 

(Asf Ur =0 eSu. 

It expresses the principle of a minimum of total 

residual deformation energy: 

Of all kinematically admissible vectors of residual 

displacements in a system that does not achieve the 
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complete plastic failure the actual vector is one for and the extremum problems (12) and (19) expresses 

which the energy of residual defonnations is a the static and kinematic theorems of the plastic 

minimum. constant multiplier [1, 2]. 

Taking (H] = [0], the extremum problem (18) 

expresses the principle of a minimum of residual 

deformation energy for perfectly elastic-plastic body. 

Now we are going to investigate the kinematic 

theorems for perfectly rigid-plastic body. They also 

can be obtained from the principles of a minimum of 

total complementary energy or total strain energy. 

Tbe kinematic: theorem or simple plastic failure. 

We create the dual kinematic formulation for the 

problem (12) using Lagrangian multiplier method: 

f uTFdS- fiT {[vr(cr))cr- [vr0(c))c} dV + 
s, v 

+fiT {r(cr) -r0(c)}dV =>max 
v 

under the conditions 

(vro(c)t i se, 1.. ~ 8 eV; 

[vr(cr)t i- [edt li= e eV, 

[Ast 1i =0 eSu. 

(19) 

The first member of the objective function of this 

problem means the power of external load, the 

second and the third members in case of optimum 

solution are equal to null and the constraints of the 

objective function determine the sphere of 

kinematically admissible displacements velocities. 

Hence the problem (19) expresses the kinematic 

theorem of simple plastic failure formulated by A 

Cyras [2]: 

The actual vector of all kinematically admissible 

displacements velocity vectors in a simple plastic 

failure is the one for which the power of the 

external loading is a maximum. 

The first condition (inequality) of the problem 

(19) has the physical meaning of the intensity of 

plastic deformation velocities and at once the 

physical meaning of energy dissipation rate 

constraint. Hence we can get this formulation of 

extremum principle directly from the problem (17) 

having fixed the energy dissipation rate. When the 
law of plastic constant distribution is given C = p C0 

The kinematic theorem of the limit load. The 

static formulation of the problem (19) can be 

rearranged into the kinematic formulation by the 

Lagrangian multiplier method: 

fF[vr(cr))crdV- fF{r(cr)- r0(C)}dV =>min 
v v 

under the conditions 

-[vr(cr)f i + [cd]T li= o, 1.. ~o eV; 

1i ~ u0 eSu1 ; [Asr li=O eSu2 • 

(20) 

The first member of an objective expresses the rate of 

energy dissipation and the second one for the optimal 

solution of problem is zero. Hence the objective 

function has the physical meaning of the rate of 

energy dissipation. So the problem (20) corresponds 

to the kinematic theorem of a simple plastic failure 

formulated by ACyras [2]: 

The actual vector of all kinematically admissible 

vectors of displacement velocities in a simple 

plastic failure is the one for which the rate of energy 

dissipation is a minimum. 

The fixing of displacement velocities means a 

constraint for the load power. Therefore the 

kinematic theorem of the limit load can be deduced 

directly from the problem (17) fixing the load power. 
When F = TJ F0 this extremum principle become the 

kinematic theorem of the limit load multiplier [1, 2]. 

In Fig.1 the all relations of extremum energy 

principles for deformable body are presented. 

4. Conclusions 

The extremum energy principles of the elastic­

plastic body stress-strain analysis and limit 

equilibrium problems in the case of monotonically 

increasing (simple) loading have been investigated. 

The principle of a minimum of total complementary 

energy (4) and the principle of a minimum of total 

deformation energy (16) have been formulated. It has 

been shown that the extremum principles of Haar­

Karman, Colonnetti, Prager-Symonds, Castigliano 
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/Principle of a minimum elastic 
~ / 

Principle of a minimum of 
....... 

potencial of residual stress for residual strain energy for 
perfectly elastic-plastic body (7) perfectly elastic-plastic body 

'\. ~ '\.. ~ 

/ ~ / ....... 

Principle of a minimum Principle of a minimum of 
complementary energy of residual residual strain energy for 
stress for strengthening body (6) strengthening body (18) 

' '\... 

// ....., // ........ 

Principle of a minimum of total Principle of a minimum of 
complementary energy total strain energy for 
for strengthening body ( 4) 

-1 
strengthening body (15) ,, ,, -~~ 

/ ....... 
/ Principle of a minimum of 

........ 
Principle of a minimum of total 
complementary energy for perfectly total strain energy for perfectly 
elastic-plastic body (5) elastic-plastic body (7) 

'\.. ~ '\.. / 

' 
Haar-Karman's Colonnetti's Greenberg's principle 

~ principle principle 

1 

Castigliano's principles 
.J 

Lagrange's principles 
I 

j Static theorem of limit load (13) 
1 :I Kinematic theorem ~ 

I J of limit load (20) 

• Static theorem of limit . :1 Kinematic theorem 
load multiplier of limit load multiplier 

Static theorem of simple :I Kinematic theorem of simple L 
plastic failure (12) plastic failure (19) I 

I Static theorem of plastic 1 ( Kinematic theorem of plastic .. 
constant multiplier J l constant multiplier 

Fig. 1. Relations of extremum energy principles of deformable body; .,. .,. dual relations 
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and Menabrea are received from the principle of a 

minimum of total complementary energy and the 

principles of Greenberg and Lagrange are received 

from the principle of a minimum of total deformation 

energy. The energy principles of ideal rigid-plastic 

body limit state analysis are derived from the 

principle of a minimum of total complementary 

energy. It has been also shown, that the kinematic 

theorems of the limit load and the simple plastic 

failure [2] can be received from the elastic-plastic 

body principle of a minimum of total deformation 

energy. 
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DEFORMUOJAMO KUNO EKSTREMINIV 
ENERGINDJ PRINCIPV RYSIAI IR. 
TRANSFORMACDOS 

S.Kalanta 

Santrauka 

ISnagrineti tampraus plastiSko lriino itempimq ir 
deformacij'! analizes ir nbines pusiausvyros biivio 
ekstreminiai energiniai principai paprasto ( vienkartinio) 
apkrovimo atveju. Suformuluotas pilnutines papildomosios 
energijos minimumo principas (4) ir pilnutines deformacij'! 
energijos minimumo principas (14), atsifvelgiant i pradines 
deformacijas ir medfiagos stiprejimll- Parodyta, kad Haro­
Karmano, Kolonc:Cio, Pragerio-Saimondso, Kastiljano bei 
Menabrea ekstreminiai principai gaunami i§ pilnutines 
papildomosios energijos minimumo principo, o Grinbergo 
ir Lagranfo principai - i§ pilnutines deformavimo energijos 
minimumo principo. Idealiai standaus plasti§ko lriino 
ribinio biivio analizes energiniai principai i§vesti i§ 
pilnutines papildomosios energijos minimumo principo. 
Taip pat parodyta, kad kinematines teoremos apie nbincr 
apkrovll ir apie papras!Jl plastini suirimll gali biiti gautos i§ 
tampraus plasti§ko kiino pilnutines deformavimo energijos 
minimumo principo. 
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