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SEMI-ANALYTICAL FINITE ELEMENTS AND TIIEIR APPLICATION TO 
MODELLING OF CYLINDRICAL SHELLS 

R. Kacianauskas 

1. Introduction 

Despite a great difference in the existing shell 

models all of them provide the analytical or semi­

analytical approximation of a three-dimensional body in 

the thickness direction with the following reduction of 

the dimension of the problem. As an alternative to the 

existing models the finite element approximation is 

introduced and presented in this paper. This 

approximation contains the essential features of semi­

analytical discretisation [ 1]. On this base the semi­

analytical finite elements (SFE) are introduced in order 

to develop the governing equations of linear shells. This 

approach has already been used for the development of 

the equations of beams [2-4]. Here, it is generalised and 

extended to more complex problems as shells [5-6]. 

By applying the SFE, general expressions of 

compatibility, equilibrium and constitutive equations of 

linear shell theory are derived. The equations are 

presented using matrix-tensor notations. The equations 

of cylindrical shell are considered as a particular case. 

By inserting the metric tensor the operators of equations 

are obtained explicitly. 

2. Problem Formulation 

Let us consider a curved shell as a three­

dimensional body (Fig. 1). A curvilinear orthogonal co­
ordinate system Oxyz is chosen for the description of 

shell. Here and in the future the axis Oz is linear. The 

body is bounded by two curved generatrix surfaces S1 
and s2. The distance between two surfaces is defined as 
the thickness t( x, y) , which is considerably smaller than 

the other two dimensions. The body is defined by the 

middle surface S equidistant from generatrix surfaces. In 

other words, the shell is designed moving the middle 

surface S along the co-ordinate Oz . The body is also 

bounded by the boundary surface A(x, y) (external 

cross-section of shell) normal to the middle surface. 

Usually, if complex solid problems have to be 

considered in curvilinear co-ordinates, the tensor 

notations are preferable. For this reason, we shall recast 

the basic statements of the shell analysis and elasticity 

theory using tensor notations. The geometric properties 

of the space containing the body may be defined by 

tensors. In case of shell, this space and at the same time 

mechanical properties of the body are defined by the 

shape of the middle surface. 

Fig. 1. Fragment of shell as three-dimensional body 

The geometry of the middle surface is defined by 

two surface tensors. The first surface tensor (metric 
tensor) denoted as a.(£, y) = a.!J.(x, y) describes internal 

(in-plane) geometry of shell and may be expressed in 

terms of fundamental coefficients of the first order A 
~ X 

and AY 

( ~ A)= [.A; (£, j/) 0 l a.x,y A2 . 
o Ay (£, .Y) 

(1) 
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The second surface tensor denoted as f3 ( x, y) = 
Pu·(x, y) describes external (out-of-plane) geometty of 

shell and may be expressed in terms of principal 

curvatures Kx and KY 

f3 (x, .Y) = [K x(x, .Y) o ]· (2) 
o Ky(x • .Y) 

The surface tensors mentioned above will be used 

for definition of the state variables and the operators of 

governing equations. 

Now we focus our attention on mechanical 

variables. The classical elasticity theory is formulated in 

the Cartesian co-ordinates. Therefore, the classical 

definitions of state variables such as the stresses, the 

strains and the displacements and of basic operators of 

the equations have been referred to the Cartesian co­

ordinates Oxyz. So, we denote the three-dimensional 

Cartesian variables by column vectors. This type of 

notations is useful in numerical analysis. The unknown 

stresses and strains are defined by the vector-functions 

cr(x, y, z) and &(x, y, z) while displacements by u(x, y, z). 

The given external volume and surface loads are defined 

by the vector-functions p(x, y, z) and g(x, y, z), 

respectively. Here, the displacements and loads contain 

the components of the first-rank tensors u;. Pi and gi 

while the stress and strain vectors contain the 

components of the second-rank stress tensor crif and 

corresponding strain tensor f.iJ. For the purpose of shell 

analysis we define also the same variables in curvilinear 

co-ordinates. For instance, the stresses and strains are 
defined by vector-functions &(:X, y, z) and &(:X, y, z) 

while displacements and loads by vector-functions 
u(x, y, z), p (:X, y, z) and g(x, y, z), respectively. 

Mathematically, the curvilinear variables are 

physical co-ordinates of the Cartesian tensors. The 

relationship between both of them may be expressed 

using metric tensor au·· More details about application of 

tensors to solids and shells may be found in [7-8]. 

The compatibility and equilibrium operators 

A 1 
and A defined in curvilinear co-ordinates have 

principle difference in comparing with Cartesian 

operators. Following to differentiation rules in 

curvilinear co-ordinates any derivative of the tensor 

component is defined as covariant derivative and is 

expressed by using the three-index Chrystoffel symbol of 

the second kind r; . 
It is assumed that physical properties are so defined 

that principle axis of material coincide with the 

curvilinear co-ordinates. In this case the Cartesian 

definition of constitutive operator 

z3 ( x, y, z) = Z> ( x, y, z) is still valid. 

The boundary conditions of shell are defined on the 

subregions SF and Su of the enveloping surface. The 

static boundary conditions describe external surface load 

i(x, y, z)l.i;y,z eSF while the kinematic boundary 

conditions describe prescribed displacement field 

up(£, y, z)jx,y,z eSu . By assuming the external 

generatrix surfaces sl and s2 free of the possible 

kinematic boundary conditions the subregions SF and Su 
are defined as follows 

sF (x, .Y) = Ss (X. .Y) + AF (xF, YF . .zF), 

Su (X. .Y) = Au (xu , .Yu , zu ) , 

where Ss = S1 + Sz. 

(3) 

Mixed boundary conditions at the same point X, y 
are also possible. 

The main issue in the development of shell theory 

is the separation of surface and thickness distribution of 

three-dimensional variables. For these purposes we 

define the approximation of the three-dimensional 

displacement field by a general expression 

u(x, .Y. z) = J(Z)U(x, .Y). (4) 

Here, /( .i) is an approximation matrix while U(x, y) 

is the semi-discrete vector of generalised displacements. 

The similar approximations as presented in beam theory 

[2-4] may be developed for stress and strain fields. 

The semi-analytical finite element method 

presented here is devoted for the development of the 

governing equations of linear shells in terms of the semi­

discrete generalised variables such as displacements 

U(x, .Y), generalised stresses Q(x, .Y) and generalised 

strains e(x, .Y) 0 The general semi-discrete equations 

derived are able to cover existing shell theories. The 

semi-analytical finite elements provide formal tool for 

the development of the higher-order theories of shells. 
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3. Generalisation of Concepts of the Semi-Analytical The particular submatrices are 

Finite Element Method and Basic Relations -o (A) AAt(A A A)/( A) C! Z = z X, y, Z Z , 

The derivation of the governing equations of shells 

is, in fact, the partial discretisation technique, which 

reduces the three-dimensional solid problem by retaining 
the variables depending on co-ordinates x, y . We 

introduce to perform the partial approximation (4) in the 

thickness direction i by the finite element method. The 

finite elements describing thickness distribution are 

defined as semi-analytical .finite elements (SFE). In case 

of shell we deal with the one-dimensional SFE. There 

exists a large number of conventional finite elements that 

may be applied for construction of the SFE of shells by 

using well-known interpolation polynomials and other 

approximation technique. 

Let us consider the thickness of shell discretised by 

one-dimensional elements. The displacement field is 

particularly approximated by the semi-discrete 
expression (4) while the approximation matrix /( i) is 

formed by conventional shape functions. The vector of 

the nodal displacements U(i, y) plays the role of 

generalised variables. Now, the thn:e-dimeJWonal strain 

field s(.i, y, i) may be approximated by the expression 

used in the displacement approach 

&(.i, y, i) = F(i)S(i, y). (5) 

Here, the strain approximation matrix is defined by a 

general expression 

F(i) = A \i. y, i)f(i)' (6) 

where compatibility operator At(.i, y, i) is defined 

using covariant differentiation rules. For the purpose of 

(8) 

where r 1 is the Boolean matrix reflecting the properties 

At 
of the operator A;v . 

The thickness distribution of the stresses may be 

approximated in the same manner as ( 4) 

&(x, .Y. i) = <~»(i)s(x • .Y). (9) 

Here, S(x, y) is the vector of nodal stresses while 

<I»(i) is the stress approximation matrix. 

The explicit evaluation of the expressions (4), (5) 

and (9) depends on choosing the appropriate shape 

functions. Once these are obtained the derivation of the 

governing equations follows a standard well-defined 

path. The development of large number of the different 

theories is possible by specifying the shape functions 

only. 

The final set of the governing equations of shell is 

formulated in the same way as equations for three­

dimensional body. It consists of the compatibility, 

equilibrium and constitutive relations and boundary 

conditions as well. 

The compatibility (kinematic) equations relating the 

generalised strains and displacements are found by 

simple comparing the displacement and the strain 

approximations (4) and (5), respectively, and are written 

down as 

(10) 

the semi-analytical representation this operator is split From definition of the generalised strains (6-8) it 

into two parts follows that compatibility operator a'/ (x, y) naturally 

(7) consists of two parts 

where ~ contains derivatives with respect to co­

ordinates i, y while A; contains the derivatives with 

respect to i and algebraic terms. As a result of 

decomposition (7) the vector of the generalised strains 

and the approximation matrix also may be decomposed 

into two parts: 

e(.i, .Y) = {el(x, y),e2(x, y)r and 

F(i) = [Ff) F2~i)l 

Bt(.r, A) = [r~(x, .Y) o ] , 
c Y o a"~(x, .Y) 

where the algebraic submatrix r~(.i, y) and the 

differential operator B~(.i, y) are constructed by using 

logical rules. 

The remainder relations are derived as Euler 

equations associated with the modified Hellinger­

Reissner functional written for the three-dimensional 
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solid body. They containin two independent fields the 
stresses cr(.x, y, i) and displacements u(x, y, z) 0 

According to [9] and having in mind previous 

notations the modified Hellinger-Reissner functional for 

a three-dimensional body is expressed in the following 

form: 

rrR(cr(£, .Y. z). u(x, .Y. i)) = 

= J o-t(.x, .Y. i)A\x, .Y . .Z)u(x, .Y . .Z)dv-
v 
1 f At (A A A) (A A A) A (A A A)) d v - - 0" X, y, Z %' X, y, Z 0" X, y, Z -

2v 

- fut(x,.Y. z))(x,.Y. z)dv-
v 

- f ut (x, .Y. i)i(x, .Y . .Z)d s -
SF 

- f(u(x, .Y. i) - up(x, .Y. i))tAn(x, .Y. i)a(x, .Y. i)ds. 
Su 

(11) 

where the matrix ~(£, y, i) is an algebraic operator of 

the static boundary conditions while up(x, y, z) is the 

vector of the prescribed displacements. 

Following standard arguments in the calculus of 

variations (9] and applying the Green's theorem a 

variation of the functional ( 11) is adopted for a shell by 

taking into account the definition of the enveloping 

surface (3). 

After certain manipulations it is expressed as 

mR( &(£, .Y. z), u(x, .Y. z)) = 

= J($(£, _y, z))tAt(.x, .Y. z)u(x, .Y. z)dv-
v 

- J($(£, _y, z))tv(.x, _y, .Z)&(x, .Y. i))dv-
v 

- J (&l(x, _y, z))t A(x, .Y. z)cr(x, .Y. z)dv-
v 

- J (&I(£, .Y. z))tp(£, .Y. i)dv + 
v 

+ J(~(x, y, z))tAnz(x, y, i)cr(x, y, i)dS-
SF 

- f (til(£, .Y. z))ti(x . .Y. z)ds + 
SF 

+ f(al(x, y, z))t Anxy (x, y)a(x, .Y. i)d A -

- f(al(x, .Y. z))ti(x, .Y. z)dA -
AF 

- J($(£, .Y. z))tA~xy(x, .Y)(u(x, .Y. z) - up(x, _y, z))dA. 
Au 

Taking into account the approximations (4), (5) and (9) 

the semi-discrete expression of variation of the functional 

( 11) now can be rewritten for shell as 

orrR ( S(.x, .Y>. u(x, .Y>) = 

= I(o&<x . .Y>f ct>\z>F<z>e<x . .Y>dv _ 
v 

- J(oS(x, y) f ct>\i)Z'(x,y,i)ct>(z)S(.x, y)dV + 
v 

+ J(ou(x, .Y>)tft (z)A(x,y,z)ct>(z)S(x, y)dV-
v 

- J(ou(x, .Y>)tft(z)p(x,y,z)dV + 
v 

+ J(ou(x, .Y>f f<z)~z(x,y,i)ct>(i)S(x, y)dS-
s 

J(ou(x, .Y>fft(z)g(x,y,i)dS + 
SF(X,y) 

+ J(ou(x, .Y>f f<i)~xy(x, y)ct>(i)dA -
AF(xF·YF) 

J(ou(x, .Y>)tf(i)g(x,y,i)dA -
AF(xF·YF) 

J(oS(x, y) r ct>t (z)t 0 

Au<iu.Yu) 

·A~x(x, y)J(i)(U(x, y) - Up(X, y))dA. 

(12) 

The operator ~z(£, y) describes the boundary 

conditions on generatrix surface while ~xy(£, y) the 

boundary conditions on external cross-section. 

In order to modify the three-dimensional expression 

(12) to a two-dimensional one, the distributed fields of 

the external loads can be described by their resultants Pv. 

Ps and p A- The other integrals in the variation (12) may 

be simplified in the same manner and new equilibrium 

operators ~es are introduced. Having in mind all of the 

previous notations (3-9) the total variation of Hellinger­

Reissner functional may be expressed in terms of two­

dimensional integrals 

orrR(s<£ . .Y). U(x, .Y)) = 

= J(os(.~. y)f(c t(£, y)S(£, y)-Ds(x, y)S(x, .Y))ds+ 
s 

+ J(ocf(.x, y)r(Z'es<x. y)S(x, .Y)-Pv(x, .Y))ds + 
s 

+ J (oU(x, y))t(Z'esnz<x. y)S(x, y)- Ps(x, y))ds + 
s 
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+ (gu(.i, y)}t(~'esn.l)'<x. y)S(x, y)- PA(x, .Y))Ix..Yesp­

- (M<X. .Y)Y~'un~<x . .Y)(il<x . .Y)-il p(x, .Y)}Ix..Y esu. 

(13) 

Here, D
1 

is constitutive operator. The introduced 

matrix 

C(.i,y) = f F\z)~(i)dt 
t(X. y) 

(14) 

may be considered as an approximation matrix relating 

stresses S(.i, y) with their resultants - generalised 

stresses Q( x, y) 

The stationarity condition of the functional ITR 

srrR = o 

(15) 

provides independent variations of S(.i, y) and U(x, y) 

and lead to a set of equations 

{::~ }~ 0 
(16) 

Adopting condition (16) for the functional (13) 

provides the Euler equations. The equations (16) together 

with the compatibility relation (10) form a set of the 

governing equations of the shell theory expressed in 

terms of the generalised displacements U ( .i, y) , the 

generalised strains S( x, y) and the three-dimensional 

stresses S(x, y) . 
The generalisation of them and complete 

transformation of the stresses S ( i, y) to the generalised 

stresses Q(.i, y) according to (15) needs additional 

considerations. It depends on the type of the semi­

analytical element: isoparametric, subparametric or 

superparametric. This transformation technique is 

already defined for the semi-analytical elements of beams 

[3]. The main difficulties occur, when the rank of 
transformation matrix C(x, y) differs from the number 

of components of both vectors S(i, y) and Q(x, y). In 

spite of appropriate differences it is possible to modify 

the relationship (15) expressing them in terms of 

modified model variables S M (x, y) and QM (x, y). In 

the corresponding backward transformation may be 
always uniquely established. Additional transformations 

relating initial and modified variables have to be also 

obtained. After performing some matrix manipulations, 

finally, the set of governing equations contains 

compatibility equations 

B:U(x, y)UM(x, y) - SM(x, y) = 0 e S; (18a) 

equilibrium equations 

BeM(x, y)QM(x, y) - Pv(.i. y) = 0 e S; (18b) 

constitutive equations 

t)M (x, y)QM (X, y) - S M (x, y) = 0 e S; (18c) 

static boundary conditions 

BeMnz<.i. y)QM(x, y) - Ps(.i. y) = 0 e S; (18c) 

BeM11 .zy(.i,y)QM(.i,y) -pA(.i,y) = OeAp. (18d) 

kinematic boundary conditions 

UM(.i, y) - UpM(.i, y) = 0 eAu. (18e) 

The solution of the set of governing equations (18) 

provides the distribution of modified generalised 

variables. In some of the cases, this solution is 

insufficient for complete recovering of the three­
dimensional stress-strain fields in the shell because some 

of the initial generalised variables are lost by the 

modification (15). This situation is well-known in 

classical structural mechanics and described in terms of 

statically (kinematically) undeterminate systems where 

redundant variables have to be found from additional 

equations. 

The basic relations (18) proposed have no 

preliminary limitation due to geometry of shell or due to 

approximation laws. The semi-analytical finite element 

approach is the formal possibility to develop the higher­

order shell theories with the desired degree of accuracy. 
As usual, the plates and beams may be considered as a 

particular case of shell. 

4. Modelling Cylindrical Shells 

In order to illustrate the use of the semi-analytical 

finite elements in the shell theory, we will deal with a 

circular cylindrical shell. The shell is considered as a this case, for the fonvard transformation 

QM(x, y) = CM(x, y)SM(x, y) (17) particular case of rotational shells. The necessary tensor 
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characteristics of shell are presented in [7] while the 

geometry is illustrated in Fig. 2. The global geometry of 

the middle surface is defined in cylindrical co-ordinates 
Orcpz. The orthogonal surface co-ordinates Oxyz will be 

used for definition of the state variables. The single 

geometric parameter R defines the geometry for 

modelling needs. The constant thickness t( cp, z) = t and 
constant elasticity matrix '!) (r, cp, z) = '!) are assumed 

usually. The first surface tensor is defined by (1), where 

fundamental coefficients Ax (x, .9) = Ax and 

Ay (X, .9) = Ay are 

The Christoffel symbols defining the internal 

properties of the middle surface finally provide zero 

values for selected entries. 

They are 

1 2 1 2 1 2 r 11 = r 11 = r 22 = r 22 = r 12 = r 12 

1 2 r 21 = r 21 = o. 
(20a) 

The Christoffel symbols defining influence of 

curvature for in-surface variables are 

3 3 3 r 11 = r 12 = o; r 22 
1 

R 
(20b) 

(19a) while the non-zero Christoffel symbols defining 

influence of curvature for transversal variables are 

y 
1------J'--....-------1 -

Fig. 2. Geometry and co-ordinates of cylindrical shell 

The second surface tensor fl(x, .9) = f3 in (2) now 

is deterrninated as 

~(i Y)~ [~ _o~l (19b) 

Three-dimensional variables are defined by the vector­

functions of displacements, strains and stresses: 

u(x, .9, z) = {ux(x, .9. z), uy(x, .9. z), uz(x, .9. z)f, 
&(x,y, z) = {&xx(x,y, z), &yy(x,y, z), rxy(x,y, z), 

r r<x. ;. z), r yz(x, ;. z)f, cr(x, ;. z) = {a-xx<x. ;. z), 
a-yy(x, ;. z), z. xy (x, ;. z), z. X%(x, ;. z), z. rz<x, ;. z)f_ 

Thus, the pinching of normal is neglected while 

Q-.zz(x, y, i) = 0. Physical co-ordinates of the tensor 

variables are expressed as usual ([7]), where 

fundamental coefficients are taken from (19). 

2 1 
r23 =­

R 
(20c) 

The three-dimensional relations are valid for any 
generatrix surface, thus, in general, R = R(i). To 

simplify final relation it is assumed that t I R < < 1 

which finally let us to change the curvature of generatrix 

surface by the curvature of middle surface. Thus, 
R(i) :::: R(O) = const. 

By selecting the necessary components of Christoffel 

symbols (20) as well as corresponding metric tensor 

decomposition (7) applied for three-dimensional 

compatibility operator is expressed as follows 

8 
0 0 ax 0 0 0 

0 
1 8 

0 1 
Rcy 0 0 -

R 
_.4r 1 8 8 

0 
0 0 0 = -- + a Rcy ax 0 0 

a az 
0 0 ax a 1 

0 0 
1 8 az R 

0 0 
Rcy 

Now we return to the semi-analytical elements. The 

thickness of shell is discretised by single one-dimensional 

element (Fig. 3a). The element is defined by co-ordinate 

z of two nodal points 1 and 2. The linear distribution of 
surface (in-plane) displacement components ux(z) as 

well as uy(i) is assumed while uz(i) is taken as 

constant one (Fig. 3b). The vector of generalised 

displacements of shell is defined as 

u(x,.Y) = {vx1(x,.Y), ux2 (x,.Y). uy1(x,.Y). uy2 (x,.Y), 

A (A A)}t Uz x,y . 
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Fig. 3. illustration of semi-analytical finite element for cylindrical shell: 
a) total view, b) distribution of displacements; c) distribution of stresses; d) generalised stresses 

The displacement approximation matrix 
f(z) = /(~) in (4) is expressed in local co-ordinate ~ 

by the first order Lagrangian interpolation polynomials 

L{(~) 

/(~) = 0 0 Li(~) ~(~) 0 . 
[

Li (~) L~ (~) 0 0 0] 

0 0 0 0 1 

The linear distribution of the surface stress 
components & xr(i), & .w(i), ixy(i) and parabolic 

distribution of the transversal stress components i xz ( i) , 
ix:z(i) (Fig. 3c) is assumed. The vector of the semi­

discrete stresses is now 

s(x, .Y) = {a xx1(x, .Y), a xxz(x, .Y), a yy1(x, .Y), a yy2 (x, .Y), 

ixyl(.x, .Y), -txyl(.x, .Y), ixzCx, .Y), irz(.x, .Y)r. 

Because transversal shear stresses are defined by a 

single parameter the parabolic distribution is adequate to 
a constant distribution defined by the values 2ix:z(z)/ 3 

and 2i xz ( i) I 3 . The stress approximation matrix 

<D(z) = <D(~) in (9) is defined by the first- and the 

second order Lagrangian interpolation polynomials. 

Formal development of strain approximation (5) 

leads to two kinds of generalised strains: the basic vector 

of the model S2 (x, y) = eM (x, y) and redundant 

strain vector e 1 ( x, y) , where 

e l(.X, y) = {uxl(x, y), ux2(x, y), uyl(x, y), 

Oy2(x,y), uz(x • .Y)f and 

82 (.X, .9) = {.&~1 (x, .9) • .&~2 (.X, .9) • .&yy1 (.X, .9). 

t,;ye(x,y), t,xyl(.i,jl), t,xy2(x,y), exz(x,y), eyz(x,y)r 
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The corresponding strain approximation matrices 
in (8) Jfi(i) = Jfi(l;) = canst and F2(i) = F2(l;) 

By inserting the above matrices F into expression 

( 14) we obtain stress transformation matrix 

C(x, y) = [C1(X, y), C2 (X, .Y>]t from that follows the 

generalised stress vector Q(X, y) contains redundant 

components. This model leads to the superparametric 

case. 

now are after differentiation expressed in the following 

form 

0 0 0 0 0 
1 

0 0 0 0 -
R 

Jfi(l;) = 
0 0 0 0 0 
1 1 

0 0 0 
t t 

1 1 1 1 
0 0 0 -- --

t R t R 

Li(~) 0 0 0 

~(~) 0 0 0 

I 2 
0 -Ll (~) 0 0 

R 

0 2.~(~) 0 0 

F2 (~) = 
R 

(I + ~)LI(~) 0 0 0 

0 0 (I + ~)~(~) 0 

0 0 0 

0 0 0 0 

compatibility equations 

a 
0 0 0 0 -

ax 
0 

a 
0 0 0 

ax 
1 a 1 

0 0 0 
Roy R 

0 0 0 
1 a 1 
-- -
Roy R 

1 a 
0 

a 
0 0 

Roy ax 
0 

1 a 
0 

a 
0 

Roy ax 
1 1 

0 
a 

0 
t t ax 

1 1 1 1 1 a 
0 0 ---- --

t R t R Roy 

0 

0 

0 

0 

0 

0 

0 I 
-
R 

Here submatrix C2 (x, y) is non-singular and has 

been taken as modified stress transformation matrix 
c M (x, y) = c 2 (x, y) . After appropriate matrix 

manipulations and integration through the thickness it is 

obtained in quasi-diagonal form 

CM(X, y) = diag[CMxy CMxy CMxy CMz CMz]• 

where individual submatrices are 

A A 1[ 4 
CMxy(X. y) = 7 -2 ~2] and 

A A 1[3] 
CMz(x,y) = 7 2 . 

Finally, the vector of generalised stresses is defined by 

the following stress resultants (Fig. 3d) selected as 

QM (i, .9) = {& l%1 (i, .9), N l%2 (i, .9), N yyl (i, .Y). 

ir yy2 (i, .Y). ir ;cyl (i, .Y). ir ;cy2 (i, .Y). Q.l% (i, .Y). Q)C (i, .Y)f 

while the set of governing equations (8) for cylindrical 

shell is represented as follows: 

.&xd (x, .Y) 
.&l%2 (£, .Y) 

Uxdx, .Y) ,&w1 (£, .Y) 
ox2 (x, y) 

,&w2 (x, .Y) 
Oy1 (x, .Y) = 0; -

.&xyl (x, .Y) 
Oy2 (x • .Y) 

.&xy2 (x, .Y) Oz (x, .Y) er<: (x, .Y) 
eyz (x,y) 

(21a) 
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equilibrium equations 

0 1 0 
0 

1 
0 Nxx1 (x, y) - 0 0 0 

ox Roy t 
Nxx2 (x, y) 0 1 0 1 Px1 (x, y) 0 - 0 0 0 0 fr yyl (x, y) ox Roy t Px2 (x, Y) 

1 a a 1 1 fryy2 (x, y) 
Pyl (x, P) 0 0 0 0 0 - +-

frxy1 (x, y) Roy ox t R Py2 (x, y) 1 a a 1 1 
0 0 0 0 0 -- + - frxy2 (x, y) Pz (x, y) 

Roy ox 
1 1 

0 0 0 0 
a 

R R ox 

constitutive equations 

20 -10 -20v 10v 0 0 

-v 20 10v -20v 0 0 

20 -10 0 0 

1 1 20 0 0 

6Et 40(1+v) -20(1+v) 

40(1 +v) 

sym. 

Any pair of the semi-discrete generalised stresses 

related to the nodal points 1 and 2 (in fact, to generatrix 

surfaces S 1 and S2) may be changed by resulting force 

and resulting moment. This obsetVation points to the fact 

that semi-discrete equilibrium equation (21b) may be 

expressed in terms of classical membrane forces as well 

as moments by using simple linear transformation. The 

same is valid for the other equations (21). 

5. Concluding Remarks 

An alternative approach- the semi-analytical finite 

element (SFEM) is proposed for the development of the 

theory of shells. The method is based on finite element 

approximation of two independent three-dimensional 

fields - displacement and stresses in the thickness 

direction. 

The SFEM is applied to develop a set of governing 

equations of shell. These include compatibility, equi­

librium and elasticity relations as well as static and 

kinematic boundary conditions. A formal technique is 

put forward to define generalised semi-discrete variables 

t R Qxz (x, y) 
1 0 Q}Z (x, y) 
Roy (21b) 

0 0 Nxxdi,y) ~xxl (£, y) 

0 0 N xx2 (i, y) ~xx2 (i, .Y) 

0 0 .N yyl (x, .Y) ~yyl (£, .Y) 

0 0 Ryy2 (x, .Y) ~yy2 (x, .Y) 

.N xyt (x, .9) 
-

~xyl (.i, .Y) 
= 0. 

0 0 

0 0 .N xy2 (i, .Y) ~xy2 (i, y) 
12(1+v) 0 Q%% (i, y) exz (x,y) 

12(1+v) Qyz (i, y) e}'% <x . .v> 
(21c) 

and mixed algebraic-differential operators. The higher 

order terms may be simply taken into account by refining 

finite element mesh or by increasing the order of 

approximation polynomials. 

The validity of the method is demonstrated by the 

example of cylindrical shell. 

The SFEM proposed has some principal advantages 

over classical shell theories: 

1) The semi-discrete displacements of shell are compa­

tible with the displacements of three-dimensional 

body; 

2) The governing equations contain only first order 

derivatives; 

3) The method provides extended possibilities for 

introducing a wider type of loading and supports; 

4) The method is independent of geometry of the 

structure and different types of CUIVed or thick shells 

may be considered in the same standard manner; 

5) The symbolic manipulations and computer algebra 

may be applied for the derivation of standard 

operators. 
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It is clear, however, that comprehensive analysis 

and future research are needed to develop and extend the 

SFEM to a wider class of shell problems. 
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PUSIAUANALIZINIAI BAIGTINIAI ELEMENTAl IR 
JV NAUDOJIMAS Cll.JNDRINIAMS KEVALAMS 
MODELIDOTI 

R. Kacianauskas 

Santrauka 

Pateikiamas pusiauanalizinis baigtiniq elementq 
metodas (P ABEM), skirtas netradic~koms kevalq lygtims 
~vesti. Metodas numato dviejq nepriklausomq trimaciq 
kintamqjq - poslinkiq ir itempimq laukq aproksimacijll 
storio kryptimi. Siiilomas metodas yra formalus instru­
mentas, skirtas pusiaudiskretiniams biivio kintamiesiems 
konstruoti bei m~riems algebriniams - diferencialiniams 
lygciq operatoriams sudaryti nepriklausomai nuo kevalo 
geometrijos bei aproksimavimo laipsnio. Pateikiama 
technika iliustruojama cilindrinio kevalo pavyzdziu. 

ISvestos alternatyvios tiesines kevalq teorijos statikos, 
geometrinil.l ir lygciq bendrosios ~ra~kos. Cilindrinio 
kevalo lygtys pateikiamos kaip atskiras atvejis, gautas 
ifdius i bendJ1lliias ~ra~kas konkretq metrini tenzoriq. 
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