Taylor & Francis
Taylor & Francis Group
Statyba

ISSN: 1392-1525 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcem19

ANALYSIS OF COMPLICATED FORM SECTIONS OF
STEEL MEMBERS

A. Danidnas

To cite this article: A. Danitnas (1997) ANALYSIS OF COMPLICATED FORM SECTIONS OF
STEEL MEMBERS, Statyba, 3:9, 34-38, DOI: 10.1080/13921525.1997.10531669

To link to this article: https://doi.org/10.1080/13921525.1997.10531669

@ Published online: 26 Jul 2012.

\J
CA/ Submit your article to this journal &

||I| Article views: 47

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tcem20


https://www.tandfonline.com/action/journalInformation?journalCode=tcem20
https://www.tandfonline.com/loi/tcem19
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13921525.1997.10531669
https://doi.org/10.1080/13921525.1997.10531669
https://www.tandfonline.com/action/authorSubmission?journalCode=tcem20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcem20&show=instructions

ISSN 12921525, STATYBA - CIVIL ENGINEERING - CTPOUTENIBCTBO, 1997, Nr. 1(9)

ANALYSIS OF COMPLICATED FORM SECTIONS OF STEEL MEMBERS

A. Daniiinas

Summary

Strain-deformed state analysis of free form
sections of steel members is defined in an elastic-
plastic state while using the extremum energy
principles of elastic-plastic systems [1]. The solution
is obtained by using finite elements with the constant
distribution of stresses.

1. Introduction

The steel structure design codes [2,3,4] require
to check up the member strength when evaluating
plastic deformations. The model of perfectly plastic
material is accepted. The strength criteria for simple
cross-sections (I-section etc) of steel members are
given in design codes. The analytical steel criteria for
simple cross sections are investigated in [5,6] and
other articles. However, evaluating, complicated cross
sections (open thin-walled and so on) that are used in
contemporary steel constructions, it is necessary to
extend the given strength criterion range in design
codes or to use modern methods of checking the
carrying capacity of cross-sections. The latter could
be broadly used in CAD systems.

One of the ways for checking the carrying
capacity of cross-sections is the use of methods that
are applied for defining strain-deformed state of
elastic perfectly plastic systems. A method of defining
limit internal forces having any number of internal
forces combinations is proposed in [7].

In this article, the strain-deformed state of cross-
section is defined and at the same time the carrying
checked
extremum energy principles of elastic potential of

capacity of cross-section is according
residual stresses and complementary work of residual
displacements. It is very important to define the
deformed state because in some design codes, for
example [3], the strength criteria are obtained when

limiting the residual deformations in cross section
boundary layer.

The methods offered here could be used not
only for cross-sections of steel members but also for
analysis of the cross-sections combined from different
materials.

2. The formulation of problem

The actual strain-deformed state is defined using
the above-mentioned extremum principles. The
mathematical expression of these principles for
discrete system, using lincar yield conditions, is as
follows [1]:

Static formulation

%S,[D]S, —> min,

[@]S, < S, ~[@]S., @
[4]s, =0.
Kinematic formulation

{- 587 [D)sT +47[@]s, - ATSO} > max,

[D]S, +[®] 4 -[4]" u, =0, 2)
Az20.

In mathematical models (1) and (2), - the vectors

of actual, residual, elastic and limit stresses

respectively: [A] is the coefficient matrix of
equilibrium equations, [®] is the coefficient matrix
of yield conditions, [D] is the flexibility matrix of

discrete system, A is the vector of plastic
multiplyings, u, is the vector of residual

displacements. Solving the quadratic programming
problems (1) and (2), vectors §,,4,u, are obtained.

The actual strain-deformed state is obtained in the
following way:
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§=8,+8,,

u=u,+u,, 3

9=9.%4,,
Here w,u,,u,,q9,9.,q, are the vectors of actual,
elastic and residual displacements and deformations
respectively.

3. The main discrete relationships

In this article the relationships of finite elements
for the static formulation of problem (1) are formed
so, that the kinematic formulation (2) relationships
could be obtained in a formal way using the theory of
duality.

The cross-section of steel member using finite
element method is divided into free form plane
elements. The constant distribution of strains along
the finite element is accepted. The constant

distribution of stresses does not require the
continuity of strains between the elements and
enables to evaluate possible breaks of strains which
can occur using the elastic perfectly plastic material
model

The cross-section is analysed in xy,z coordinate
system. All relationships for finite elements given
below are for the actual strain-deformed state. These
relationships have the same form for elastic and
residual strain-deformed states.

The approximating strain matrix for element k,
when the distribution of strains along the element is

constant, is expressed by:
[Nk(y,z)]z[E], 4)
here [E] is unit matrix.
The strained state of element is defined by a

vector

Si = [[Ne(v.2)]oda = 440, )
Ag

here S = !ka,Qky,kalT is vector of finite element
forces, N, and Oiy» Ok are the axial and shear
forces added at the gravity centre of element,
0'=|0'xx,r,‘y,r,le is strain vector, A, is area of

finite element.

The flexibility matrix of the element, evaluating
transition from strains to generalized stresses, is
obtained in the following way:

[De]= J.Zl—[D]jll—da, 6)
A k k

here the flexibility matrix has this expression:

e
E
0]~

where E is modulus of elasticity, G is modulus of
shear, y is coefficient of cross-section form.

Having the integrated expression (6), we obtain
the flexibility matrix of element:
r T
EA4y

1
yGAy

[De] = )

1
wGA; |

The equilibrium equations express the balance

between the element stresses and internal forces of
cross-section. During the strains these equations are
written in this way:

J-[A(x,y, w)]ada =F, 8)
A

T
here F =le, is vector of

My, M, My, M;,0,,0,

cross-section internal forces, the elements of this
vector are axial force, bending moments, warping
moment, moment of rotation and shear forces.
Matrix

T e N

[A(x.y.2)] = : ©)

L .

where w is section warping area.
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Having used the expression (5), the equilibrium
equations for discrete cross section are described as
follows:

2 [4se=F,

k

(10)
here matrix [4;] is obtained from matrix
[4(x,y,w)], using the coordinates of element gravity

centre and warping area centre of element k. It is
necessary to note, that the relationship between shear
strains and shear forces of cross-section depending on
member type could be different.

For obtaining residual deformations according to
problem (2), the yield conditions should be formed
for every node surrounding of finite element using
strain approximating functions [8]. This type of yield
conditions, when the strain distribution is accepted as
constant, is written:

[(ielney. 2o +)-ao)aazo,

Ax

(11

here o is residual strains, arising in the member
section during manufactaring process. Performing
analysis according to steel structures design codes,
yield strain must be changed to yield strength, for
example, op = f), [2], oo =R, [3].

Having integrated (11), the yield conditions
acquire the expression:

[(Dk]Sk < SOk , (12)

here [@;]=[D], Sox = 4e(00 -[ols).

The formulation of finite elements with equal
strain distribution described here allows us to get the
kinematic formulation of the problem using the
theory of duality. Then the elements of deformation
vector are axial and shear deformations in the gravity
centre of element and the elements of displacement
vector are the axial deformation, curvatures and
shear deformations in the centre of the cross-section.

4. Illustration

1. An I-section with an extended upper flange
(see Fig. 1.) is taken to demonstrate the given
method. The cross-section internal forces-vector is

F=|Nx,My,Mz|T. Their magnitudes are described
by product nF,, where n<1. The limit internal
forces for the given  cross-section s
Fy =[1624(kN)), 64.94(kNm), 3788(kNm)|" . Yield
strength for flanges is R, =280 MPaand for web is
R, =210 MPa. Modulus of elasticity

E =206000 MPa .

- 300 l
2_:

— ———————3

2 2z
~ft
![10
g 200
y

Fig. 1. Cross-section dimensions

The-cross section is analysed by loading 7nF,.
The values of coefficient 7 are given in Table 1. To
check the convergence of results, four variants of
finite element mesh are investigated. The first variant
(d1): the upper flange is covered with mesh 1x6, web -
8xl, lower flange - 1x4. Respectively, the second
variant (d2) - 2x6, 8x1, 2x4; the third variant (d3) -
2x12, 16x1, 2x8; the fourth variant - 2x12, 16x2, 2x8.

The residual stresses, plastic multipliers and
residual displacements are obtained according (1)
and (2). The residual deformations in the gravity
centre of element are obtained in this way:

i =[Di|Sri +[ s A -

The elastic solution is calculated using the same

(13)

scheme of finite elements as in the plastic state
according to the formulas:

u, =([41 (DI {4F) ' F,

S, =[DI[4) u,, (14)
9ok = [Dk ]Sek-
The actual stresses, deformations and

displacements are obtained by (3).

In this article only characteristic calculated

results are presented. The largest residual
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deformations are at the point a of the cross-section.
The values of these deformations are presented in
Table 1. The strength criterion in the design codes [3]
is obtained that when the limit value of conditional
residual deformations is &= .;(E / Ry) =3. Then limit

value for residual deformation is &= 408 107 It is
necessary to note, that with coefficient 7=0.99,
residual deformations exceed the limit value of
residual deformation, whereas the strength of section
according (1) is sufficient.

The calculation results showed that using a finite
element with constant distribution of strains along
the element, the sufficient accuracy of strains can be
obtained already at rough element mesh. At that time
the sufficient accuracy of deformations can be
obtained using only dense element mesh (see Table
1). It is understandable, when the poor bending is
analysed, the sufficient accuracy of strains and
deformations are reached using rough element mesh.

Table 1. Residual deformations &,, 10° at the pointa

Ele- n

ment

mesh 0.80 0.90 {0.95 0.98 0.99 { 0.999
dl 4.997 | 25.50 {51.95 | 139.8 | 2789 | 1214
d2 6.247 | 29.26 [61.61 | 228.3 | 823.1 | 8615
d3 5.707 { 30.01 61.24 | 238.1 | 755.3 {11290
d4 5.702 | 29.62 161.23 | 238.1 | 758.4 {11290

6. Conclusions

The proposed method allows the use of
numerical methods for analysing the strain-deformed
state of complicated sections of steel members and
can be successfully applied in CAD systems. The
element with a constant distribution of strains allows
to achieve sufficient numerical results for practical
design needs.
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PLIENINIY ELEMENTU LAISVOS FORMOS
SKERSPJUVIJ ANALIZE

A. Daniiinas

Santrauka

Plieniniy elementy laisvos formos skerspjivio
jtempimy deformuoto bivio analizé ir laikomoji galia
nustatoma tampriai plastinéje stadijoje, pasinaudojant
tampriai  plastiniy sistemy analizés ekstreminiais
energetiniais principais [1]. Siy principy matematiné
iSraiSka diskretizuotai sistemai, naudojant tiesines takumo
salygas, yra (1) ir (2). Tikrasis jtempimy deformuotas buvis
nustatomas pagal (3).

UZdavinys sprendZiamas skaitiniu b@du, naudojant
baigtiniy elementy metods. Elemento skerspjivis
sudalinamas j laisvos formos plok§¢ius elementus. Baigtiniy
elementy priklausomybés statiniai uZdavinio formuluotei
sudaromos tajp, kad kinematinés formuluotés priklau-
somybes biity galima gauti formaliuoju bidu naudojant
dualumo teorijy. Siame darbe parenkamas pastovus
jtempimy pasiskirstymas visame elemente. Toks jtempimy
pasiskirstymas nereikalauja jtempimy tolydumo tarp
elementy ir leidZia jvertinti galimus jtempimy triikius tarp
elementy, kurie galimi naudojant idealiai tampriai plastinés
medZiagos modelj. Siai baigtiniy elementy formuluotei
rasta elemento pasiduodamumy matrica (7), pusiausvyros
lygtys (10) ir takumo sglygos (12).

Pateiktai metodikai pademonstruoti imamas elemento
dvitéjis skerspjivis su paplatinta virSutine juosta.

. o T
Skerspjiivyje veikia jrafos F =N, M, ,M;| . Jy dydis

-37 -



aprafomas sandauga 7F;, kur 7<l, o F, yra
skerspjivio ribiniy jraZy vektorius. Skerspjlvis tikrinamas
nuo apkrovos 7Fp. Tampriosios jraZos ir poslinkiai
skaifiuojami pagal (14).

Straipsnyje pateikiami tik charakteringi skaiiavimy
rezultatai. DidZiausios lickamosios deformacijos yra
skerspjiivio talke a. Siy deformacijy reik§més pateiktos
lenteléje. Stiprumo sglygos projektavimo normose [3] yra
gautos laikant, kad sglyginé ribiné¢ lickamoji deformacija

kradtiniuose skerspjiivio sluoksniuose £= &(E / Ry) =3.

Tuomet ribiné liekamoji deformacija & =408 107°.
Matome, kad esant koeficientui 77 2 0.99 skerspjiivio taske
a lieckamosios deformacijos virSija ribing lickamajg
deformacija, nors skerspjivio stiprumas pagal (1) yra
pakankamas.

Pateikta metodika leidZia skaitiniais metodais
patikrinti elementy sudétingy skerspjiviy stiprumg ir gali
biti sékmingai taikoma konstrukcijy automatizuotose
projektavimo sistemose. Baigtinio elemento su pastoviu
jtempimy pasiskirstymu taikymas skaitiniams skaifia-
vimams leidZia gauti pakankama rezultaty tiksluma,
reikalingg praktiniuose skaidiavimuose.
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