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ENERGY INTERPRETATION OF COMPLEMENTARITY CONDITIONS

IN SHAKEDOWN PROBLEMS
J. Atkociiinas

1. Introduction

A progress in computing technology has
presented a new means in structural mechanics to
determine the stress and strain field (SSF) of elastic-
plastic structures. One of relatively new methods is
the one, based on the use of the extremum energy
solid mechanics in

principles of deformable

formulating the SSF problems by applying the dual
(1]-[6].

Mechanical interpretation of the main conditions-

mathematical  programming  theory
constraints of mathematical models there plays the
basic role. First of all, this is related to the
(also

additional orthogonality conditions), which cannot

complementarity conditions known as
directly fix the possible unloading, the most often met
when considering the affect of cyclic loading (CL) [7]-
[9]. The stress-strain field of a dissipative structure in
general is related to the history of loading. Various
aspects of the SSF of shakedown structures are
considered in [10]-[19] and some other works. Special
energetic interpretation of the above - mentioned
complementarity conditions ensures a more exact
determination of residual stresses and strains for

elastic-plastic structures (the SSF analysis problem).

2. Definitions and relationships of a discrete
structural model

An elastic structure is

considered, the physical and geometric characteristics

perfectly plastic

are assumed to be known. Considerations confirm
the validity of the small displacement approach. The
discrete model of the structure is obtained by dividing
it into ¢ finite elements, the total number of design
cross-sections being s (the set of their indices is
I).The cross-sections are assumed to be of an ideal
form. It is convenient to split the displacements u,

stresses S and strains ® into “elastic” and

“residual” parts. The number of the components of
all stress vectors S =S,+8, and that of the strains

© =0 ,+0, is equal to n (the subscript e refers to

the vectors obtained from the elastic design;
additional terms follow from the presence due to

plastic strains ®p ). The degree of freedom in the

discrete model of the structure is m. The cyclic

loading is defined by the wvariation bounds
F, < F(t) < F;,,, which are known and not

related to the time . The structure is supposed to be
in a state of shakedown. The simple loading F is

considered a particular case of the cyclic loading:
F = F;,¢r = F,, . The equilibrium equations read

[A]S=F. @
Here [A] is a (m xn)matrix of the coefficients of
the equilibrium equations. [A4]7 is the matrix of

compatibility depending on the geometry of the
structure. The statically possible vector S from

equilibrium equations (1)
[AI]SI +[A”]S” = F
is obtained via the following relationship:

s:[Ap]‘1F+[Ag]s" . )

Here the matrices [Ap ]_1, [Agl read
(") ary ]

(] [t ) ) @

respectively. The equalities
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[4] ([Ap ]_1F+[A2] S") =F,

[4] [AE]S" =0,
by using the expression
[4][43]={0] and [4 | 4] w o,
lead to the compatibility equations of strains

017
[Ap] ©=0. (4)
. o . Lo
The matrix ——[AP] in actual article is denoted by

T
[B]=—[A2] . Then it is easy to find that the elastic

stresses S, , applying the force method relationships

[B4]s: +[Bp]F=0, read

s.tett={ [ ] )

Here [a] is the influence matrix for elastic stresses,

the matrices [Bq] , [ﬂp] are denoted as

B[] 01[45]. [8,]{42] P1[4,] @
respectively. Here the quantity [D] is the diagonal

flexibility matrix of the eclements of the structure.
Under cyclic loading the vectors S S

ej,min > ej ymax
define all apexes of the hodograph of the elastic

forces:
S.(1) =[a]F(t), Ky

The subscript j denotes their symmetric pair, their
set is J (jeJ); the set of the indices of all is
denoted by P, peP. The extreme elastic stresses

Seimin> S

prescribed bounds F, Finrs

< F(t) < F

¢j,max are the linear functions of the

The linear yield condltlons
(@] (S, (1) +8,()) <8 M

are verified in the cross-sections or in the apriori
prescribed points of the discrete model of the
structure. Here S is the prescribed vector of limit
stresses of the discrete model of the structure. The

condition (7) is the result of the requirement stating
that the total stresses S must remain inside the

admissible domain. The matrix [®] contains the unit

vectors perpendicular to the plane facets of domain

(7). Solving the shakedown problems, all apexes of
the hodograph S,(t) are simultaneously taken into

account in the linear yield conditions (7):

[(D]( e],ma.x )SSO’ [CD]( e],ml" )SSO for all
valuesof jeJ. ®
Here S, is the any time-independent residual stress

vector (it, in general, depends on the loading history)
[20]. The statically admissible vector S, satisfies the

equilibrium equations (1) and the yield conditions
(8). It is known that such a vector satisfies the

conditions of the static Melan principle for

shakedown state of the structure [21]. Application of
the mathematical programming theory yields that a

solution for extremum problem of shakedown exists.
For simple loading F = K¢ = . Then the yield

conditions are

[d)](Se+S,) < S0 :

The plastic flow rule associated with the yield
conditions (7) reads

: ©)
MO 20, if S, - [@] (S.()+S,()) =

M) =0, if Sp-[®@] (Se(t)+Sr(t))>0. (10)

Here A(1) is a vector of intensities of plastic flow.
For a given instant t
T T
®,=[0,(()d=[0" A, win * =] A1
0 0

Under the assumption of small displacements the
geometric relation is linear:

[AF u=9,
here u =w,+uw,, ©=0,+0,. The vector
©, denotes the residual strains
®, =[D]S,+ ©,
Then
[4F u,=0, and [4]u,=0,. (12

-15.



Kinematically admissible residual displaccments wu ,

satisfy relationships
[D}S,+[®) r-[A]F u, =0, 1 >0. (13)
Here the vector A satisfies the formulae:
(14)

A =Z(x].’m A i)
J

A —

jomin 205 A g 20,
l:ll':minlso_ [(I)](Sej,min+sr)] =0,

A} mae[So=[@1(Sej,max+S,)] =057 €7 (15)

Expressions (10), (15) in mathematical programming
theory are known as complementarity conditions [22],
[23]. The conditions (15) do not allow via A to fix
the appeared plastic flow during the actual process of
deformation, for instance, before reaching the state
of shakedown.

3. Extremum analysis problem of holonomic
structures

3.1 Energy concepts

The SSF of dissipative structure depends on the
loading history. For simple loading assumption of
unloading naturally is not in question. Under this
assumption the SSF determination problem can be
realized by the direct
mathematical programming problem, introducing the
final magnitude of F (the effect of monotonically

solution of the dual

increasing load from zero up to its final magnitude is

not required to evaluate). Aforementioned
mathematical programming problems are formulated
on the basis of the extremum energy principles,
namely minimum complementary energy and that of
the minimum total potential energy principles [4].
Another energy concepts are also introduced. An

irreversible work of external loads F reads

W=W(7)= }FT(t)l'lr(t)dt =Flu, (16)
0
and direct work of plastic strains © p is
z
D,=D,(7)=[8,7()6,(0d =S,0,, @7

0

W=D,. (18)

The total plastic energy dissipation D can be
expressed by a sum of energy dissipation of residual
stresses

D, =D, ()= 87 ()6, (d=85T6, (19)
0

and that of direct work of plastic strains D, :

D=D,+D, or D=D,+W.  (20)

3.2. Dual mathematical models of the analysis
problem

The actual field of residual stresses preceding
the plastic failure can be obtained by using the
extreme principle of the minimum complementary
energy (the static formulation of the SSF analysis
problem):
find

min &#'(S,) = min  0.5.87[D]S,= U* (21)
subject to
[4]S, =0,

[CD](Se+Sr) SSO' (22)

Here S,=[a]F. By solving the problem (21)-(22)
the vector S: and the minimum value of the

complementary energy U* are determined. The
problem (21)-(22) solution S: is unique due to the

positive definability of the matrix [D] and the
convexity of yield conditions (22).
The Kuhn-Tucker conditions related to

minimization problem (21)-(22) read [22], [23]

v (87)+[@] h-[4] u, =0,

220, xT[so—[q>](se+s‘;)]=o. (23)

Here V&7 '(S:) is the gradient of objective function
&F'(S,).
known as compatibility equations of residual strains
of elastic-plastic structure [23], [24]:

[B,|*=[51s7.

The Kuhn-Tucker conditions (23) are

24)

r20, a7 [so—[q>](se+s:)] =0. (25

-16 -



The order of the matrix [B,J:[B][(D]T is (kxs),

where k=n-m and

8 ]= [[A”]T([A’]T)_l, - [1]] and
[B,]=—{ AT (2) [0]+[D"].

The compatibility equations (24)-(25) can be
obtained by direct use of the formula (4).
The kinematical formulation of the SSF analysis

problem reads

find
min {0.5-87[D]s, + 21 [@]S, + )
+)"T[SO '—[CD](Se +Sr)]} = H*
subject to
[D]S, +[@F A -[4) u, =0, x 20. (27)

The problem (26)-(27) corresponds to the principle

of the minimum total potential energy /7. By solving

the problem (26)-(27), the vectors S:, u:, A are

determined. Changing the sign of the objective
function (26) the problem, dual to that of (21)-(22) is
obtained:
find
max&"(S,,u,,k) = max {—O.S-S,T[D]S, ~
T T
AT @ls, -AT[so ]S, +S )} (28)
subject to
[D]S, +[®F A-[4]"u, =0, 2 20. (29)
3.3. Energy interpretation of duality theorems

The first item of objective function (28) means the
U, =0.5-ST[D]S, , the

second one, according to the formula (19), means the

complementary energy

energy dissipation of residual stresses D, =(~)£Sr
[4]:

T T
D,=0,8,=1"[0]s, . (30)

According to the first duality theorem for solution of
the problems (21)-(22) and (28)-(29), the objective
functions are equal:

T
0587 [D]s! =-0.58T [D]S} 1" [cp ]s‘;. (1)

Here the expression for the energy dissipation D,

reads

D, =-ST[DIS;=-2U;. (32)

The relations (31) mean that the elastic potential of
the residual stresses is equal to the complementary
work.

The equations (32) can be also obtained by
multiplying the geometric equations (29) to S: ,
taking into account that S,[A]7 u) =0 .

On the other hand, geometric equations (29)
[4] w; = [D]S; + [@] A7

multiplying by the vector S, (S,=[«]F) we have
[23]:

T T _* T * T T
S, [A] u, =S, [D]Sr +S, [(D] A,

sT1af =¥7, sT[pJsi=0.

Finally, it leads to the known equality (18).

The second theorem of duality of mathematical
* *

solution S* , u’, A

programming for optimal I '

reads:

x*T[so-[cp](se +sj)] =0. (33)

Conditions (33) for X*, S:, S, further will be

denoted as the global complementarity conditions
(the local complementarity conditions are actual in
step-by-step analysis of the SSF). Further we consider
conditions

28— 2 T[a)st- 2T [@]s, =0, (34)

taking into account the formula (32). Analysing the
first item in (34), it is obvious that it means the total
energy dissipation

p=2"Ts, . (35)

One can see that for the separate components

X*,_ = 0 relations
i,p

® S.+S%) < S -
[ ][_,H( el n) Ol._,u’ i EI’ .
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are valid; and for the components k}, 20 -

equalities

* .+
[q>]i+’p(sei+s,i)=s0i+’u itel.

are also valid. Here p is the number of the plane

face of domain (7) (the number of lines of the linear

yield conditions matrix [®]; ). In degenerate analysis

problem it is possible the case when X} =0 and

M

. Finally, equation (34)

[<1>1,.+,u(se,-+s;-)=s01.4,,u

leads to the known expression (20):

* * #T
D= -ST[D]S}+1" [®]S, - (36)

3.4. The complete set of constraints of elastic-plastic
structure

The complete set of the equations (the
generalized Lagrange problem of elastic-plastic
structures) consists of constraints of the mathematical
models of extremum problem in static formulation
(22) and of Kuhn-Tucker conditions (23):

[4]S,=0, [(D](Se+sr) <8,
v (s,)+[@of A-[4] v, =0,

220, AT [SO—[CD](Se+S,)] =0. (37

The solution of the set of relations (37) are the

vectors S:, u: , A" .They completely agree with the

solution of dual pair of mathematical programming
problems (21)-(22), (28)-(29).
The residual displacements w, and stresses S,

can be expressed in the form:
u, =[H|[@] A=[H]7,
s, =[G][®] »=[GIx. (38)

Here:

[#]=((A1D1 4T ) " TA1[DT,

(6] {ioT A (LD [AF ) [a)2T* (DT }
(39)

Then the relation system (37) reads:
—SO+[<I)](Se+[G]x)s 0, A >0,
T
AT [So-[@)(S. +[GIA )] =0.

The elastic displacements u, and the stresses S, in

the case of simultaneous action of distortion q and
external load F are expressed by [28]:

U, = U ptU,, = [ﬁ]F+[ﬁ]q,

= (40)
S, =8,,+8,, =[]F+[G]q.
Here [B]is the influence matrix for elastic
displacements.

Under the distortion q and the external load F
mathematical model (21)-(22) reads:

find(21) subject to [A]S; = 0,}

[@](Set+ Seq +S:)<So- 1)

Then the kinematic formulation of the problem (26)-
(27) reads:

. . T T
find mm{o.s-s, [D]S, + AT [®]S, +

+ A T[S ~[@](S.f +8,, + s)]}
subject to (27).

42

For optimal solution of the

S# *

ra“r!

problem (42)

2" the relation

x"T[sO ~[@(Sef +Seq + s';)]: 0 (43)

is valid. The relationship (43) contains the direct
work of plastic strains

D, = AT [@](S, +S,4 )=2"T [@]S,. (44)

Multiplication product D,, = 2T [©]S.; can be
interpreted as a virtual work of stresses S, (when
the plastic strains @; = [(I)]T A" were caused by the
stresses S,c only). Prestressing is expressed via the
vector q in this case. On the other hand, the work
D,,, the product of the resultant external load
F,= [A][D]"lq can be interpreted as the virtual
work of the force F, ( following the Betti theorem)

[23], [24].
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3.5. An exceptional case of shakedown anmalysis
problem

Description of the cyclic load by variation
bounds F,, Fy, (F, < F(t) <F,,) does not
yield any information about the sequence in which
different combinations of the loads can be realised.
The combination of loads, leading to the shakedown
state of the structure without unloading is to be
determined [4], [19]. Then the static formulation of
such problem reads :

find
min  0.5-ST[D]S, = (45)
subject to
[4]S, =0,
[D)S iz +8,) <S0»  [®](Syjmin +S,)<Sq  for
all values jeJ. (46)

The vectors Sy, S, a5 Sej min in problem (45) -
(46) are assumed to be prescribed. By solving the
problem (45)-(46), the vector S: is determined.

The kinematic formulation of the problem
reads:
find
min{0.5-S] [D]S, + > A1 .. [®]S, +

j
T T

+ 2 N jmin @18, + 2N e [So ~[@(S o, + S, )]+

] J

T *
+Z)"j,min[SO ~ [D)(Sej,min + Sr)]} =1 (47)
J
subject to
[DIS, + (O & e + D[PV A i ~[4] W, =0,
i J
Mmar 20 A 20, jel. (48)

The problem (47)-(48) corresponds to the minimum

total potential energy principle. By solving the

problem (47)-(48), the vectors S:, u:, A"

A= 3 (A + 1, min)
J

and D, = X*TSO

are obtained. Via D the minimum value of

min
energy dissipation, required to reach the state of

shakedown is denoted. The

optimal solution

*

S;, uy, A" satisfies the conditions (14), (15). It is

S, u,, A", in general,
depend on the loading history

required to mark that
F(¢t) and are not
unique for the shakedown state.

Further the case, when the shakedown state is
obtained under the unique vector of §,(f)=S, for
all histories of loading F(¢) is under consideration.

This is valid for the moment prior to the cyclic plastic
failure (when the safety factor of shakedown is
approximate to 1) [20], [25], [26]:

find
max s (49)
subject to
[4]S, =0,
[©)(Smax +5,) <+ S0 [@1(Sgimin+S,) < L S0
for all values jeJ. (50)
The extremum clastic stresses S, .., S,; ., are

assumed to be known. By solving the problem (49)-
(50), the value s-§: prior to the cyclic plastic failure

is determined. The solution of the problem, dual to
the problem (49)-(50), can be obtained by solving the
compatibility equations for residual strains:

[B ]x [B.]s-S;, %20,
[so— <D](Se+s~§:)] =0.

In general, the vector S, corresponds to the active

(5D
yield conditions. The basis vector A~ is the solution

of the system (51).
problem (51) is more closely considered in [23].

The degenerate case of the

Return to consideration of the mathematical
models (45)-(46), (47)-(48), when the yield conditions
were written for every design cross-section. The
dimensions of the aforementioned problems can be
reduced, turning out the non-active yield conditions.

The yield conditions new matrix [(D*] and the limit

stress vector Sg due to this matrix are formed. For

this purpose the optimal solution S: of the problem
(45)-(46) is used:

-19 -



max[@;](S,; , +s‘,‘,.)=[<p,‘.‘] (s5i+s%) ieL peP.
WP

(52)
The obtained vector SB differs from the primary
vector S, by the reduced dimensions. By using the

matrix [(D'] and the vector S, the problem (45)-

(46) can be transformed to:
find (45) subjectto [A]S, =0,

[cp‘](s; +8,)< Sp. (53)

By analogy, the kinematic formulation (47)-(48) of
the aforementioned problem is reduced, too. Then

the plastic strains @; can be obtained via the
* * T * *
following expression: © , = [<I> ] A= [@F A" .
Dimensions of the vectors S; and A coincide.
Finally, the energy equation (36) for S, u,, Ay
reads:
nmn

D . = —s:T[D]s:+x3T[cp‘]s;. (54)

The characteristic features of cyclic loading are
considered in the cycle . For the exceptional case

of the shakedown analysis problem the irreversible
work of external loads W is expressed by:

W) =}n{ () ROt = W) g By +0) gy By (55)
0

Here U, s Uy gp ATE the vectors of lower and

u, (1)

(u, ;e < u, (1) Su, g ), respectively. It is known that

upper bounds of residual displacements

u, =[H]e, =[H][@]" "=[H]".
By using the matrix [(D*] and the vector XB
. — «17  «
u, =[H][(D ] Ay .

In general, the vectors in the

ur 1i’f ’ “l‘,.WJP
exceptional case of shakedown analysis problem can
be obtained from the following expressions:

u,,w:[HW]x‘, u,,i,,f=[Hi”f] A*. (56)

For the simple loading F = F;r = K, ,

u =u_e+ W, g, and W=FTu, .

If the mathematical models (45)-(46), (47)-(48)

contain the extremum elastic stresses described by
Se,inf $S.(t)<S, g , then for the cycle ©

T
T : T T
De(":) = Ise (t)'ep (t)dt = Se,inf e;),inf +Se,sup e;,sup
0

Here S, ., =[asup]Fsup + [a'inf]Finf’

S, inf =[°‘inf]Fsup + [asup]Finf'

4. Step-by-step method in shakedown analysis
problems

4.1. Mathematical meodels

Usually the cyclic loading is accompanied by
In this case for
determining SSF of the structure one needs to
consider the plastic deformation history. The
mathematical models (21)-(22), (28)-(29) (or (45)-
(46), (47)-(48)) to determine SSF cannot be directly
applied for the final values of external load F.

unloading of the structure.

However, aforementioned mathematical models can
be applied, when analysing the incremental process of
loading, i.e. for every step AF,. Thus, the general
methods can be used in respect of the different
actions of external loads [19], [27] - [29].

For the v step of the plastic deformation
process the vector of total stresses S, reads:

S, =S, +8,.4,+AS,,. 67
v=1

Here S, , = > AS, is the vector of residual
k=1

stresses for the v-th step. In formula (57) AS,, is the

vector of increments of residual stresses for the v-th
step (further the actual increments of residual

stresses will be denoted as AS;, ). Usually, for the

beginning of the plastic deformation process the
vector S,,=0. The vector of elastic stresses

increments is defined by AS,;, =[a]AF,, then the
4

vector S, , =Y AS, . Changing the increment
k=1

AF, , one can fix the unloading in the cross-sections

- 20 -



(when required it is possible to regulate the duration
of the step v). Fixing the beginning of the unloading
phenomenon ensures a more exact determination of
the actual AS),.

The vector of the total displacements u, in

the v-th step reads:

u, =l U, AL, (58)
v-1

Here u,, , = ZAn,k is the vector of the residual
k=1

displacements for v-th step. The value in the formula
(58) Au,, is the vector of increments of residual

displacements for the v-th step. The vector of elastic
displacement increments w, , is obtained by

Wery = Z [B]AFV
k=1

Static formulation for step-by-step analysis of
SSF for the increments of residual stresses AS,,

reads:
find
min 0,5AST [D]AS,, = AU (59)
subject to
[A] AS,, =0,
[@1(Se,, + Seq,y +48,,) < Sy, (60)

By solving the problem (59)-(60), the vector of actual

increments of the residual stresses AS:V and the

increment of complementary energy AU: are

obtained. Now it is obvious that the aforementioned

residual stresses S,,, is the incremental sum

v-1 .
Seq,v = ZASrk :
k=1
The kinematic formulation for the step-by-step
analysis of SSF for the increments of the residual
displacements Au,, and strains A®, reads:
find
min{0.5-a8%, [D]aS,, + mI[@]aS,, + o)
T
+84, [So ~[®](Syr,, +S.q,, +AS,, )| }=A1T;
subject to

[D14S,, +[®]7 A, ~[A]T Au,, =0, AL, 20 . (62)

By solving the problem (61)-(62), the vectors AS), ,
Au:‘v , AA.: are obtained. The objective function (61)

of the problem (61)-(62) means the increment of the
total potential energy AIY: .

According to the first duality theorem
M:T[(D]ASZ, = —ASZ,T [D]AS;,. The actual
increment of the residual stresses is

AS;, =[5 ][@]T A, By using the formula (40), the

v--1
vector S, , = ZAS:k can be determined by
k=1

v-1
Seq,v =[(T‘|qv = [5][(D]Tx:—1 =[G] ZM; .
k=1

The compatibility equations (24)-(25) for the
increments of the residual strains

48, =[D]AS,, +4A0,,,

T
20, =[@] ar,, AL, 20

v = b

reads: [Bx] AL, =[B,]AS,,. (63)

Then the analysis problem in kinematic formulation

is as follows:
find
min{0.5-aST [D] aS,, + aAI[®]AS,, +
+ M) [So-[@)(S.5,, +S.q,, + 48, )|} 9
subject to
[B,]ar, =[B,185,,, 2,20, (69)

The vectors AX,, AS,, are the unknown values in
the problem (64)-(65).
For the vectors AS

* *

e AU AA: being
already determined, the total residual stresses S;,,

displacements wu,, plastic strains @;v and residual

strains @:V for the end of v -th step are expressed by:

* *
87 = S, +AS,,, (66)
Uy, = Uy, + AU, (67)

O, =40, =Y [o] Ak =[0]T ¥ AL, =[@]TA;,

v

v
A=Y AAy (68)
v

-21 -



*
®,,=[D]S;, +6,,. (69)

The above - presented formulae are valid as well as
for the intermediate as for the final moments of the
plastic deformation process.

42. Energy interpretation of local complementarity
conditions

The local complementarity condition (condition
for the v-th step) for the optimal solution of the
problem (64)-(65) (or (61)-(62)) is valid:

T [So ~[®](S,7,, +Seq,. + As;,)] =0,

T >, (70)
On the other hand, the condition (70) reads:
aTs, =mnT [@las), + 0T (@S, , + on
’ 71

T
+A)": [(D]Sef,v'

The left item of the formula (71) means the
increment of the total energy dissipation

AD, = M:T Sy. The first item on the right side of
the equation (71) means the actual work of residual

stresses AS,, of the v-th step:
AD,, = 41 [®]4S], (72)

The second item on the right side of the equation

(71) means the virtual work of the residual stresses
8,q,v for the v-th step:

ADC

T
q,v = AX, [(D]Seq,w

(73)

The third item on the right side of the equation (71)
means the direct work of plastic strains A@Iw for
the v-th step:

T *
AD,, = Ak, [(D]Sef,V' (74)

For the complete process of plastic deformation,
consisting from v steps, the equation

3 80 [80-[@)(Sep,, +Seg + ASH)| =0 (75)
14
is valid. Finally, we have:

2. AD, =% AD,, +Y AD,, ,+Y AD,, .  (76)
v \4 v v

The formula (76) allows to determine the total energy
dissipation:

D,=Dp+D,,,+D,,, (77)

which is analogous to the formula (20).

4.3. On relationship of the local and global
complementarity conditions

Now we are in the position to compare the
solution results of the extremum analysis problems
for holonomic structures (21)-(22), (28)-(29) (or
(45)-(46), (47)-(48)) with those of the step-by-step
extremum analysis problems (59)-(60), (61)-(62). For
the holonomic structures S, =S (here S, is the
optimal solution of the problems (21)-(22), (45)-
(46)). Then the complementarity conditions - the
local (for all v steps)

M:T[so ~[@)(S,;, +Seq, + As;)] =0, (78)
as well as the global
ny! [So-[@](8% +57)] = 0

are valid. Here

()

*

)_:=ZA)‘,: , S,=[a]F, S:v_—' Seq,v +AS,, .
14

When the conditions (78), (79) are satisfied, the

numerical value D, (the numerical result according
to (77)) coincides with the value D =27, (the

numerical result according to (35)). By the expression
(36), it can be proved that

D =-8;7[D]s; +s, [0 1" =s;T©’, +5,7 O},

Let us consider the two-steps analysis of the plastic
deformation. In this case v=2 and

S, =AS; +AS;,, S, =AS, +AS,, ,
(-); = A®;,1+A®;2 (for convenience, further the
indices * for AS,;, AS,, are missed). Then the
energy dissipation is calculated as:
D =AD, + AD, = (48;] +4S}] )(467, +405,) +

- =7 * T *T * T *
=A8;] 40}, + (ST, + 8S}3 )40 + AST 407, +
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+ AS}] A0}, + S]] A7, + (457 + ST, )A0),.
For the every step of the plastic deformation the
energy dissipation AD, is calculated by:

AD; =M\ Sy =AS}] A0, +

(80)
+(as]y + 4877 )40}, + £87007,
AD, =AM 8o =AS}] A®}, +
(81)

=T * T T *
+48}] 40}, + (48] + 48D, ) 403,

When the unloading does not appear, the scalar
multiplication product (ASeTZ + ASﬁ)A@;l in the

formula (80) is equal to zero (Fig. 1.), i.e.

(s, + as77 ) 207, =0. (82)

Finally, we conclude that the expressions (80), (81)
have the meaning of the local complementarity
conditions (71) for v=1,2.

Further we consider detailed the
unloading phenomenon of the structure, when the
global complementarity conditions in the mathema-
tical models (45)-(46), (47)-(48) are not satisfied.

To avoid it, the vector of fictitious limit stresses §0 is

more

introduced to satisfy the global complementary
conditions as well. Then the mathematical models
(21)422), (28)-(29) (or (45)-(46), (47)-(48)) to
determine the SSF can be directly applied to the final

AQ*

p2

S
e * 48
2

Fig. 1. On the determination of energy dissipation for
holonomic structures

values of F. The optimal solution S:V of the prob-
lem (59)-(60) is applied to determine the vector §0
The components of the vector §0 in cross-sections,

where the plastic strains @;,V are not equal to zero,

are calculated according to the formula [30], [31]:

8y =max[@;](S,; , +Sn,i) i<l peP. (83)
My P

Here S:v = Segv +AS:V (Fig. 2). The components of

the vector §0 do not change for the cross-sections
where @;,V=0. Then the static formulation of the

extremum analysis problem reads [30] - [33]:
find

min  0.5-S7 [D]S,=T" (84)
subject to:
[4]8, =0, [®][s;+5,)<S. @9

The optimal solution of the problem (84)-(85), §:
completely coincides with the solution of the step-by-

Fig. 2. On the relationship between the local and the global
complementarity conditions

The

active yield conditions are predetermined by the

step problem (59)-(60), S}, = S,,,+ASy, .

vector Eo . The kinematic formulation of the analysis

problem reads:
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find
max {-0.5-ST [D]S, -2.7[®]S, -

et . - - 86

-xT[so—[m](se+s,)]}=n* (®)
subject to

[D]S, +[@)" % -[4]T %, =0, %20. (87

By solving the problem (86)-(87), the vectors

NE TR ek

S,, A, w, are obtained Thus the global
complementarity conditions
X‘T['éo-[cb](s: +§,‘)]=0, 2'>0  (89)

are satisfied as well. Now, the energy dissipation D

can be calculated by the formula
D=-§57[DJ§; +s [0 2" =578} +5,'6},,
(89)

when the vectors §0, §: , A" (or the vector of

plastic strains 5;) arc the already known values.

They completely coincide with those obtained by
using the step-by-step problems, §,:,, 3:: Thus the
energy dissipation D is calculated by analogy with
the formula (36). The actual value of the energy

dissipation D, is determined by the formula

D, =D+(s;" -§7)8, =

~ ~»T
h D+x"Tas,.  (90)

Here ASy=S,-S,. The conclusions of the Betti

theorem were applied to derive the relationship (90).

5. Conclusions

The residual displacements are related to the
history of loading. The energy bounds of the possible
states of shakedown are usually included in the
constraints of the mathematical models of problems
for the displacement estimation. The maximum value
of the energy dissipation is within these bounds. The
reliability of the results, obtained by solving the
mathematical optimization problems for determining
the variation limits of residual displacements
essentialy depends on the accuracy of the maximum
value of the energy dissipation. The minimum
complementary energy principle of a fictitious
structure obeying the holonomic law permits the

-24-

upper bound of energy dissipation to be defined
more accurately (it is ensured by a special energetic
interpretation of the local and global complemen-
tarity conditions).
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ENERGETINE GRIEZTUMO SALYGU
INTERPRETACIJA PRISITAIKYMO UZDAVINIUOSE

J.Atkoditinas

Santrauka

Straipsnis skirtas matematinio programavimo metody
taikymui prisitaikomumo teorijoje. Stipréjant kompiu-
terinei technikai, atsiranda vis naujy statybinés mechanikos
metody skaiéiuoti tampriyjy-plastiniy konstrukeijy jtempi-
my ir deformacijy bivius. Viena i§ naujausiy krypéiy -
Zinomy fiziniy ir geometriniy duomeny konstrukcijos
analizés uZdaviniy formulavimas, panaudojant matematinio
programavimo teorijg. Ypaé perspektyvu, jei analizes
uZdaviniy matematiniai modeliai sudaromi kieto defor-
muojamo kiino mechanikos ekstreminiy energetiniy
principy pagrindu. Tuo atveju matematinio programavimo
teorija padeda formuluoti sudétingy plasti§kumo teorijos
uZdaviniy matematinius modelius ir juos i§spresti.

Taikant matematinj programavima, viena i§ pagrindi-
niy problemy yra korektiSkas jeinanéiy j uZdavinio dualius
matematinius modelius sglygy-apribojimy mechanistinis ir
energetinis interpretavimas. Ta prasme sudétingiausia
atsiZvelgti | matematinio programavimo teorijoje Zinomas
grietumo sglygas (jos yra kombinatorinés). SprendZiant
ckstreminius disipatyviniy sistemy analizés uZdavinius su
galutinémis iSoriniy poveikiy reikSmémis, minétomis
grieZztumo salygomis nejmanoma tiesiogiai fiksuoti pjlviy
nusikrovimo. Prarandama galimybé¢ atsiZvelgti j plastinio
tekéjimo reZimus, pasibaigiandius ankscéiau, negu pasiektos
galutinés iSoriniy poveikiy reik§més. Tokie dalykai daZni,
kai apkrova yra kartotiné kintama.

Sitlomas bidas skaitiuoti energijos disipacijos reiks-
mei, kuri reikalinga konstrukcijos deformacijy bivio
analizés uXdaviniy sprendimui. Biidas pagrijstas globa-
linémis ir lokalinémis grieZtumo salygomis. Tuo tikslu
iSnagrinéti holonominés elgsenos konstrukcijy ekstreminiy
uzdaviniy matematiniai modeliai, dualumo teoremy bei
globaliniy grieZtumo sglygy energetine interpretacija.
Holonominés konstrukeijy elgsenos rémuose suformuluoti
ir atskirojo prisitaikymo biivio analizés uZdavinio matema-
tiniai modeliai, kai takumo sglygose panaudojamos pseu-
dotamprios ckstreminés jraZos. SprendZiant § uZdavinj,
apskaifiuojama minimali energijos, iSsklaidomos siekiant
prisitaikymo biivio, reik§mé. [vedant fiktyvias ribines jraZas,
gaunama formulé skaifiuoti nusikraunancios sistemos
energijos disipacijos reikSmei, panaudojant atskirojo prisi-
taikymo biivio analizés uZdavinio sprendimo rezultatus.
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