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1. Introduction

Flows with free surfaces are a difficult class of non-
linear problems. In the numerical approximation of such
flows, we must deal with two main problems. The first
problem is non-lincar Navier-Stokes problem and the
second one is moving boundaries problem. Both of them
require special numerical methods and coupling of them
makes these difficulties even more challenging.

We consider some possible numerical methods for
solving free surface flow problems for a viscous gas. The
governing equations and boundary and initial conditions
are given in section 2. The Pukhnachov scheme for
decoupling the Navier-Stokes system and free boundary
problem are discussed in sections 3 and 4. Numerical
algorithms are presented in section 5, and some
concluding remarks are given in section 6.

2. Governing equations

A heavy viscous incompressible capillary fluid
slowly flows out of a slit h, wide and spreads over an
infinitive plate which is directed under an angle o to the
horizon. The motion of the liquid is the result of the
Poiscuille flow with a fixed flux F and of the motion of
the bottom with constant speed R (see Fig 1). The free
boundary I', the vector of velocity # and the pressure p
are unknown.

Let us give the mathematical formulation [1,2].
Choose a coordinate system (x;, x,) as shown in Fig 1.

Then we have formula for the bottom
St ={(x1,x3):x, =0} and for non-moving upper wall
Sy ={(x1,x2):x) <0,xy =hy}. Denote by Q the

domain occupied by the liquid. The vector of velocity
v =(v;,v,) and pressure p satisfy in Q the Navier-

Stokes system
—VAY +(F-V)¥ +Vp=-VG, 6))
V.v=0
and the boundary conditions

g, = (R0, 3, =09,

VRl =0, T-Th|. =0, )

where G = g(-x; sina + x, cosa) , g is the acceleration
of the gravity; # and T are unit vectors directed

along the outward normal and the tangent to T,
respectively, v is a coefficient of viscosity; T =T(¥)
is a matrix with the elements (dv,/dx; +dv; [dx;),

ij=1,2. We will represent the free boundary in the
parametric form

[={(x,%2): x1=x(5), x3=y(5), s€(0,20)}.

Fig 1.
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The T" is unknown a priori and satisfies the equations
x(s
= 2( ) — = cosp(s),
VE(S)” + (s)

(s)

T = §ing(s), 3)
\/)'c(s)z +3(5)?
() o )
=6 (-p(x)+n-Tn)_ _ P
V¥ + 79 I

where @(s) is the angle between the vector (1,0) and
vector T at the point (x(s), ¥(s)), o is a coefficient of
surface tension. Prescribing the contact point and

assuming infinity of curve I', we obtain the boundary
conditions

x(0)=0, y(0)=hy, x(x) = C)
(the last condition is equivalent to ¢()=0).
To finish the mathematical formulation of the
problem, the full flux O =F + Rhy /2 of the liquid must
be prescribed:

[5-7dn =0, 5)
z

where Z ={x €Q:x; =const} is an arbitrary section of
the domain Q.

The height 5« = y(0) of the free boundary at
infinity cannot be prescribed. It follows from the physical
natural condition

" p(x) is bounded as x; - ©". ©)

Hence we have to find the vector of velocity ¥, the
pressure p, the functions x(s), y(s).

3. Pukhnachov’s scheme

A lot of papers dealing with the mathematical
analysis of stationary free boundary problems for a
viscous incompressible fluid have appeared. The flows
with compact and non-compact free boundaries have
been considered. The general scheme is proposed by
Pukhnachov [3,4]. This scheme consists in the following,
Firstly, the so-called auxiliary boundary value problem
1), @), (5), (6) for the Navier-Stokes system is
considered assuming that the free boundary is given.
Then the change of the solution of the auxiliary problem
under a little variation of the free boundary is found out.

Finally, for small data the free boundary problem is
reduced to the contraction operator equation.
Pileckas proved some results [2] about asymptotic

expansion of the solution of (1)-(6) and formulates the
following equation for A, = y(o0)

gsinohd + 3Rvh, - 3v(F +Rhy 12) =0. )

This equation has a unique positive root if one of
the following inequalities
sin >0, O=F+Rhy/2>0,

sina =0, 9>0, R>0, (8)
sina >0, 0=0, R<O,

holds. Let
R
hy

v =(—(h —x2)+i'—§xz(ho -x2),0),

p =(gsina —%F)xl ~ g cosour, +const ,

i+ = r+3 R /32 RLLIN TS
p+ =(gsina_3vf_iRh._;}:32ﬂ)xl -

-gcosoxy +const.

Theorem 1 [2]. Suppose that one of the conditions
(8) holds and let he be a unique root of the cubic

equation (7). For sufficiently small F, R and o, the
problem (1), (2), (5), (6) has a unique solution (¥,p),

which admits the asymptotic expansion
P =)V (0) +C0n)FT (1) +i(x),

. 12vF
p=C(-x)(gsina - h;;

Yx; — gcosa(xy — ) +g(x).

Here {(#) is an infinitely differentiable function with
E()=1for t22, and {(¢) =0 for ¢ <1. Functions i,
q exponentially vanish when |x;| > +c0and x(s) - s,
y(s) —> A« when s— +o0. Moreover, the norms of i,
g are less than C)(F,R,a) with the constant C| being
small for small |F|,|R] and o :

llczs oy +Vals gy SGFR, 80D,

2 (1)
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where the norm is defined as [2]

i@ +||”e"1°(*4xx|)||c‘<n*)

”""c" @ - e

for u >0 and />0 being a non-integer, 0<r</ .

The next part of the Pukhnachov scheme is devoted
to variation of a free boundary. Let I') i =1,2 be two

curves satisfying

IO —h eC (R5W),

and conditions

“x(z) (s) - xD(s)

3+3 1 <&
Cl+8 (R+ ;P)

ASIORSRIE I ©

<g
H)
are valid.

Theorem 2 [2]. Let the conditions of Theorem 1 be
valid. Then there exists a number €y such that for

£ €(0,8q) (see, (9)) the functions

HD = (- qD(x) + G- TFD)i)) -

@

satisfy the estimate
” H® _ g

<
C3ti (R

G @) - xP(s) + (10)

Cll (Rim)
PP -y )

with constant Cy = Co(F,R,o) being small for small
|F| R IRI, o and independent of € €(0,gq).

Clrs (Rzm)

Now we consider the free boundary problem. Let
denote P = gcr’1 coso.. By virtue of Theorem 1 the
function (-g(x)+7-Th)|. exponentially vanishes as
s—>» o0, Omitting this function and taking as a

parameter in the system (3) the length of arc of the
initial approximation I'y to the free boundary I', we

obtain the following boundary value problem
30(5) - cos@g(s) =0,
Vo(s) —sin@q(s) =0, (1)
Po(s) —B(yp(s)—hs) =0,

x(0)=0, yo(0)=hy, yo(0)=h«.

Theorem 3 [2]. Let |hy~m|<2/B. Then the
problem (11) has a unique infinitely differentiable
solution (xg,yq,90) Such that

%o(s) = s+ 0(1), %o(s) = 1+ O(exp(—y/Bs)) ,

Yo(8) = e +OExp(=y/BS)) , o (s) = Olexp(—y/Bs))

as §—» oo,
The angle between the curve I'y and the wall S, is
defined by the formula 8 = 7t + ¢(0) .

4. Method of successive approximation
Let v = (x(s5),y(s),p(s)) . We rewrite the problem
(1)-(6) in the following operator form

O(v,v,p,v)=0, (12)

Y@, p,y)=0, 13)

where @ defines the Navier-Stokes problem in the
region  with a given boundary I' =y :

- VAV + (w-V)¥ + Vp+ VG
OV, w,p,v) = \4d
boundary conditions on y

and ¥ defines the free surface equation (3) for given
velocity ¥ and pressure p:

Y, p,y)=

( x(s)

—————— — COS P(5)
V() + j(5)?
e sin@(s)
Ji(9)? +9(s)?

@(s)

- B((5) ~ ) - ' H,p,Y)
JE©? + 3(s)

x(0)=0, ¥(0)=h,
L @(0) =0 (or y(o) = h« Or x(0) = )

A

(14)

where

H(¥,p,y) = - p(x) - gcosau(x, = hu) + (i -T(¥)i)], .

For convenience of notation, boundary conditions are
incorporated into the definition of operators @, V.

We take as initial approximation ¥, =(0,0),
po=0,yo, where y, is the solution of the problem
(11). Let (j-1)th approximation (¥;_;,p;_,Y;-1) is
build. We solve problem (12) with given free boundary
Yj-1t
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OF;,v5,p;5Y j-1) =0
in the domain Q;_; and get ¥;,p;. Then we solve

problem (13) with given ¥;,p; :
\Il(;jrp‘]&y‘]) =0

and get y,, ie we obtain the next approximation
(%;,pj,7 j) of the solution of our problem.

Let denote constants |F], |R| and o as A
follows from [1,2] that
(‘.’_,',Pj,'Yj)")(i’.‘,P‘,'Y')

for o <<1, where (¥s,ps,y+) is the solution of the
problem (1)-(6).

S. Discrete scheme

We approximate differential equations by discrete
scheme. There are many possibilities to choose from, ie
finite difference schemes, finite volume schemes, finite
element schemes (see [5,6]). Discretization yields a
system of non-linear algebraic equations

®,(V,V,PI)=0, (15)

¥,(V,P,I)=0. (16)

Boundary conditions. In order to get a finite

dimension algebraic problem, we must state auxiliary
boundary conditions at some finite points x; = X|; and

x| = Xjp . Asymptotic expansions from Theorem 1 can
be used to define needed boundary conditions. The error
introduced by such truncation of the region is estimated
by solving the same problem in a larger region.
Algorithm 1. In this algorithm we follow the idea
of the Pukhnachov method. The solution of stationary
problem (15)-(16) is obtained by the following iterative
method. Let assume that T j-1 is given. The new

approximations ¥;, P;, T'; are defined as

- —

%, P;L)) =0. (18)

The first subproblem (17) is the steady Navier-
Stokes problem in given region with a fixed free
boundary. It is solved by some iterative method which
can be regarded as solving an unsteady problem until
steady state is reached:

VoVt o -
% + Oy Vi, Vi, B, j»Tjo1) = 0.

k
We will call this iteration as outer iteration for the
Navier-Stokes problem. Due to the non-linearity and
coupling between velocity and pressure we must use
inner iterations to find ¥, ;. The obtained system of

linear equations is also wusually solved by iterative
method, eg GMRES method. The efficiency of this step
depends on definition of tolerances within which the
iterations must satisfy.

The new approximation of the boundary I'; is
defined by solving the second subproblem (18). As it
follows from equations (3) and boundary conditions (4)
we have a system of ODE with boundary conditions
given at s=0 and s=o In order to get a finite
problem, we formulate the third boundary condition at
s=3S, where S sufficiently large. The shooting method
is used to solve obtained system.

Algorithm 2. We modify the previous algorithm
and march in time without requiring full satisfaction of
the non-linear equations at each outer iteration

— —

Vi=Vim 7
oV BT =0,
j

¥, (), P,T;) =0,

The realization of this algorithm requires to solve
the of linearized Navier-Stokes equation and of the free
surface equation.

The convergence of iterative methods defined in
Algorithm 1, 2 can be proved for sufficiently small
values of flow parameters. The method of numerical
experiments is used to find precise bounds of the
convergence region.

Algorithm 3. The previous Algorithm 2 can be
considered as a variant of the Gauss-Seidel method for
solving a coupled system of non-linear equations

®,(V,V,P,T)=0,
¥,(V,P,I’) =0.

The Newton method and its modifications also can
be used to solve this system

7 .
P| =P
r T
J Jj1
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The efficiency of realization of this method depends
on a possibility to solve economically a system of linear
equations with the matrix J .

6. Concluding remarks

The convergence of Algorithm 2 can be linked with
the existence of stable solution of the problem (1)-(3).
Then the divergence of iterative method means that a
solution of stationary solution (if any exists) is non-
stable. Such solutions can be find by Algorithm 3.

At the time this research was provided, the authors
were employed at the Institute of Mathematics and
Informatics, Vilnius Gediminas Technical University,
and Kaunas Vytautas the Great University.
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SUNKIOJO NESPUDZIOJO SKYSCIO TEKEJIMO
LYGCIU SKAITINIAI SPRENDIMO METODAI

R. Ciegis, M. Meiliinas, A. Stikonas

Santrauka

Darbe nagrinéjamas sunkiojo nespudZiojo skyscio
tekéjimo uZdavinys, kai dalis pavirSiaus yra laisva.
SkaitiSkai sprendZiant tokius uZdavinius svarbiausios dvi

problemos. Pirmoji - netiesinio Navjé-Stokso uZdavinio
diskredioji aproksimacija srityje su fiksuotu pavir§iumi, o
antroji problema - judanciy pavirsiy skaitinis aproksima-
vimas. Darbe suformuluoti trys algoritmai pagrindiniam
uZdaviniui spresti. Pirmajame panaudota konstruktyvi
Puchnaciovo diferencialinio uZdavinio sprendinio egzisten-
cijos jrodymo schema. Siuo metodu iteracinio proceso
metu netiesinis Navjé-Stokso uZdavinys sprendziamas
fiksuotoje erdves srityje ir tikslinamas laisvasis srities pavir-
$ius. Tai iSskaido uZdavinj j du paprastesnius uZdavinius,
kuriy kiekvieno sprendimas yra pakankamai nuodugniai
iSnagrinétas literatiiroje. Tiriama Puchnadiovo metodo
konvergavimo sritis.

Antrasis algoritmas gaunamas sprendZiant lineari-
zuotg nestacionary Navje-Stokso uZdavinj, t.y. nereikalau-
jame, kad kiekvienoje iSorinéje iteracijoje netiesiné diskre-
&ioji Navje-Stokso sistema bitu tiksliai i$spred¥iama. Sio
algoritmo vienos iteracijos realizacija yra efektyvesneé,
lyginant su pirmuoju algoritmu, tadiau iteracijy skaiius
didesnis.

Abiejy pirmyjy algoritmy konvergavimas gali biiti
naudojamas diferencialinio uZdavinio sprendinio stabilumo
tyrimui.

Trediajame algoritme realizuota Niutono metodo
modifikacija. Siame algoritme néra atskiriamos Navjé-
Stokso ir laisvojo pavirsiaus lygtys. Gautoji netiesiniy lygéiy
sistema sprendZiama Gauso-Zeidelio metodu.

Svarbus skaifiavimo cksperimento uZdavinys - paly-
ginti visy trijy algoritmy konvergavimo sritis.
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