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STOCHASTIC STABILTIY PROBLEMS IN STRUCTURAL MECHANICS 

Ch. Bucher 

1. Introduction 

Several recent developments in the analysis of 

systems with random properties focus on the 

appropriate description of non-linear effects. Apart 

from physical non-linearity as introduced by specific 

material properties (such as yield stress), there is the 

geometrical non-linearity which is closely related to 

the question of structural stability. In terms of the 

practical computation, the issue of stochastic stability 

breaks down to the determination of the top 

Lyapunov exponent of the system For details it is 

referred to [1 ). Confining the analysis to local 

stability, the system generating the trajectories x(t) 

can be linearized at the solution x0 (t) whose stability 

is to be investigated. 

The stability of the system will depend on both 

system properties and loading parameters. Therefore 

it is to be expected that stability can be influenced by 

system uncertainty. An appropriate tool for taking 

into account geometrical non-linearity of complex 

structures together with the randomness of the 

describing parameters is the Stochastic Finite 

Element Method (SFEM). Among various SFE 

techniques developed so far ([2) - [6]), the methods 

based on representation of the underlying random 

fields in the integration points seem to be most 

suitable [7). Based on this random field model, a 

corresponding finite element model can be 

established. With the aid of eg the Monte Carlo 

simulation technique, the variability of the response 

is investigated [8]. The following discussion attempts 

to cover stability issues under both static and dynamic 

loading conditions, specifically under wide band 

random excitation. 

2. General Concept 

2.1. Linearized Equations of Motion 

Most structural systems of engineering 

significance cannot be described in such relatively 

simple terms. Discretization must be performed 

which finally leads to a finite element model 

Applying equilibrium conditions in the nodes, a 

dynamic analysis of geometrically non-linear 

structures generally requires the solution of the 

following matrix-vector equation 

(M]x + (C)x + r(x) = f(t). (1) 

In (1) [M] is the mass matrix, [C) is the damping 

matrix, x denotes the vector of nodal displacements, 

r(x) is the vector of restoring forces depending non­

linearly on the nodal displacements, and J(t) is the 

applied load. It cannot be decided a priori whether 

this load acts additively or multiplicatively. Some 

investigation is required for that purpose. 

Suppose, for simplicity, loading conditions which 

can be described by a scalar, possibly time-dependent 

multiplier j.t(t) (load factor) and a constant load 

configuration vector p 

f(t) = j.t(t)p. (2) 

Then the parametric excitation effect can be 

expressed explicitly by a series expansion in respect 

of j.t(t) (Taylor series): 

r ( x) = r ( x0 ) + ~ J.l = J.lo (j.t ( t) - j.to) 

1 ~2r ( )2 +- 2 J.l=J.lo j.t(t)- j.to + ... 
2 8j.t 

(3) 

Here j.to is a (fairly arbitrary) reference value for the 

load factor and x0 is implicitly defined to be the 

solution of 

r ( xo) = fo = j.to P . (4) 
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As mentioned above, for the purpose of stability 

analysis, the system is linearized at the solution 

whose stability is to be investigated. In the following 

it is assumed, that the linearization point is defined 

by the static solution x0 as implicitly given by ( 4). 

Strictly speaking, this assumption is useful for static 

stability only. In the presence of both external and 

parametric random excitations the reference solution 

x0 whose stability is to be investigated is randomly 

varying in time. If it can be assumed that the relative 

effect of the random fluctuations of the external and 

parametric excitation on the system non-linearity is 

small as compared to the effect of the statically acting 

part of the excitation, then it is reasonable to replace 

the non-linear system by a system linearized at a 

constant solution. This is the case, eg for wind loads 

acting on large scale structures where the mean wind 

load is significantly higher than the random 

fluctuations caused by atmospheric turbulence. In 

addition, (3) is frequently linearized in respect of !l(t) 

following a similar argument [9]. 

The so-called tangential equation of motion can 

then be written as 

(M)j + (C)j + (K]y = 
=f(t) -fo = (J.L(t)- J.Lo)P 

(5) 

in which y denotes the deviation from the reference 

solution, i e y = x - x0. The elements of the tangential 

stiffness matrix become 

K-· = ari (x) 
z; ax. 

j X= XQ 

(6) 

In the above equation (6), the partial derivatives are 

evaluated at the reference solutionx = x0. 

For the description of parametric excitation 

effects, it is convenient to introduce the concept of a 

so-called geometric stiffness matrix. 

This arises from an additional linearization step 
(3): 

[ K]y = [Ko]Y + [: L "" (l'(t) - ~0 )Y (7) 

with the "linear" stiffness matrix [K0] and the 

geometric stiffness matrix [K0 ] in the form of 
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[Ko] = (K]i _ ; (Ka] = [oK] (8) 
ll- llo Oil 

ll = llo 

This finally leads to an equation of motion 

which is linear in the state variables and explicitly 

separates the effects of additive and multiplicative 

excitations. 

Obviously, a static instability is possible 

whenever the tangential stiffness matrix becomes 

singular. This implicitly defines a critical load factor 

llc in terms of (10). 

det(K] = det(K(J.LcP)] = 0. (10) 

It is to be noted that together with the linearized 

equation of motion (9) this corresponds to the widely 

used approximation of the critical load factor llc as 

solution of the eigenvalue problem 

det ([Ko] - llc [Ka]) = 0. (11) 

2.2. Dynamic Stochastic Stability 

Based on the linearized equation of motion (11), 

any available method for the stochastic stability 

analysis of linear systems can be applied. In the 

present paper, a simplified analysis for the sample 

stability (almost sure stability) criterion is used. The 

method is based on stochastic averaging. The details 

of the approach to be followed have been presented 

extensively by [10]. This approach requires the 

projection of the motion onto one mode of vibration 

which is most likely to become unstable under the 

influence of random parametric excitation. Here it is 

assumed that !l(t) is a wide band stationary random 

process. Possible stabilisation from the remaining, 

more stable modes can be accounted for. The 

resulting sample stability boundaries obtained from 

this method are asymptotically exact as the system 

reaches the deterministic stability limit. Therefore, 

this is an approach well suited for the assessment of 

the parametric excitation effect near such a 

deterministic stability limit. In this case, the motion 

is predominantly governed by one critical mode of 

vibration cl>c as described by 



(12) 

This mode shape is assumed to be mass-normalised, 

so that 

(13) 

Of particular importance is the parametric 

excitation effect which is expressed in terms of 

(14) 

With the assumption of a modal damping ratio s 
associated with the critical mode ~c and - for the sake 

of simplicity -neglecting the effect of modal coupling 

through the parametric excitation, the top Lyapunov 

exponent A. of the system governing sample stability 

can be expressed as in [11] 

d2 
A. = -2~roc + 4S~~(2roc) (15) 

In (15) S~~ (2roJis the power spectral density of the 

zero mean parametric excitation ~(t) = 1-1-(t) - E[!!] 

evaluated at twice the frequency of the critical mode. 

A value of A. < 0 indicates a system which is 

asymptotically stable with probability 1. This 

cor.v~tion is less stringent than eg moment stability, 

but it is expected to bear more physical relevance. 

3. Applications 

3.1. Buckling of Physically Imperfect Beam Structure 

A steel structure consisting of beams with 

tubular cross-sections under static and dynamic load 

is considered (see Fig 1). 

The load F(t) acts simultaneously as external 

and as parametric excitation. The FE-madel has 78 

degrees of freedom First of all, a deterministic 

incremental static analysis to determine the critical 

load factor is performed. All the loads as indicated in 

Fig 1 are varied proportionally. 

This is achieved by incrementing the load factor 

l!o in small steps, solving for the corresponding 

displacements, re-calculating the tangent stiffness 

matrix [K] and checking its positive definiteness. As 

soon as at least one eigenvalue of [K] reaches zero, 

the system has reached a critical load (I!() = 1-1-J- The 

smallest eigenvalue of the tangent stiffness matrix is 

plotted versus the load factor l!o in Fig 2. The 

eigenvector corresponding to the zero eigenvalue at 1! 

0 = 1-1-c is called buckling shape. For the particular 

structure under consideration, the buckling shape in 

reference to the undeformed configuration is shown 

in Fig 3. 

It should be noted that for this structure there is 

no way of isolating the parametric (destabilizing) 

contribution of the load F(t) a priori. Indeed, only a 

procedure as outlined above can provide the desired 

answer. 

F(t) __.. 

40m 

y 

10m 

~------------------~ X 

Fig 1. Steel structure with load 
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Fig 2. Minimum eigenvalue vs. load factor 

In the second step, the elastic modulus E(s) of deterministic. The effect of random turbulence in the 

each vertical bar is assumed to be a homogeneous oncoming wind is shown in Fig 5. 

random field with log-normal probability distribution This figure indicates an increase of the critical 

and an exponential type autocorrelation function wind speed with increasing level of turbulence as 

compared to an almost laminar flow in the oncoming 

(16) wind. The overall effect of turbulence at high levels, 

however, is destabilizing for the bridge vibration. 
In (16) the symbols s, r denote spatial co- These statements hold for both second moment 

ordinates within the structure, cri is the variance of stability and almost sure stability criteria. 
the elastic modulus, and Leon- is the correlation length 

of the random field. The horizontal and diagonal bars 

are assumed to have deterministic elastic properties. 

For the calculations, it is assumed that the mean 

value and the standard deviation of the elastic 

modulus are E = 2.1 · 1011 N I m 2 , cr E = 0.1£, 

and that its correlation length is Leon- = 20 m 

The effect of structural randomness on the load 

carrying capacity (in terms of the critical load factor 

J..Lc;) is investigated. This is done by an iterative­

incremental method based on a modified Newton­

Raphson-iteration. The loads are incremented by 

changing the load factors llo and at each step 

calculating the eigenvalues of the tangent stiffness 

matrix [.KJ. Here the geometric stiffness matrix is not 
explicitly required. 

A Monte-Carlo simulation based on the above 

assumptions is performed. For each sample, a 

realisation of the random field E(r) is generated in all 

integration points and the system matrices are built. 

The resulting realisations of the critical load factor llc 

are shown as a histogram from 1000 samples in Fig 4. 

This histogram represents a coefficient of variation of 
0.07. 

3.2. Motion Stability of Suspension Bridge 

A simple bridge model with two mechanical 

degrees of freedom is considered as investigated in 

[12). The model parameters are considered to be 
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Fig 3. Deterministic buckling shape 



Critical Load Factor 

8.0 -1 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5EO 

Fig 4. Histogram of critical load factor with random elastic modulus 
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Fig 5. Critical mean wind speed vs. level of turbulence 

4. Concluding Remarks 

A concept for the stability analysis of 

geometrically non-linear structures with random 

properties has been presented. Numerical examples 

showed how the issues of parametric excitation and 

system randomness can be covered simultaneously 

within a Stochastic Finite Element method. 

The numerical results indicate that there is a 

quite considerable effect of material randomness on 

the load-carrying capacity of geometrically non-linear 

structures. This statement holds for both static and 

random dynamic loading. 
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STOCHASTINIAI KONSTRUKCDlJ MECHANIKOS 
STABILUMO UZDA VINIAI 

Ch. Bucher 

Santrauka 

Straipsnyje nagrmeJamas konstrukcijq su atsitik­
tinemis savybemis stabilumas. Tokios konstrukcijos yra 
veikiamos statiniq bei atsitiktiniq dinaminiq apkrovq. 
Tiriama priklausomybe tarp konstrukcijos savybiq ir 
parametrines apkrovos rodikliq. Stochastiniq baigtiniq 
elementq ideja taikoma geometrBkai netiesiniq sistemq 
analizei. 

Stabilumo uzdavinys yra nagrinejamas tiek statinio, 
tiek dinaminio stabilumo prasme. ISanalizavus apibendrin­
tos diskreciosios sistemas judejimo lygtis (1-9), stabilumo 
uzdavinys formuluojamas kaip tikriniq reiksmiq uzdavinys 
(10-11) nezinomo apkrovos daugiklio atZvilgiu. Tam tikrais 
atvejais dinaminio stabilumo uzdavinys virsta kritines 
virpesiq formos stabilumo uzdaviniu (12-13). 

Stochastinis stabilumo uzdavinys yra realizuotas pro­
gramq paketo pavidalu, o straipsnyje pateikiami Bsprcrsti 
skaitiniai pavyzdziai. Pirmajame pavyzdyje nagrinejamas 
erdvines strypines sistemas statinis stabilumas. Cia strypq 
tamprumo modulis yra atsitiktinis dydis. Jo atsitiktines 
savybes modeliuojamos Monte Karlo metodu. Isnagrineta 
kritines apkrovos rodiklio priklausomybe nuo atsitiktiniq 
veiksniq. Skaiciavimo rezultatai iliustruojami 1-4 paveiks­
lais. Antrame pavyzdyje nagrinejamas tilto stabilumas 
veikiant dinaminems stochastines prigimties apkrovoms, 5 
pav. 
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