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QUALTIY ASSESSED EIGENFREQUENCY ANALYSIS 

R. Bausys 

1. Introduction 

Over recent decades, the finite element method 

as one of the discretized numerical methods, has 

become a rapidly developing technique for the 

solution of a wide range of physical problems such as 

solid mechanics, fluid mechanics, heat transfer, 

vibrations etc. The primary goal of comprehensive 

numerical simulation procedures is fully utilise the 

computer resources in engineering decision-making. 

If engineering decisions are made using the results of 

numerical simulation, we must be able to determine 

the reliability of the modelling process. Therefore, 

the quality of results, obtained from finite element 

computations is a cornerstone of the quality of 

engineering decisions based on them In order to 

establish the reliability of the numerical simulation, 

two requirements must be satisfied: 

1. The mathematical model used to represent an 

engineering problem must account for all essential 

attributes of the system 

2. Numerical approximation of the solution of 

the mathematical model must be sufficiently 

accurate. 

This paper is concerned with techniques by 

which the errors arised due to the numerical solution 

of the mathematical models is controlled. 

The starting point in the finite element 

formulation is differential equations and arbitrary 

boundary conditions associated with a mathematical 

model representing an engineering system or process. 

In finite element approach these differential 

equations are discretized through Galerkin functional 

with assumed shape functions over each element. 

Finally, the separate element equations are 

assembled to form the system matrix equation which 

is solved to determine the unknown parameters of 

interest. Unless the shape functions include the exact 

solution, the simulated results will be only 

approximate. The automatic evaluation of finite 

element discretization errors is the most important 

ingredient of a comprehensive analysis. Based on the 

observed discretization errors, the analyst can 

construct with the available mesh generation 

procedures new refined meshes and thus continue the 

analysis process until the required accuracy is 

achieved. 

Error estimation techniques evaluate the amount 

of solution errors due specifically to mesh 

discretization. By now a considerable success has 

been achieved mainly on problems of linear elliptic 

type, such as linear elastostatics and stationary heat 

conduction problems (1]- (4]. 

The most important ingredient of the error 

estimation is the construction of the new solution of a 

higher quality since the exact solution of complex 

engineering problems is generally unknown. 

Typically, this new improved solution is obtained by a 

posteriori procedure which utilise the original finite 

element solution itself. 

We focus our attention on the construction of 

the eigensolutions of higher quality by model 

improvement for the case of the unstructured 

meshes. The enhancements of the solution are 

provided by the local/global error control approaches. 

Within a framework of the local updating, the 

Superconvergent Patch Recovery technique for 

displacements (SPRD) is applied to free vibration 

problems for improving eigenmodes and 

eigenfrequencies [5], (6]. This method shows 

excellent results for the lower eigenfrequencies, but 

for the higher eigenfrequencies the improvement of 

the eigenpairs is still not enough to provide a reliable 

error estimation. In order to improve the higher 
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frequencies, we employ a preconditioned conjugate 

gradient scheme to optimise successive deflated 

Rayleigh quotients. This technique has been studied 

in, for example, [7] -[10]. The idea of global updating 

is to improve the FE solution of order p by the SPRD 

method and then use it as the starting trial 

eigenvector in the preconditioned conjugate gradient 

scheme to obtain a solution similar to the FE solution 

of order p+l. When we have obtained the global 

updated solution of order p+ 1, we apply again the 

SPRD technique to get an improved solution of order 

p+ 2, thus we have a global-local approach. 

Numerical examples show the nice properties of 

local/global updated solution as a basis for an error 

estimator and an error indicator in an adaptive finite 

element strategies. 

2. Basic equations 

We study eigenvalue problems based on 

differential equations of the form 

A.p u(x) + -vr DVu(x) = 0 ' inn (1) 

with boundary conditions 

u(x) = ub 

V n T DVu(x) = crb 

(2) 

(3) 

where V is the differential operator, V n is the 

boundary operator, D is the constitutive matrix and p 

is the mass density. The n is a spatial domain with 

the boundary r = ruUra crunra = 0 >, where 

r u is the boundary with essential boundary 

conditions and ra is the boundary with natural 

boundary conditions. 

The finite element approximation 

u(x) = Nuh (4) 

where N contains the basis functions and uh the 

corresponding nodal displacement values obtained 

from the Galerkin procedure as applied to equation 

(1). In FE context, we obtain the following equation 

(K- A.h M )uh = 0 , A.h = (ooh / (5) 

where K is the stiffness matrix and M is the consistent 

mass matrix of the structure. Equation (5) is of the 

form of a linear generalised eigenvalue problem for 

the finite dimensional discrete problem, with 

eigenvalues A.~ being equal to the squares of the 
. nf . h e1ge requenc1es oo i . 

In order to assess the discretization errors, we 

may assume the improved eigenfrequencies (of 

higher accuracy order) can be constructed using 

Rayleigh quotient 

* 2 K 0, 
(oo i ) = --=------ (6) 

K o, 

where K is summed over the total number of 

elements and u; is a displacement field over the 

elements which has a higher order of accuracy. The 

recovered displacement field of the eigenmode 

u; will be determined by a postproccessed updating 

technique. 
The quality of any error estimator is measured 

by effectivity index giving the ratio of the estimated 

errors to the actual ones as follows 

Aro~ e.=--' I A h 
l..lOOj 

(7) 

where the error in eigenfrequencies of the original 

finite element solution 

(8) 

where oo i are the exact eigenfrequencies and the 

estimated error of the finite element solution 

-h h • 
lloo; = OO; - OO; (9) 

The error estimator is said to be asymptotically 

exact if the estimated errors tend to exact ones as the 

finite element mesh is refined. 

3. Error indicators for eigenfrequency analysis 

3.1. Error indicators based on local projection 

This approach is based on the fact that the nodal 

points of the finite element approximation are found 

to be exceptional points at which the prime variables 

(displacements) have higher order accuracy in respect 

of the global accuracy [11]. These points are called 

the superconvergent points of the finite element 

solution. The SPRD technique is based on a higher 
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* order displacement field ui fitted to super-

convergent values from the FE-solution in a least 

square sense over local element patches. From the 

higher order accuracy displacement field an improved 

kinetic energy and a strain energy can be calculated 

and thus an improved eigenfrequency can be 

obtained. A separate patch recovery must be made 

for each eigenmode of interest. This approach is a 

local updating method, so no global system of 

equations has to be constructed and solved. Details 

are available in [5], [6]. This method does not show 

sufficient improvement for higher eigenfrequencies 

to provide a reliable error estimation. 

3.2. Error indicators based on global updating 

In order to improve the higher eigenfrequencies, 

we employ a preconditioned conjugate gradient 

scheme to optimise successive deflated Rayleigh 

quotients. The convergence profiles of this technique 

are characterised by two phases. The initial phase 

which may require a large number of iterations and 

then asymptotic phase where the rate of convergence 

is proportional to the relative separation between the 

eigenfrequency being computed and the next higher 

one. We emphasise that by choosing the SPRD 

improved FE solution as starting eigenvector we can 

get directly to the asymptotic phase or at least not too 

far from it. To accelerate the speed of convergence of 

the global updating, we use a preconditioning matrix 

that is a diagonal of the sum of the stiffness and mass 

matrices. This allows us to keep the computations on 

an element level which gives a high computational 

efficiency. We do not seek to determine a fully 

converged eigenpairs, so we restrict the number of 

the iterations to in advance prescribed quantity. 

When we have obtained the global updated solution 

of order p + 1, we apply again the SPRD technique to 

get an improved solution of order p+2, thus we have 

a global-local updating. In detail this approach is 

described below. 

3.2.1. The global-local updating algorithm 

Here follows a description of the algorithm we 

have used for the global-local updating of each 

eigenpair. 

1. Compute the preconditioning matrix C as the 
• diagonal elements of K - I. jM. Note that we will 

have to compute a new preconditioning matrix for 

each eigenpair. 

2 Th . •t• 1 (O) • h b . . . e 1m ta vector u j ts c osen y proJectmg 

the SPRD improved FE solution of order p onto the 
M-orthogonal complement of Vj , i.e. 

Vl1Mur) = 0. We have used a limited number of 

iterations NITMAX. Set the iteration counter k=O 

and take the vector i-1
) arbitrary. 

3. Loop start as long as k<NlTMAX execute 

steps 4-9, otherwise go to step 10. 

4. If k = 0 then set p(O) = 0, else 

(k-1)T KC-1 (k) 
(k) _ P Kj 

J3 - - ik-1)T Kp(k-1) 
(10) 

5. Compute 

-(kJ _ c-1 (kJ A(kJ (k-lJ 
p - Kj +,... p (11) 

where 

--=-
2
-- (Ku(k) - R(ik) )Mu(k)) (12) 

(k)T (k) 1 1 1 
uj Muj 

6. Compute p(k) by M-orthogonalizing p(k) in 

respect of Vj . 

7. Compute the coefficient a (k) by minimising 

the Rayleigh quotient 

R(ujk) + a(k) p(k)) (13) 

Minimum requires d%a = 0. From which we 

obtain 

where 

a(k) = nd-mb+.fi 

2(bc- ad) 

a = ik)T Ku~k) 

d = ik)T Mp(k) 

2 
~ = (nd- mb) - 4(bc -ad)(ma -nc) 

8. Evaluate 

-(k+1) = u(k) + a(k)p(k) 
uj J 

(14) 

(15) 

(16) 
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. • (k+l) . 
9. The new apprmnmatton vector u j 1s 

. b li . -(k+l) I th determined y M-norma smg u j . ncrease e 

iteration counter and return to step 3. 

10. Perform SPRD improvement of order p+2 

on the global updated solution. 

11. Proceed with the next eigenpair at step 1. 

Originally convergence as a stopping criteria is 

considered when the relative increment of the 

Rayleigh quotient and the relative residual are less 

than a prescribed value. Since we only seek to 

improve eigenpairs, we will not continue the iteration 

until convergence occurred, but break after a small 

number of iterations. 

4. Numerical example 

In order to test performance of the proposed 

method, we consider vibrational problems of the 

elastic two-dimensional structures which, in 

equilibrium position, lie in plane. We will pay 

attention to the transverse vibrations of thin 

membranes of uniform thickness. A square thin 

membrane, shown in Fig 1, is considered. 

1.0 

1.0 

Fig 1. A finite element model of a square membrane 

For simplicity, the wave propagation velocity 

c = M is assumed to be 1.0 m , where T is the 
s 

uniform tension in the membrane. The analysis has 

been conducted for most commonly used linear 

quadrilateral and triangular finite elements. The 

study of the convergence rate of the proposed global 

updating procedure has been performed for the 

different eigenfrequencies as shown in Figs 2-3. 

-1.0 -oJI -oJI -().4 ...Q.2 0.0 
log h 

a) 1st eigenfrequency 

_:a~ 
I0£1.1<VI /.//_ 

-2.0 .-• - FEM p 
,.·· - SPRDJ*I 

•' ·--· Glob I iter. 
- Glob2iler. 
- Glob 3 iter. 
- Glob 4 iter. 
- Glob 5 iter. ~4 

-4.1)14-~~~~·~T-~~~~ 
-1.1) -oJI -oJI -G.4 ...Q.2 0.0 

loa h 

b) lOth eigenfrequency 

Fig 2. Convergence rates in iterations of global updating 
procedure using quadrilateral elements 
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logldwl -o.5 

-1.0 

-1.5 
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a) 1st eigenfrequency 

-FEMp 
- SPRDp+l 
·--- Glob I iter. 
··--·- Glob 2 iter. 
- Glob 3 iter. 
- Glob4itec. 
- Glob 5 iter. 

-2.0-f--.--.-......... -..--.--.--... ....... --..-....--' 
-1.0 -o.s -o.e -o.4 -o.2 o.o 

logh 

b) lOth eigenfrequency 

Fig 3. Convergence rates in iterations of global updating 
procedure using triangular elements 
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:::o.a 
I&J 

0.7 

o.a 
0.0 0.2 0.4 0.8 o.a 1.0 

log (lib) 

a) 1st eigenfrequency 

1.2'~--~4--~8~1~0----~15~~ 

0.4 

0.0 0.2 11.4 o.a 0.8 1.0 
log (lib) 

b) lOth eigenfrequency 

Fig 4. Effectivity indices by quadrilateral elements 

One can observe that the sufficient accuracy is 

achieved after a few global updating iterations. In 

order to keep computational efficiency, the number 

of the iterations is therefore set to be 3 for all 

numerical experiments. 

The convergence of the effectivity indices are 

plotted in Figs 4-5. 
We observe that the effectivity indices converge 

to one rapidly for all quadrilateral and triangular 

elements tested when the finite element mesh is 

refined. The superiority of the global updating 

coupled with SPRD technique (Gl+SPRD) over the 

local updating (SPRD) is clearly demonstrated. The 

global updating is a more time-consuming procedure 

thanSPRD. 

4 8 10 15 
1.1 

1.05 

j 1.0 
GJ1.SPRD 

>-I 0.85 

SPRD 
::: o.g 
I&J 

o.as 

o.a 
0.0 0.2 0.4 0.8 o.a 1.0 

log (lib) 

a) 1st eigenfrequency 

4 8 10 15 

1.0+-------------------~ 

SPRD 

0.0 0.2 0.4 0.6 0.8 
log (1/h) 

b) lOth eigenfrequency 

1.0 

Fig 5. Effectivity indices by triangular elements 

5. Conclusions 

The local and global updating techniques have 

been presented to improve solution of the 

generalised eigenvalue problem encountered in the 

finite element analysis of structural dynamics 

problems. The SPRD improved solution gives a good 

initial trial eigenvector for the modified conjugate 

gradient scheme, which immediately put us on the 

asymptotic phase of the convergence profile. The 

most attractive feature of the approach is that all 

operations of global updating can be efficiently 

performed on the element level: no global stiffness 

and mass matrices have to be assembled. The 

numerical study of the performance of the error 

estimator demonstrates the asymptotic exactness that 

shows the reliability of the proposed procedure . 
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KOKYBISKAI l\'ERTINTA LAISVfJJlJ SVYRAVIMIJ 
ANALIZE 

R. Bausys 

Santrauka 

IllZineriniq uzdaviniq sprendimo rezultata~ gauti 
naudojant baigtiniq elementq metod!!, kaip ir kitus 
diskrecius metodus, yra apytiksliai. Todel projektuotojui 
labai aktualu ivertinti atliktq skaiciavimq koky~. 
Straipsnyje pateikiami metodai, suteikiantys galimy~ 

ivertinti baigtiniq elementq diskretizacijos koky~ laisvqjq 
svyravimq uzdaviniams. Kadangi daugelio inZineriniq 
uzdaviniq atveju analitinis sprendinys nera galimas, tai 
pagrindinis sios procediiros sudetingumas yra rasti 
aukstesnes tikslumo klases sprendini. Sis poprocesorinis 
pagerintas sprendinys yra nustatomas naudojant pradinio 
baigtiniq elementq sprendinio informacij!l. Darbe 
pateikiami lokalus ir globalus apibendrinto nuosavqjq 
reikSmiq uzdavinio sprendinio pagerinimo biidai. I..okalusis 
biidas yra paremtas superkonvergencinemis pradinio 
sprendinio savybemis. Globalaus sprendinio pagerinimo 
biido esme - susietq gradientq metodas, naudotas p+ 1 
baigtiniams elementams. Globalus sprendinio pagerinimo 
biidas yra efektyvesnis aukStesnems nuosavoms reikSmems, 
ir sprendinio kokybes ivertinimo procediira yra 
patikimesne platesnei nuosavq reiksmiq spektro daliai. 
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