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SENSITIVITY ANALYSIS OF INITIALLY CURVED THIN-WALLED BARS

L. Chodor, R. Bijak

1. Introduction

An initially curved thin-walled rod model established in
this paper is a generalization of the straight thin-walied
beam model presented by authors in the paper {2].

Sensitivity analysis of systems has been presented by
many authors , ie.: [5, 1,7]. An interesting application of
the method can be found in optimization problems [5] and
reliability analysis [3].

In this paper, a direct differentiation method for de-
termining sensitivity of thin-walled structures is studied. We
explore geometrically non-linear problems which are fun-
damental in slender structures (e.g, engineering metal struc-
tures).

The central problem in sensitivity analysis is the de-
termination of the implicit variations in the response fields
generated by a specified design variation. In general, there
are three classes of methods to solve this problem: the finite
difference problem, the adjoin variable method and the
direct differentiation method. Finite difference sensitivity
analysis methods are simple to implement, but they can be
computationally expensive and deficient in terms of acauracy
and reliability [7}. For this reason, the adjoin variable and
direct differentiation methods are generally preferred de-
spite their relative complexity.

2. Computation of structure sensitivity response

In this paper, we shall investigate the response of sys-
tem changes a duc to changes in basic variables b (such as
force, geometric and material parameters) by the usc of a
direct differentiation method.

Computation of the response of system sensitivity by
direct differentiation with the standard incremental proce-
dure is given by [11]:

Ky -8a=-(a;), (1)

aj,)=ay+da ©)

where a,3a - gencral displacement vector and its increment

respectively, K = 0/ 0a - tangent stiffness matiix, Sa -

increment of system response, ¥ - residual force corre-
sponding to the level of response system a;, I - iteration

step inside increment N. Partial derivatives of residual forces
are given by

da __O¥
T db, " by @)
_ o 3 __( (a‘P)N .(da)N—l +(6‘P)N) (4)
ob ~ \(Ga)y_, dby ab,,

with the right side 0¥ / 0b, called pseudo-load vector. In
both equations (1) and (3), tangent matrix K is the same.
In geometrically non-linear problem, right side vector in
formula (3) is dependent on sensitivity in previous incre-
ment step N-1 as follows [7], as shown in equation (4). De-
rivative (da)y _;/db, is known from previous step, and it
is determined based on the derivative (da)y_, /db; in

advance step. We proceed in this way until start increment.

3. Initially curved thin-walled rod model

Position vectors describing the location of an arbitrary
material point (X;,X,,S) in the initially curved thin-
walled rod in the undeformed configuration R(X,,S) and
in configuration after deformation r(X,,S) (a=12,
(X1, X5) <, Fig 1) are given by relations (5,6).

€5

Fig 1. Kinematic description of the thin-walled rod
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R(X,,8)=R,(S) + XE, , Q)

(X S)=r,(S)+ Xty + (X1, X2)p(S)t;  (6)
where: f(X;X,) - is a prescribed (given a priori) warping
function, and p(S) is the (unknown) warping amplitude. In
the above equation, r,, describing position vector of the line
of centroid and orthonormal basis t; results from the rota-
tion of the material (orthonormal) basis E;. Denoting the
orthogonal transformation by A=t;®E; and inserting
kinematic relation (5) into the definition of the deformation
gradient tensor, the following expressions are derived:

or or _0X, or_ 58

-— — — i ST —_—
"X, O R TaSCR

=2,0G*+g:9G’ =(1, + £, pt3) ®G" +
+[(ro) +& x (X, t, + fpts) +[p't5]

3

®G =A{13+[)E3®f,aEa+

1
+ Eowosp(Xzf,l 'le;Z)ES ® E; +

- mOiEiXXaEa+ l [F+
go
+K x (X, E, +fpE;3) + fp'E3]® E5} (D)
i o(e) b A I
I tl 4 [ ] = o) = ——. G =
ncquaon()(),Ol X, (» =5 are oon
travariant base vectors in undeformed configuration [4]:
Gl-E, + 200 g ®)
o
X
Gl=g,- 220Gy, ©)
8
3 E3
G =—=, 10
. (10)

8o =1-X 00y +Xp00;- (1

Centroidal line strains and cuvatures are represented by

vectors:

r=A"{r,)-t;}=AT(r,) - E;, (12)

K=Ao=A"o +og .

(13)
Beam curvatures are representcd by the skew-
symmetric tensor (2, £2, £2 or axial vector ©(,®,®,

respectively. Curvatures before deformation are expressed

by

(Ei), ='00Ei =@, X Ei ,
dA

(14)

T
where 2, = dSO A, (15)
and after deformation by
T —
() = [.(2+A A ]t-=0t4=
) anu-a-
where 2=0Q+AQ A",
_dA 7
Q=98 a7

For the application of elastic-plastic constitutive equa-
tion (actual development), it is proved convenient to intro-

duce the second-order objective Biot strain tensor [9]:

H=AF-1; =pE; ®f,E, +
1
+ g“’os!’(xzf,l -X,f 1)E; ® E5 +
0

+K x fpEs + fp'E;] x Ej. (18)

Based upon the assumption of small deformation
strains, but upon the arbitrary displacement and rotations,
the Lagrangian strain tensor E is equal to corotational
engincering strain tensor £ :

E=1(F-F-1,) =

: (19)

1 Ty _ -
S(E+uT) =3

Invariant constitutive equation in terms of & and its
conjugate (in the sense of internal work) rotational Cauchy
stress tensor & can be written as:

5=A"oA=C:E= ATP (20)
where P represents first Piola-Kirchoff stress tensor and C
is four-order modules tensor written in terms of the constant
E and G for the isotropic elastic material.

The vectors of stress resultants: n, N, stress couples m,
M in spatial and material form respectively, bi-shear M; an
bi-moment B, are obtained by the integration of stress
vector over the cross-section:

3
=[ pda, 21
n=| p @
N=An=[ 5.d4 (22
A 3 ’ -
m=I (r—ro)xp3dA , (23)
A
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M= ATm=J‘ [AT(r—rO)]xc3dA 4

M, = JA[fa0a3+ wo3 (X2f 1 -
-X,f,)53]d4, (25)
B,=E,: 53d A 26
r=Es-| fos (26)

where use has been made of the relation [9]:

p’ =P E;, 27)
5y =6-Ey=ATp’ =53k, (28)

Relations (21-26) in vector form are expressed by:

o, =112, (29)
where
S
o =[m,mM..B/; . (31)
A0 O
II={0A O (32
001, g,

For preparation of our linearization process, we €x-
plicitly derive the linearized constitutive equations resultant
from form (21-26):

AN = LC3A§3dA (33)

AM = L[AT(r—rO)]x[C3AE3]dA (34)
MMy = [ [f.G 85 + é(xzf,1 '

~ X, f,)E - AEz)da (35)

AB; =Ey -L fC4AE4d A (36)

where C3 = Diag(E.G.G)and change strain at arbitrary
point (X, X,) < Q is given by:

go
001 X, ~X, 0 A4 f
[Anles =1 100 0 pf -X, 4, 0| 08

010 -pf 0 X, Ay 0

A =06(Xaf) - X1 fa) .

Ay =gof1+Krf (39
Ay =202 -K\f,
Aeg =[AT, AK,Ap,Ap’]?l (40)

Virtual work expression (equilibrium equation) for
thin-walied rod is given by:
y(8a,a) = J{HTBSa - Gg - b8 - Fm}dS =
(®.L]
= Wi (S8,8) - iy (S8 8) (41)
where N, B, represent the shape function and strain-

displacement matrix, respectively:

N1y N[BT 0 o
B=| 0 N1, 0 0 (42)
0 !
0 Na N 7x8

Linearized finite element equation, is derived from
(41) in form:

Kyaa =iy — Yoy (43)

where:

Kr=[J(K% +K3) ()
¢
In equation (43),

Aa =[Argy, Aw, Ap];x1 represent the incremental degrees
of frecdom of centroidal position vector r,, orthogonal
transformation tensor A and warping amplitude p, respec-
tively, K{,Mb represents the material stiffness matrix, Kg)
represents geometric stiffness matrix, ¥, '¥,,, represent
the internal and external force vector as follows:

M

KM =IBZ .07 .D-1-B,ds, (45)
L.
.,
szAh-C-AhdA, (46)
A
Ky, = (L -b-L,dS. @7

L
In the above equation, L, and b represent displace-

ment gradient matrix and stress matrix, respectively:
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L,=| 0 N.)1;0 (48)
0 1; 0,
00 -
b=|0 0 ~li (49)

4. Shape sensitivity analysis of thin-walled rod
The sensitivities of an integral expression are computed
after its transformations into the isoparametric domain [10],

whose shape does not depend on the design variables. The
Jacobian of this transformation ’ 7" (é)’ can be expressed in

terms of the nodal coordinates, so it can also be differenti-

ated in order to known the integral sensitivities. Using this
techniques, right side pseudo-load vector (8% / 8b,, ), com-

putation of the response of system sensitivity (formulas (3-
6)) is given by
5 j 11 Bsa- oyl Jids
OFine (32,8) 1Y

oy, ab,,
j oy o en” 2B s+
oby, 0 ob, °
[-1,1]
T 5 959 T ol .
I B g+’ B o, . [45 OO

where the sensitivity of the Jacobian is:
6'-’] ( ~1 a']
=], r
Oby, m 3 b,

We assume that cross-section consists of elements of
equal thickness, location of an arbitrary point X = X_E,,

(1)

of cross-section is given by isoparametric interpolation:

Emel[-1]] > X=

Nuode I
= Nr@)Xg +n-
I=1

v (&)

(52)

(ST

where X(I) is position nodal point on the middle-line in

cross-section element, it is thickness of section ele-
ment, v(£) is vector perpendicular to middle-line.

5. Conclusion

1. Computation sensitivity of the geometrically non-linear
system response of 3-D structures consisting of thin-
walled rods is effected parallely with standard incre-
mental procedure.

2. In this paper, sensitivity for a response of system is for-
mulated via direct differentiation method due to possi-
bility of its simple extension to the elastic-plastic range.

3. Direct differentiation method requires analytical calcu-
lations of derivative expression of matrix occurring in re-
sidual force.

4. Isoparametric formulation make possible analysis of
response sensitivity to change in structure shape.

5. The model of an initially curved thin-walled rod formu-
lated with use of strain as a symmetric part of Biot tensor
make relatively simple expressions of sensitivity analysis.

6. The adopted measure of strain leads to simple expres-
sions of residual force, which simplifies calculations of
derivatives in the method direct differentiation, whereas
Green-Lagrange strain measure would lead to compli-
cated calculations.
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PLONASIENIU KREIVU STRYPU JAUTRUMO ANALIZE
L. Chodor, R Bijak

Santrauka

Darbe sifiloma nauja trimaciy kreivy plonasieniy konstrukcijy
(arba sistemy) jautrumo analizés metodika. Iaikoma, kad kon-
strukcijos dirba tamprioje stadijoje, taciau gali patirti didelius pos-
linkius ir posiikius. Konstrukcjjos jautrumas baziniy kintamyjy
(pavyzdZziui, jegy, geometrijos ar medziagy parametry) pokyciy
atzvilgiu nustatomas tiesioginio diferencijavimo metodu, standartine
Zienkiewicz ir Taylor pasitilyta pricaugiy procedira.

Sidlomi metodai iliustruojami trimacio kreivo plonasienio
strypo pavyzdziu  Strypo matematiniime modelyje jvertintos
skersines Slyties bei skerspjivio susukimo deformacijos. Parodyta,
kad sitloma metodika tinkama modeliui realizuoti baigtiniy ele-
menty metodu. Strypo baigtinis elementas formuojamas virtualaus
darbo principu. ISvestos visy baigtinio elemento strukturiniy ma-
tricy Braifkos.
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