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Statybines konstrukcijos ir j4 skaiciavimas 

NUMERICAL CREEP ANALYSIS OF REINFORCED CONCRETE FLEXURAL 
MEMBERS 

I. Cypinas 

1. Introduction 

The concrete of tension zone makes significant 

contribution to flexural response of a reinforced 

concrete member even after formation of cracks. This 

con-tribution cannot be evaluated properly irrespec­

tive of the tension reinforcement and configuration 

of the tension zone. The tensional behaviour of plain 

concrete is de-scribed by a stress-strain curve with the 

falling branch. The deformation of a concrete fibre, 

taken separately, after attainment of peak tensile 

stress is unstable, but reinforcment bars and adjacent 

concrete of compression zone stabilises the process. 

The deformation process in the tension zone is very 

complicated, it includes the initial formation and 

coalescence of cracks into the major ones, and the 

slippage of reinforcement bars. This process can be 

described integrally, in terms of one-dimensional 

stress state, attributing to concrete certain non-linear 

stress-strain curve depending on the amount and 

distribution of the reinforcement. In publication [1) 

the authors propose certain exponential curve to 

describe decaying tensile response of concrete after 

occurrence of cracks. This curve depends on the 

reinforcement ratio and the diameter of reinforce­

ment bars. The authors of publication [2) present the 

analytical expression 

{

/,'X, X=.~, 
f:l 

cr= 
/,' ~X 

1 ~-1+x 13 · 

if X:<; 1 

(1.1) 
if X> 1 

where /,' is the tensile strength of concrete, g 1 '­

the strain attained at /,' , ~ - an empirical 

parameter. The value of fJ can be computed by an 

empirical formula 

( 
100A J0.366(b(h-x ))0.3436( )0146 

p = s nl ~ ( 1 '?) 
b(h- xm) meed s ·-

based on experimental results. Here As is the area of 

the tensile reinforcement, b, h - width and depth of 

the rectangular cross-section, n - number of 

reinforcing bars, d - diameter of the reinforcing 

bars, c - concrete cover to reinforcement, s -
reinforcement spacing, x,1 - the neutral axis depth, 

computed neglecting the tension in concrete. The 
value of xn1 has only small influence on the ~. and so 

xn1 may be taken approximately. 

The application of the expressions (1.1) and 

(1.2) for layer analysis of section in flexure implies 

the following assumptions: 1) the linear distribution 

of strains is retained, 2) the streSll-strain relationship 

is the same for all layers of the tension zone. 

The coupling between the creep and cracking 

phenomena is described by Z. P. Ba.Zant and J.-C. 

Chern [3). The problem is also considered by J.-C. 

Chern and A H. Marchertas [4). Their approach is to 
divide the total long-term strain e(t) into a linear 

creep component and a cracking component: 

(1.3) 

The creep strain <. c is governed by a linear integral­

type constitutional relation, and depends on the time. 

The cracking strain ~ follows certain non-linear 

stress-strain relation, and it is assumed to be 

independent of time. 

It is also assumed in this paper that the 

compression zone of the reinforced concrete member 

undergoes only linear creep deformations. This 

assumption is valid when the dead load docs not 

exceed about a half of the total load. In the tension 

zone, however, the cracks occur unavoidably. 

Analytical relations for the interaction between creep 

and cracking are presented herein, and suitable 

numerical procedures are elaborated. Computer 

program has been written, and computational 

algorithm appeared to be efficient and numerically 
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stable. This algorithm is intended for introduction 

into the major non-linear finite element code. 

In his previous publication [5] the author has 

presented numerical modelling of a separate layer of 

concrete in tension. In author's report [6] the nume­

rical model of reinforced concrete section in flexure 

was briefly described. The more detailed elaboration 

of the numerical model and its adjustment for the 

requirements of practical use is presented in this 

work. 

2. Incremental creep relations 

The basic creep relation is expressed in a linear 

integral form: 

Ec(t) =a(t0 }J(t,t0 )+J
1 

J(t ,t')da(t'). (2.1) 
lo 

The creep compliance function J(t, t') is described 

analytically in corresponding design codes (see, for 

instance, EC2 [7]). In this paper, the latest propo­

sitions of Z. P. Bazant and his colleagues [8] are used. 

That relation is valid for the compression zone; in the 

tension zone, it is applicable until the stress reaches 

the tensile strength of concrete. 

In the cracking stage the total long-time strain 

E( t) is seen as the sum of two components of 

equation (1.3). The instantaneous strain E:s as an 

argument of function a = f ( E: s) , determined for the 

short-time loading by the equation (1.1), can be 

divided analogically: 

(2.2) 

These components of strain are represented in Fig 1. 

The mam assumption m the approach, 

presented herein, is that the dependency between the 

cracking component of strain s and the stress a is 

E:t I 6"
5 = t/ + ~ 

.__ _ _L_----'----- -------------· 

Fig 1. Stress-strain relationship for short-time tension. The 
clastic and crack components of the total strain are shown 

the same for a sustained as well as for an 

instantaneous loading. Equating the quantity s in 

both sums ( 1.3) and (2. 2), one will obtain the 

expression for an argument f: 
5 of function 

a= f(r. s) . The component E: e, as it is seen in Fig I, 

is a linear strain, r. e = aj Esec , and so the expression 

for c' reads as 

s c /1" r; = r; - E + 0 ~sec · (2.3) 

The secant modulus here is Esec = ft '/E1'. 

The main relationship of long-time cracking 

deformation can be formulated as 

(J = f(r; s ), l 
s 1 a I (2.4) 

E: =r.-a(t0 )1(t,t0 )-f
1 

l(t,t')da(t')+_j.l. 
0 Esec 

These equations have a lucid physical meaning. 

Material behaviour can be represented by the two 

consecutively joined mechanical elements: one, 
following the crack deformation mle a H s , as it is 

seen in Fig I, and analytically written as a = j(E s) , 

and another, undergoing linear creep deformations 

under the action of the stress o-(t) according to the 

equation (2.1 ). These elements obey the equilibrium 

condition, the stress a- in both two is equal, and the 

strain compatibility is also preserved owing to 

equation ( 1.3). 

Since one of the equations (2.4) is essentially 

non-linear, solution can be obtained only in an 

incremental form. If the stress history 

cr(t'), t 0 :o; t' < 1. until the time moment t is known, 

the stress increment cr(t) at the moment can be 

found from the equations (2.4). Denoting 

Eran = da/dr. 5
, one can write dcr = Etan dE: s, and 

returning to (2.3), one will obtain 

,!f; ' = dr.- dr. c + d aJl~·. , .. . \e ... 

Next, from the equation (2.1) it will result: 

c ) ( ) f, aJ(r,r') dr. (t)=a(t 0 dl t,t 0 +l(t,l)da(t)+ da(t'). 
1o cl 

It must be remembered that the variable r.c(t) in this 

equation depends on two arguments: time 1 and stress 

cr(t) . Now for the sake of brevity we introduce 

appro-priate notations and write the latter equation 
in the form 
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d& c(t) = :~) +d&'. (2.5) 

Here the first term 

r~ aJ(t ,t'} 
d&'=cr(t 0 }dl(t,t0 }+ J, dcr(t') 

lo at (2.6) 

is the deformation increment due to all previous 

stress history, and the second term represents the 

deformation increment related to the actual strain 

increment where 
1 

-= l(t,t). 
E(t) 

If there are no cracks in the tension zone, we simply 

have the total strain ~:: equal to ~:: c in equation (2.5). 

In the presence of cracks we put equations (2.3) and 

(2.5) together, and obtain main incremental depen­

dence, relating the increment of the total strain & to 

the stress increment at the time t: 

( 1 1 1) , acr 
d~::=dcr -----+- +ck, Elan=- • 

Elan Esec E &' 
(2.7) 

The algorithm, presented herein, is intended for 

use in advanced geometrically and materially non­

linear analysis. Even if there are no cracks in the 

tension zone, and material linearity is preserved, the 

structure will remain to be non-linear geometrically, 

and so the incre-mental solution shall be employed. 

Hence, the incre-mental constitutional relation shall 

be used instead of direct dependence (2.1) anyhow. 

In the absence of cracks the linear relation (2.5) will 

suffice, otherwise relation (2. 7) must be used. 

3. Incremental stitTness relation for a cross-section 

It is assumed that the cross-section is subjected 

to an axial force F and a bending moment My, acting 

about one of the principal axes of the section. The 

axes of the reference system not necessarily originate 

from the centroid of a section, but it is essential that 

these axes arc parallel to the principal axes. Internal 

forces of the section arc resultants of normal stresses: 

(3.1) 

Strains are distributed linearly over the section and 

may be represented as 

(3.2) 

where & 
0 is the strain at the co-ordinate origin point 

and K Y is the curvature of a beam axis. 

Normal stress CT can be determined using 

incremental relation (2.6), if creep deformation 

history is known. Our task is opposite: the section 

force is given, the deformation must be determined. 

To solve this problem, an incremental relation 

between the section deformation parameters and the 

section forces must be derived. 

Let us insert the stress increment 

dcr = E(dEc +dE') from the equation (2.5) into 

equation (3.1). Incremental relations for section force 

increments will read 

dF=J 00 de
0

+loydKY -dF',} 

dMy = lyod& 
0 

+lyydK y -dM~. 
(3.3) 

The usage of these equations implies a fundamental 

assumption: the loading of material element must 

follow the same path in the stress-strain space as its 

unloading. Otherwise the energy principles will not 
work, and the symmetry of coefficients, loy = J yo, 

will not be observed. Neglectin~ the reloading effects 

one can substantially simplify the problem, and 

obtain the coefficients and free terms of (3.3) in the 

form 

100 = f E' cl4, 1 0 l. = f E' z dA, J>:v = f E' z2 dA, (3.4) 
A · A A 

dF' = L E' de' cl4. dlvl;. = L E' cl&' ul4. (3.5) 

If there are no cracks, the value E' simply represents 

the quantity E(t) from equation (2.5). In the cracking 

stage from the equation (2.7) follows that 

E'= dcr = (-1 ___ 1_+_!_) _, 
d& Elan Esec E 

(3.6) 

Numerical solution of the problem can be 

obtained by finite differences, dividing the time 
period t0 ~ t' ~ t into appropriate number of 

sufficiently small intervals. If the stress history is 

known for i- I previous time intervals, the strain 

increment during the i-th time interval can be 

approximately expressed as 

(3.7) 

Here 

(3.8) 
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~cf == cc (t,}-cc {t;_ 1), ~cr; == cr{t;} -cr{ti-1}, 

~ f;::: f; -fi-b~ J(t;, t'}::: J(t;, t'} -J(t;-I,t'). (3.9) 

These finite difference expressions correspond to the 

differential expression (2.5) of previous section. 
Strain increment Ll c; in (3. 7) is due to stress acting 

during all previous time intervals. The quantity E;' 

here is a certain quasi-elastic modulus, averaged over 

the i- th time interval, so it is not quite identical with 
E(t;} == IjJ(t;,t;}; the latter strictly corresponds to the 

time moment t;. 

Rearranging main integral relation (2.4) by 

means of the above expressions, one will easily obtain 

finite difference substitute for it: 

Now the equations (3.3) for section force increments 

can be rewritten in terms of finite differences. 

Substitution of integrals with finite sums causes 

certain error that can be reduced by the increase of 

number of time division points. Another source of 

error is tangent approximation Etan == da/ des m 

equation (2.7). That error is removed by the direct 

iterative solution of first equation in (3.10). Detailed 

description of the solution algorithm can be found in 

[5]. 
The framework of basic equations, presented in 

this section, predetermines two levels of solution. At 

a first level, that is referred to a separate fibre of 

concrete, the set of two equations (3.8) is solved. The 

second level comprises the Newton-type solution of 

incremental equations (3.3), governing the response 

of the whole reinforced concrete section. Before the 

occurrence of cracks the problem remains linear, and 

the solution of equations (3.3) is accurate within the 

bounds of precision of numerical integration. After 

the cracking of the tension zone, incrcmentation 

along the tangent direction becomes a source of 

error, and iterative corrections to solutions of 

equations (3.3) are necessary. 

The quantities to be found in equilibrium 

equations (3.1) arc deformation parameters of a 

section c 0 (t,) and KY(t,}, the given quantities are 

the section forces F(t;}, AP' (t,) at the moment, and 

stress history cr(tk,z), k=O, ... ,i-l,up to the 

preceding time moment t, . 1 for each layer of the 

section. It must be remembered that relations (3.3) 

give the force increments that actually take place 
during the time interval ~ t, = t; - t, .1 • To construct 

the algorithm for the above - mentioned iterative 

corrections one must assume that the section forces 

in equilibrium equations (3.1) are the functions of 

deformation parameters only, the time being fixed at 
the value t == t,. Hence the section force increments 

in regard of the previously computed values 
F(t,}, AP(t,} will be 

8Fi = loo or.? +loy8K7, l 
y 0 0 

8M; == Jvo 8r.i +Jvy BKi. 
(3.11) 

The quantities 8 c :J, 6 <' here must be considered as 

the corrections to the values c~, K;· that cause the 

incre-ments B F,. 8 M;v at the unchanged time 

moment t,. 

4. Computer program 

Numerical algorithm was constructed having in 

mind its inclusion into the major non-linear finite 

element computer code. The algorithm comprises the 

Newton-Raphson time-stepping procedure according 

to equations (3.3) and equilibrium corrections by 

means of equations (3.11) after every time step. 

Because of non-linear stress distribution m the 

tension zone, the numerical evaluation of the 

sectional integrals in equations (3.1) and (3.3) is 

employed. 

Computational process requires the stress 
history a(z.td. k=J, ... ,i-J, and the linear creep 

component r.c(z.t,_ 1 ) at every time step f; for each 

concrete layer. In the presence of cracks these 

quantities cannot be represented as linear functions 

of co-ordinate: z of a layer. Even if the layer is 

reloaded and crack is closed, the presence of the 

crack in the past will have been fixcd in the stress 

history, and the linear distribution of layer variables 

. 8 . 



will be destroyed. Nevertheless, it was observed that 

the distribution of the parameter E s (z, t) over the 

depth of the section is much more close to the 
straight line that the stress distribution curve cr(z,t). 

That is important because the large amount of data 

causes the computer storage problems. Nearly linear 

disposition of variables enables the condensed 

storage of data. If the values of s' are stored instead 

of O" quantities, then these quantities are determined 

from the expression cr = f(E 5
) (1.1), and the creep 

strains &c are obtained by means of equation (2.3). 

There is another possible way to reduce the 

storage space. Material memory of concrete is 

limited, and so the stress increments at remote time 

intervals have little influence on its present 

behaviour. Hence, only most recent stress history 

must be represented in detail. Former stress 

increments may be summed and former time intervals 

may be amalgamated into one interval. That also will 
appreciably speed up the evaluation of sum Ll S: for 

the equations (3. 7). Alternative way to save the 

storage space is the exponential expansion of creep 

compliance function. This method is physically 

motivated by the solidification theory [9]. The creep 

process is described by the set of the first order linear 

differential equations. For each time step only the 

information about preceding step is necessary. The 

exponential expansion, however, requires sufficiently 

large number of terms to reflect the stress history 

until above-mentioned preceding time step. On the 

other hand, the direct use of creep compliance 

function is less complicated algorithmically than 

exponential expansion. Therefore, the creep 

compliance function and integral representation of 

analytical model are used here. 

The computer program was written for the 

bending with no axial force. The rectangular rein­

forced concrete section was assumed. This algorithm 

can be described in a concise form: 

1. Input: time subdivision points t; , section forces 

M {, i = 0, I ..... N . 

2. Set 

Mt =0, F; =O.i=O,l, ... ,N, E~ =0. E~. K~. 

3. Loop over the time increments: i = I, ... , N. 

4. Compute the section integrals 1;00
, J;0

Y, J{", 

!:J. F;', !:J. M?' as a finite difference substitute in 

(3.3). 

5. Solve the equations (3.3) for !:J. &? , !:J. K{ and 

increment the variables: 
0_ 0 A 0 y_ Y A Y 

E
1 

-E;_ 1 +uE
1

, K; -K 1_ 1 +uK1 • 

6. Loop over the equilibrium refinement steps: 

}. - I 2 · set ,.o - ~° KY - K.v - , , ••• , • c.(O) - c.; , (0) - I • 

7. Determine the section stress resultants f; 1>, M(;> 

from the equations (3.1), and find the unbalanced 

section forces 

8 Fin = F; -!{)), 8 Af(n = lv!/'- M(;). 

8. If tolerance condition (o F(1lr +(o Mi~lr :;;; to/ 

is satisfied, go to Step 10. 

9. Solve the equilibrium refinement equations 

(3.10), and correct the current values of the 

variables: 
o_o s:O y_y s:Y 

E{j) - E(j-l) + u f.{j), K{j) - K{j-1) + u K{j) . 

10.Acccpt the refined variables~>?= &~))• Kf = Kf~J· 

11. End of the main loop over the time increments. 

Zc 

h=dZ· n t 
I' 

Zs 

\~ • \~ 

z 

Fig 2. Layer model of a cross-section 

To compute the section integrals numerically, 

the depth of the section was subdivided into n layers 

as it is shown in Fig 2. Evaluation of section integrals 

in Step 4 and 7 requires the large amount of 

intermediate data to be stored. Thus, the economical 

use of data storage facilities is important. For 

computation of the section integrals } 00
, )

0
-', JYY in 

absence of cracks simple formula (3.8) is used and no 

additional information is necessary. If the cracks 

appear, the equation (3.6) must be used, and the 
knowledge of the current stress c:r, is required. For 
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computation of the integrals ~ ~'. ~ M,'Y the values 

of ~ c; must be known. These values arc computed 

by means of formulas (3.9). These formulas require 

the stress history for each layer of concrete 

irrespective of existence of cracks. 

Stress increments are computed directly from 

equation (3. 7), if concrete is uncracked: 

( 4.1) 

Here ~ c, is the total strain increment. Otherwise, in 

the cracking stage, stress cr i must be computed by 

means of equations (3.10). These equations require 

the stress at the preceding time step that may be 

found as cr,_ 1 = f(c:_ 1), and a linear creep 

component 

(4.2) 

according to equation (2.3). 

Thus, together with the strain history 

cf, k = 0, ... , i. it is desirable to save parameters ~ c; 
for all concrete layers at the latest time step. It is also 

necessary to save the time of cracking for each 

concrete layer because it is a turning-point when the 
stress reaches its maximum value cr = fr' and then 

begins to drop. 

The computation of section integrals is sepa­

rated into the special subroutine. The algorithm is 

described in [6]. 

5. Constitutional relations of concrete 

Until the occurrence of cracks, concrete follows 

the linear creep law. After cracking the behaviour of 

concrete is governed by the interaction of concrete 

creep and strain-softening mechanisms. 

Any analytical model for concrete creep may be 

employed in the FORTRAN program, described 

herein. Nl modern models comprise more or less 
complicated analytical expressions J(t,t') for creep 

compliance, that depends on the age of concrete and 

is the function of a current time t and the time t' 

when stress increment was applied. The creep 

compliance function [8], which is used herein, was 

chosen because of a number of advantages: (1) It is 

well-based physically and attributes the aging 

properties of concrete to solidification process of 

concrete paste (9]. (2) The solidification theory 

facilitates conversion to a rate-form of the consti­

tutive relation, the latter being more preferable for 

step-by-step numerical procedures. (3) The drying 

effects are separated from the basic creep process 

which takes place at no drying and no temperature 

change; these two components of creep are of 

different physical nature and originate from different 

physical mechanisms. (4) This mathematical model 

can be easily fitted to existing experimental data 

because material parameters appear in 

a linear form, and linear regression can be used. 

The basic principle of the solidification theory is 

that the aging of concrete is determined by a growth 

of amount of hydrated cement, which itself can be 

described as non-aging material. Long-time strain of 

concrete is seen as the sum 

('J v ;· 0 
E=-+c +c +c. 

E 0 

(5.1) 

where cr - normal stress. s" - viscoelastic creep 

strain, c 1 - flow strain, c 0 - shrinkage strain, 

including stress-induced shrinkage. The elastic 
modulus E0 here is an asymptotic constant quantity, 

representing deformation due to extremely short load 

durations. Conventional elastic deformation 

according this theory is only apparent phenomenon, 

and in reality must by treated as a short-time creep. 

We shall consider in this article only the three former 

components of the strain, omitting the shrinkage. 

The derivation of the creep compliance rate [9] 

is not repeated here. The analytical expression for 

basic creep is rather simple and reads as follows: 

. ( )n(t-t')n-l r. 
J(t,t') = 2.J_+q3 +li.. 

,, l+(r-rr , 
(5.2) 

Herem = 0.5, n = 0.1 are empirical constants. The 
quantities q1• q2. q3, q4 arc material parameters: 

q1 = l/ E 0 represents the pure clastic strain, q2 , q3, q4 

correspond to the aging viscoelastic compliance, the 

non-aging viscoelastic compliance and the flow 

compliance, respectively. Integrating with the initial 
condition J(t,t) = q1 = I/ E0 , one can obtain 

J(t.t')=q 1 +q2 Q(t.t')+q3ln(1+t-l')+q4 ln(t/t') 

(5.3) 

- 10-



where Q(t,t') is a term that cannot be expressed 

analytically. In [9] approximate formulas are 

proposed for this quantity. 
Material parameters q 1 , ••• , q 4 must be adjusted 

to the available experimental results. The analytical 

creep curves are sufficiently smooth for a broad range 

of load durations from parts of a second up to 30 

years, and even the short-time experimental results 

are useful. In the absence of test data, these 

parameters may be estimated according to concrete 

strength and mix composition [8]. 

The conventional elastic modulus of concrete 

cor-responds to loading duration approximately 
~ t = 0.1 day and can be determined from the 

compliance function as 

E(t) = 1/J(t + M, t}. (5.5) 

3~00 ~----r---~-----,----~----~ 
30000 t~~--~~~~~~~~~~~~ 
25000 -1---t---t---t---+---; 
20000 +---t---1---t---+---; 
1~00 +---r--~--~---T--~ 

10000 +---t-----1-----t-----+---~ 
5000 +----t---1-----t-----+---~ 

0 +-----t----1-----t-----+----~ 

0 2000 4000 6000 8000 10000 

Fig 3. Elastic modulus E(t), computed on the basis of eq. 
(5.5) 

1.5 I 
~---+-----+-----+----+-----, 

0. 5 +-----+-----+-----+----+-----, 

0 +-----+-----+-----+-----+---~ 
0 2000 4000 6000 8000 10000 

Thus the asymptotic quantity q1 may be equated to a Fig 4. Creep coefficient <l.._t, to) according to eq. (5.8) 

28-day modulus £ 28 using equation 

£28 = 1(28.1, 28.0). (5.6) 

According to [9] 

£28 = 4733. .JI. (5.7) 

The creep properties of concrete can be 

described clearly by the creep coefficient 

cp(t,t'} = E(t') J(t,t'}-1. (5.8) 

The value <p(t, t'), however, may be misleading 

because the elastic modulus E(t') is determined on 

the basis of somewhat arbitrarily chosen time interval 
~~. 

In sample calculation following concrete mix 

parameters were chosen: C = 320.0 kg!m3
, W/C = 

0.5, a/C = 0.7. Only basic creep was treated, drying 

creep was neglected. The 28-day cylinder strength of 
concrete was fc' = 30.0 MPa. Material parameters 

were computed according to [9]: 

qi = 3.184-10"5
' q2 = 5.933·10"5

' q3 = 1.483-10"6
' 

q4 = 1.214 -10·5 , MPa·1
. Conventional 28-day elastic 

modulus £ 28 = 25920 MPa , asymptotic value of 

initial instantaneous elastic modulus 
E0 = 31410 MPa. In Fig 3 the growth of elastic 

modulus E(t) is shown. Here E(t0 ) = 23230 MPa, 

t0 = 10.0 days; elastic modulus by the end of a 

lifetime, t = 10000 days is E(t) = 30930 MPa. In Fig 
4 computed creep coefficient <p(t, t 0 ) with time of 

Fig 5. Cross-section of a sample member h = 0.50 m, b = 
0.25 m, c = 0.04 m, s = 0.05 m, diameter of a 
reinforcement bar 20 mm 

loading t0 = 10.0 days is presented. The final value of 

the creep coefficient is <p(t,t0 ) = 2.396, t = 10000 

days. 

Tension behaviour of concrete depends on the 

parameters of a cross-section. Strain-softening 

parameter ~ of concrete in tension was computed 

according to equation (1.2) with numerical 

parameters of the section that are shown in Fig 5. 
Since the depth d- xn1 of the tension zone has 

rather small influence on the value of ~. it was taken 
approximately xn1 = O.Sd . Cracking strain was 

assumed &; = 0.0002 .The tensile strength of con­

crete was determined by the empirical formula [10]: 

- 11 -



f 1 '= 0.324 if/!, (5.9) 

fr' = 3.128 MPa. The increase of concrete strength 

during the lifetime of the member was neglected for 

the sake of simplicity. The elastic modulus of steel is 
taken Es = 200 000 MPa, steel yielding stress is 

/y = 320 MPa. 

6. Long-time behaviour of a section 

The cross-section of the reinforced concrete 

member was subjected to sustained bending moment 

with a zero axial force. Nearly constant regime of 

loading was simulated. It was found algorithmically 

more convenient to apply steadily growing bending 

moment 

M(t) =Ail ln(tJto) 
ln(t1 jt0 ) 

(6.1) 

at the short initial period of time, t 0 ~ t ~ t 1 , and 

then keep the constant value of M1 in the remaining 

time period t1 < t ~ t N . The entire period is 

subdivided into a N time intervals. Time subdivision 
points /1, ••• , t N are assumed according to a 

geometrical progression. It also was assumed 
t1 = 20.0 days, t N = 10000.0 days. 

The rectangular cross-section was initially 

divided into n = 50 layers. To evaluate the numerical 

error, calculation were repeated with doubled 

number of layers. The number of time steps over the 

lifespan of the member was alternated from 200 to 

10. The check of accuracy revealed that subdivision 

into n = 50 layers and 50 time steps brings the 

difference of steel strain 0.17 % by the end of the 

lifetime in comparison with maximum number of 

steps 200 and number of layers n = 100. The 

difference in concrete stresses is even smaller. 20 and 

10 time steps bring 0.66 % and 1.36 % error, 

respectively. So one can draw the conclusion that 50 

layers of the section and 50 time steps in the case of a 

constant sustained load give an acceptable precision 

of numerical results. 

An attempt was also made to reduce the 

necessary computer storage space by cutting off the 

most remote points of the stress history. Retaining 

only 10 latest of the entire 50 stress history points, 

the 0.66 % error in the steel stress at the last time 

moment has been observed. Representation of the 

stress history by the 25 latest time points results in 

the 0.21 %error of steel stress. 

Numerical results arc briet1y reviewed in Fig 6 and 

Fig 7, where diagram-; of normal stresses a- and equi­

valent instantaneous strains Es are presented. The 

diagrams are plotted for the time moment t 1 = 20.0 

days when the bending moment reached its maximum 

value M 1 and for the final time moment IN = 10000 

days, at the time steps # 10 and # 100, respectively. 

It is obvious that stress diagram in the cracked zone is 

essentially non-linear, but the equivalent instan­

taneous strain t.·' varies over the cracked zone in 

almost linear manner. Linear distribution simplifies 

representation of this quantity in the tension zone. 

This circumo;tance is of significant importance 

because of large demands for storage space in 

computer program. It is also seen that significant 

stress redistribution in the section due to sustained 

load action occurs. 

0.972 0.736 

Fig 6. Stress distribution over the cross-section at the time 
momenl'i 11 = 20 and fN= 10000 days 

1.03 

Fig 7. Equivalent instantaneous strains ix leY at the time 
moments f1 = 20 and r.~·= 10000 days 
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In Fig 8 redistribution of internal forces between 

the concrete and tension reinforcement is shown. 

One can see that the compressive stress of concrete is 

falling, and tensile stress of reinforcement steel is 

increasing. 

0 2000 4000 6000 8000 10000 

::~ b I I I I I 

!~ t I I I I J 
0 2000 4000 6000 8000 10000 

Fig 8. Compressive stress in concrete (upper graph) and 
stress in tension reinforcement (MPa) as a functons of time 
(days) 

7. Summary and conclusions 

Incremental stiffness algorithm for reinforced 

concrete cross-section creep analysis is developed. 

The layer model for plane bending is employed. 

Strain-softening behaviour of concrete in tension is 

modelled, assuming the additivity of linear creep and 

cracking strain. Further research is needed to 

investigate the influence of reloading effects. That 

will be the subject of subsequent publication. 

In the proposed algorithm linear time-stepping 

procedure for concrete creep is combined with step­

by-step incrementation of non-linear cracking strains. 

Two possibilities were also investigated and proposed 

to reduce the data storage requirements. (1) 

Condensed representation of stress history, using 

only the latest stress increments, and summing the 

rest of earlier stress increments into one quantity. (2) 

Representing the stress in the section by equivalent 

strain Es as an argument of non-linear stress function 

(2.3) in the cracking stage; in this way nearly linear 

distribution of the quantity over the tension zone is 

utilized to avoid the separate storage of data for each 

concrete layer. 

Within the scope of this study the following 

conclusions can be drawn: 

1. The non-linear stepwise section stiffness 

algorithm for creep analysis has shown good 

convergence properties. 

2. An error of stress not exceeding 0.2 % can be 

achieved in the case of sustained load, dividing 

the cross-section into 50 layers or more, and 

employing not less than 50 time steps. 

3. The computation can be speeded up and data 

storage space significantly saved, using condensed 

representation of stress increments, remote from 

the current time moment. The use of equivalent 

strain to represent the non-linear tensile stress in 

concrete also can reduce the amount of stress 

data. 
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LENKIAMl) GELZBETONINI1) ELEMENTl) 
SKAITMENINE V ALKSNUMO ANALIZE 

L Cyplnas 

Santrauka 
Betono pleisejimo analitinis modelis esant valksnu­

mui, pateiktas autoriaus jo publikacijoje [5], yra taikomas 
lenkiamq ge!Zbetoninitj elementq valksnumo analizei. 
Nagrinejamas plokscias elemento lenkimas esant vienai 
simetrijos asiai. Skaiciavimas atliekamas baigtiniais laiko 
intervalais, taikant analitiny betono valksnumo funkcijos 
i.Srai.Skl! (5.3). 

Gniuzdymo zonos betonui taikoma tiesinio valksnu­
mo teorija (2.1). Tempiamai betono zonai taikoma 
netiesine deformacijq prieaugiq procediira. Skerspjiivio 
standumo parametrai randami, taikant skaitmeninj 
integraviml!. Skaiciavimo algoritmas yra pagrjstas Niutono 
metodu netiesinems skerspjiivio deformacijos prieaugiq 
lygtims (3.3) spr((sti, kiekvienam laiko intervalui nustatant 
liestines skerspjiivio standumo charakteristikas. 

Pagrindinis darbo tikslas yra sukurti efektyvl! algorit­
IDl! ge!Zbetoninio skerspjiivio valksnumo deformacijtj 
analizei ir istirti galimybes taikyti sj valksnumo analizes 
metodll dideliq sistemq skaiciavimui baigtiniais elementais. 
Pagal sukurtl! algoritm11 autorius sudare FORTRANO 
program~! skerspjiivio deformacijoms skaiciuoti. Siekiant 
i.Sai.Skinti algoritmo galimybes, buvo atliktas valksnumo 
deformacijq skaiciavimas veikiant pastoviam lenkimo 
momentui laikotarpiu nuo 20 iki 10 000 parq, skaitant nuo 
betono stingimo pradzios. Betono valksnumas buvo anali-

ti.Skai aprasomas pagal darbq ciklo [8] rekomendacijas. 
Nustatyta, kad sudalinant skerspjiivj j 50 skaitmeninio 
integravimo sluoksniq ir dalinant visil apkrovimo laikotarpj 
j 50 laiko intervalq yra gaunama 0.17% armatiiros 
jtempimq paklaida paskutiniame laiko zingsnyje, palyginus 
su baziniu skaiciavimu su 100 integravimo sluoksniq ir 200 
laiko intervalq. 

Deformacija kiekviename laiko intervale priklauso ne 
tik nuo jtempimq tame intervale, bet ir nuo visos jtempimq 
istorijos. Taciau reiksmingll jtakl! turi tik jtempimq 
prieaugiai pastaraisiais laikotarpiais, ankstesniq laiko 
intervalq jtempimq prieaugiai gali buti susumuoti i vienll 
dydj, taip sumazinant laikomos informacijos apimtj. 
Skaiciavimais nustatyta, kad iS 50 laiko zingsniq palikus tik 
paskutiniqjq 10 informacijil apic jtempimq prieaugius, 
gaunama 0.21% armatiiros jtempimq paklaida. Be to, 
Sitoks jtempimq istorijos supaprastinimas gerokai 
pagreitina skaiCiavimo proceslt, kadangi sumazeja (3.9) 
formules sumuojamtj demenq skaicius. 

ltempimai yra vaizduojami nctiesiogiai, naudojant 
ekvivalent(( deformacijl! (2.3) kaip netiesines funkcijos 
jtempimams rasti argumenlll. Si deformacija pasiskirsto 
supleisejusios zonas aukstyje tiesi.Skai, tuo tarpu kai 
jtempimq diagrama yra ryskiai kreivalinijine. Si aplinkybe 
jgalina daug taupiau vaizduoti tempimo zonos jtempius. 

Sudarytoji programa ir ja atlikti skaiCiavimai rodo, 
kad siiilomas algoritmas gali biiti sekmingai pritaikytas 
didesniq konstrukciniq sistemq analizci baigtiniq elementq 
metodu. 
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