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Structural mechanics 

ON THE ANALYSIS OF GEOMETRICALLY NONLINEAR STRUCTURES 

R.Karkauskas 

1. Introduction 

Consider a stress and strain field (SSF) 
evaluation of elastic pin-jointed and framed 
structures for the case of large displacements and 
small strains. This case is the most urgent in practice. 
Due to small strains of bar they are neglected when 
formulating the equilibrium equations. Thus, the bar 
prior and after deformation remains straight. 

Most of the practical formulations [1-4] for the 

geometrical nonlinear problems are presented in the 
form of incremental displacement based on 
equilibrium equations by using a virtual displacement 
method. The variational functional formulations [5] 

also contains the same technique implicitly and are of 
major theoretical but minor practical interest. 

A new approach of equilibrium finite element 
method [6,7] to the analysis of geometrically 
nonlinear structures is suggested in this paper. It 
means that the stresses are identified as the basic 
variables, while the equilibrium equations coefficients 
may be obtained, for example, from equilibrium 
equations of junctions and bars of the deformed 

discrete model of the structure. 
There exist no unique explicit rules and 

recommendations for the formulation and solution of 
any geometrical nonlinear problem Interpretation 
and adjustment of particular factors and terms are 
necessary for reliable and rational nonlinear models. 

2. Mathematical model of the problem 

By its nature every pin-jointed and framed struc­
ture is a discrete system When analysing it, each bar 
between the junctions and points of application of 
the concentrated external forces can be regarded as a 
separate element with its intrinsic set of computable 
quantities in the design cross-sections. The discrete 
model of the structure is obtained by dividing it into 
k cross-sections, the total number of them being n k . 

Thus, suppose that the SSF of the discrete model 
of the structure consists of two pairs of dual variables. 

The first one consists of the force vector S and the 
generalised strain vector q : 

s = (skr = (Mk>Nkr = (s1r. 
q=(qkr =(9Jk.Mkr =(qfr. 
k = 1,2, ... ,nb j = 1,2, ... ,n :S; 2nk. 

Another pair consists of the loading and dis­
placements. It is well known that the dimension of 

the load vector F and the generalised displacement 
vector u corresponds to the degrees of freedom m. 

Then the vectors 

F = (F;f, u = (uif, i = 1,2, ... ,m. 
In general case, the equilibrium equations of the 

discrete model of the structure for deformed 
state consists of equilibrium equations of junctions 
and bars. They read: 

(A(u)]S =F. (1) 

Here [A(u)] - (n x m) is dimension matrix of 

equilibrium equations, linear related to displacements 
of joints and bars of discrete model. Fig 1 shows any 
deformed state junction in global coordinate system, 

related to discrete system in undeformed state. 
The equilibrium equations, formulated for the 

77-th junction, read: 

"M =0· L.. 11 , 

"X =0· L. 11 ' 

"y =0· L. 11 , 

Qd sinad -Qk sinak +Qa cosaa­

-Qv cosav- N d cos ad +Nk cosak-

-Na sinaa +Nv sinav = Frrx, 

-Qd cosad +Qk cosak -Qa sinaa + 

+ Qv sinav- N d sin ad+ N k sinak­

-Na cosaa + Nv cosav = FTfY. 
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Fig 1. Joint due to deformed state 

To determine geometrical dimensions consider 
the Fig 2. In global coordinate system, it shows the 
undeformed bar with coordinates x Po ,yPo ,Xg

0 
,yg

0
• 

After deformation the coordinates obtained the 
positive increments u px, u PY, u gx, u gy. Then the 

length of the bar is 

I= ~(/ox +ugx -upx)2 +(loy +ugy -upy)2 , 

where 

lox = xg. - xP.' loy = Yg. - Yp., 

cosa = Uox +ugx -upx)l I, 

sina =(toy +ugy -upy)l I. 

Fig 2. Deformed bar 

X 

Analysing equilibrium of deformed bar the 

shearing forces QP = Qg = -(MP + Mg)jl. 

For the junction in Fig 1 equilibrium equations 
in matrix form read: 

[A 77 (u)]s
77 

= F
77

• (2) 

Here 

S 77 = (Mdp• Mdg· Mkp• Mkg• Map• Mag• 

Mvp• Mvg• Nd, Nk> Na, Nv(, 

1 - sinad /ld cos ad jld 

0 - sinad jld cos ad jld 

1 sinak flk -cosakflk 

0 sinakflk - cosak jlk 

1 - cosaa /Ia sinaa /Ia 

[A 77 (u>r = 
0 -cosaa/la sinaafla 

1 cosav/lv - sinav!lv 

0 cosav/lv -sinavflv 

0 -cos ad -sinad 

0 cosak sinak 

0 -- sinaa - cosaa 

0 sinav cosav 
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This matrix is convienent to apply when 
formulating the global equilibrium matrix [A(u)]. 

Now we discuss the question of formulation of 
the geometric equations of the bar. We consider 
moderately large deflections, of the order of the 
cross-section height magnitude. Then approximate 
relationship, usually applied to strain of any point in 
distance y from neutral layer, can be realized by: 

E = &x +.!.(tlix)2 +.!.(&y)2- y cfluy. 
X a 2 a 2 0' 0'2 

Thus, for nonlinear case the total strain consists 

of the membrane strain 62 = &x/Ck+O,~&x/&)2 
+ 

and the flexural strain 

e~ =-y(o2uyjac2
). 

The first items in relationships 6~ and 6 x 

belong to linear theory. The remaining items in 

relationship E~ are the additional strains from 

nonlinear theory introduced to the theory of bar 
structures. They describe the tension not related to 
bending. For the bar in Fig 2 expressing the first 
derivatives in finite differences we have: 

For general analysis, it is convienent to write this 
equation in reduced form. First, introduce a line 
matrix 

[Asd = [cosa0 sina0 - cosa0 sina0 ] 

and a vector 

Us= {ugx• Ugy, u px• u py )T. 

Secondly, introduce a quadratic matrix 
evaluating the nonlinear component of strain: 

1 
0 

1 
0 

2/o 2/o 

0 
1 

0 
1 

[As2] = 
2/o 2/o 

1 1 
0 0 

2/o 2/o 

0 
1 

0 
1 

2/o 2/o 

On the basis of above-mentioned, it is clear that 
elongation of neutral bar axis is longitudinal strain 

AI= 62 .J = [Asl]us +u;[As2]us. 
Now for the whole discrete model of the struc­

ture geometric equations read: 

Here matrix [A( Uo) r is the transpose matrix of 

the equilibrium equation matrix [A(u}], formed for 

undeformed state. Matrix [A1(u}f consists of 

multiplication products u :f[ As2 ] for every bar. 

Adding the Hook's law q = [D]S, where [D] -
symmetric (n x n} -order flexibility matrix, to static 

and geometric equations, one obtains the equation 
system to solve geometrically nonlinear problems. 

Thus, the mathematical model of the problem 
reads: 

(A(u))S=F, 

[A(u0W u +[A1(u)Yu- q = 0, 

q=[D)S. 

(5) 

By solving the (5) according to u, the system of 
equations to solve the problem in displacements 
reads: 

It is easy to find that the obtained system of 
nonlinear equations is cubic according displacements. 
This is the result of geometrically nonlinear behav­
iour of the structure. The two algorithms to solve the 
mathematical model (5) is to be presented. 

3. Complementary load method 

A deformation process trajectory in complemen­
tary load algorithm is considered by steps. The step 
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of load parameter llF is introduced. Increasing the 
load by magnitude AFv, the increments of forces 

ASv that of displacements L\uv at the end of v-th 

step of load increment Fv = L AF v are obtained. 

The stress state of the discrete model at the end v-th 
deformation step is described by n -dimension vector 

Sv = S:E + ASv. 

Here s:E = LASv-1 -is the vector of total forces 

at the beginning of v-th step (usually for beginning of 
the loading process s:E = 0 ). 

Equilibrium equations at the end of v-th step 

read: 

At the end of v-th loading step the matrix 

[A(u:E}] is formed applying the displacements 

obtained as a sum product of previous v - 1 steps 
(for beginning of the loading process u :E = 0 ). 

As the discrete model of the structure at the end 
of v-th deformation step is in equilibrium, applying 
the principle of virtual displacements, the total work 
of all forces in virtual displacements must be equal to 

zero: 

or 

From here it is easy to find that the matrices of 
static and geometric equations are dual, ie 

Note that the Hook's law at the v-th step is valid 

for stress and strain increments. Thus, the 

mathematical model of geometrically nonlinear 

problem in complementary load method reads: 

[A(u:E }]sv = Fv, 

[A(u:E}r Auv = Aqy, 

Aqv =[D]ASv. 

(7) 

The order of calculations usually is as follows. By 
eliminating the strain increments Aqv from the 

system (7), one obtains: 

(7a) 

By solving the second equation according to 
ASv and applying in the first equation, we have: 

From here 

Auv = {[A(u:E}][nt•[ A(u:Ef]f• Fy-

- {[A(u:E}](ntt[A(u:Ef]} -t[A(u:E}]s:E, (8) 

Asv = [nr• [A(u:E}r Auy. (9) 

One finds that design process is realised by 

solution of linear equations, determining the changes 

of all geometric parameters. Every new step of load 

is applied to the structure, deformed by loads of 

previous steps. 

4. The Newton-Raphson method 

Short about solution method of nonlinear 

problem (5) by means of Newton-Raphson method. 
Let vector uv be the v -th iteration vector of 

displacements . Substituting this vector for the second 

and third equation of the system (5) the vector of 

forces is 

Sv = [nt [A(uo}r uv + [nt [A.(uv}]uv· (10) 

Applying (10) in equations (5) the vector of 

inadequacy is obtained as the vector function of 
displacements: 

(11) 

Expressing the function 'V ( uv) by the Taylor 

line around the point uv and taking into account the 

one item, one obtains 

From here 

(12) 

Thus, the formula to determine the aproximate 

solution u • for the step ( v + 1) is obtained: 

(13) 

The recurrence formula (13) is the basis of the 

Newton-Raphson method to receive the roots u • of 
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the equations (6). Applying them in the formula (10), 

the vector S • is obtained. 
To obtain the vector of increments £\uv the 

differential of the inadequacy function 'I' ( u v) must 

be calculated: 

According to the second equation of the system 

(7a), one obtains [A(uv)f duv = [nr1dSv.From 

here 

(15) 

An expression d[ A( uv) ]s v contains linear the 

displacement differentials du v, therefore this 

expression can be expressed by: 

d[A(uv)]sv = [K2(sv)]auv. (16) 

Substituting (15) and (16) by (14) one obtains: 

d'l'(uv) = [K]duv. (17) 

Here [K]={[K1(uv)] + [K2(Sv)]}-(mxm) is the 

dimension tangential stifness matrix; [ K 1 (uv)] - the 

usual linear stiffness matrix . 
From relationship (17) the tangential stiffness 

matrix [K] = [dVt(uv)/du). Substituting it for (12) the 

displacement increments vector for the following step 

is: 

(18) 

In the case of nonsuccessfull vector u v, the it­

eration process converges slowly and in some cases 

1 X 

Fig 3. Three bar structure 

does not converge at all. Therefore the displacement 
vector u v for the first step from the geometrically 

linear solution is proposed. 

5. Solution example 

Consider the SSF of the physically linear and 
geometrically nonlinear bar system in Fig 3 affected 
by vertical load F. 

This problem clearly illustrates the influence of 
the nonlinear theory. In [8] for IAJ = 60° and 
/1 = /2 = lo, E1A1 = E2A2 = EA the exact analytical 

solution of the problem is: 

+[~ 1 
-1](costp0 - ~). 

1- 2~C0Sif'o + ~2 

For 

12E1A1 u2y 0,210 p = --= 1, ~ =- = -- = 0.2m, EA = 1kN 
ltE2A2 lo lo 

the geometrically nonlinear load solution is F = 
0,2546536 kN. By solving the problem by means of 
complementary load method (7), the exact 
displacement solution u2y = 0,210 is obtained for the 

!:iF= F /60. For !:iF = F f 40 deviation from exact 

solution is 0,3%, for L\F = F /20- 1,16%, and for 

L\F = F /10- 2,5%. Applying the Newton-Raphson 

method (10)-(18) exact solution is reached in five 
iterations, when for first step the geometrically linear 
solution u2y =0,1697691/0 is applied. For considered 

problem u2x = O,N2-3 = N2-4 = N2,£\/2-3 = £\/2-4 = 
= £\/2. Then the matrix of geometric equations is 

[A(uo)f +[At{u)f =[ . 1+u2yj2lo l· 
- sma0 + u 2y j210 

and tangential stifness matrix 

[K]={[KI(uv)] + [K2(Sv)]} changestoascalar 

~ (2sin
2 

a+l}+ 
2~2 

(t-sin
2 a). 

Analysis of results clearly illustrates the influence 
of geometrical nonlinearity on the magnitude of 
displacements: for the same load F = 0,2546536 kN. 
The diplacements of geometrically linear system are 
by 15,1% less than calculating them for geometrically 
nonlinear system. 
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6. Conclusions 

1. The SSF of the structure can be determined by 

applying the mathematical model (5). It makes up a 

system of nonlinear algebraic equations, which can be 

solved according to the displacements. Thus, the 

cubic equations system (6) is obtained. 

2. Design process of the cubic eqs system when 

the complementary load method is applied, is 

realised by· solution of linear equations. The 

equilibrium matrix is formed for every load step, 

taking into account the deformation history due to 

the previous load steps. Therefore, the geometric eqs 

matrix is transposed matrix of equilibrium eqs and 

the cubic eqs system (6) is transformed into linear eqs 

system. 

3. Applying the Newton-Raphson method, the 

roots of the eqs (6) can be obtained, using the 

recurrence formula (13), in which the displacement 

vector from geometrical linear design is proposed for 

the first iteration. 

4. The solved numerical examples have shown 

the efficiency of the proposed methods while solving 

the geometrically nonlinear elastic-plastic structure 

optimization and analysis problem. 
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APIE GEOMETRISKAI NETIESINil} STRYPINil} 
SISTEMl) SKAICIA VIM!\ 

R. Karkauskas 

Santrauka 
Nagrinejame itempciq ir deformacijq biisenos (lDB) 

nustatymll ploksciose strypinese sistemose, kai poslinkiai 
dideli, o deformacijos mafos. Siuo atveju pusiausvyros 
lygtys sudaromos nepaisant strypq deformacijq. 

GeometriSkai netiesiniq tampriq sistemq IDB galima 
skaiciuoti pagal sudaryl!l (5) matematini modelj, jungianti i 
netiesiniq lygciq sistemll visus ieskomuosius dydzius 
(irllfas, poslinkius ir deformacijas ). Jos supaprastintas 
variantas yra kubiniq lygciq (6) sistema, kurioje 
pagrindiniai nezinomieji yra vien poslinkiai u. Taciau ir 
sios sistemos sprendimas komplikuotas. 

Siiilomi du IDB nustatymo keliai. Pirmasis - papildo­
mos apkrovos metodas. Taikant si metod!! skaiciuojama 
etapais. Pasirenkamas apkrovos zingsnis !!.F. Nuosekliai 
didinant apkrOV!l siuo zingsniu randami poslinkiq ir irllZq 
prieaugiai du v ir dS v. Cia kiekviename apkrovimo 

etape pusiausvyros lygciq matrica [A(ur}] sudaroma 

atsiZvelgiant i ankstesniq apkrovimo etapq konstrukcijos 
deformavimo istorijll, o geometriniq lygciq matrica yra 

transponuota [A(u~)r. Del to kubiniq lygciq sistema (6) 

tampa tiesiniq lygciq sistema, kurios sprendinys yra 
poslinkiq prieaugiq vektorius duv, randamas pagal (8) 

iSraiSkll. Po to pagal (9) iSraiSkll randamas !18 v. 

Antrasis biidas JDB skaiciuoti yra pagristas Niutono­
Rafsono metodu. Cia naudojant rekurenci~ll formulc; (13), 
kurioje poslinkiq prieaugiai skaiciuojami pagal (18) 
formulc;, randamos kubines lygties (6) 5aknys. Niutono­
Rafsono metodas pradinei iteracijai poslinkiq vektoriq uv 

siiilo imti iS geometriSkai tiesinio skaiciavimo. 
Abiejq metodq taikymas iliustruojamas pavyzdziais. 

Atlikti skaitiniai eksperimentai atskleide siiilomq metodq 
efektyvumll ir jq galimybc; taikyti geometriSkai netiesiniq 
tampriq-plastiniq sistemq analizes ir optimizavimo 
uzdaviniams. 

Romanas KARKAUSKAS. Doctor, Associate Professor. 
Department of Structural Mechanics. Vilnius Gediminas 
Technical University, 11 Sauletekio Ave, 2040 Vilnius, 
Lithuania. Dr degree in 1972 (structural mechanics). 
Research visits: Warsaw Politechnic Institute, Moscow 
Civil Engineering Institute, Kiev Civil Engineering 
Institute. Research interests: analysis and optimization of 
elastic-plastic structures, computational mechanics. 

-43-




