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A SIMULATION APPROACH TO RELIABILITY ASSESSMENT OF PLASTIC FRAMES 

E.R. Vaidogas 

1. Introduction 

The fundamental reliability analysis problem is 
to assess the structural (or system) reliability that may 
significantly differ from the individual structural 
component reliabilities. The redundancy or reserve 
strength of a structure implies that the reliability with 
respect to system failure is higher than the reliability 
with respect to component failure. Probabilistic 
analysis methods intended for an assessment of the 
relative high system reliability or, conversely, relative 
small probability of system failure are therefore 
combined with mechanical models that describe a 
structure as a system [1 ]. 

The rigid ideal plastic frame structures have 
been intensively studied within probabilistic analysis 
of structural systems and numerous studies have been 
reported (see the reviews in Refs [2-5]). Two main 
approaches to the assessment of the reliability with 
respect to the formation of a plastic mechanism are 
based on the theorems of limit analysis called the 
static theorem of admissible stress fields (lower 
bound theorem) and kinematic theorem of mecha­
nisms (upper bound theorem). The methods devel­
oped within the both approaches are used to assess 
the reliability in terms of a lower and upper bound, 
respectively. It is generally agreed that the methods 
of the conservative reliability assessment are more 
relevant for engineering decision. 

In the lower bound methods, the reliability 
problem is stated in the space of basic variables, and 
the limit state functions are derived from the formu­
lations of the limit analysis theorems. The reliability 
or, conversely, the probability of plastic (or collapse) 
failure is then estimated using analytical procedures, 
such as first-order and second-order reliability meth­
ods or simulation-based reliability methods. 

Due to the high order of reliability characteristic 
for structural systems, such simulation-based methods 
as directional simulation and importance sampling 
(both belonging to the so-called variance reduction 

techniques) have proved to be particularly suitable to 
the estimation of the probability of plastic failure 
[2,6]. The directional simulation may be applied 
when the reliability problem is stated in the standard 
Gaussian space. A transformation of the vector of 
basic variables to the standard Gaussian space is for 
most realistic problems usually nontrivial [7]. The 
transformation of safety margins of a rigid ideal plas­
tic frame also involves some difficulties [2]. 

A separate group of methods intended for the 
estimation of the plastic failure probability has its 
base in the load-space formulation of the reliability 
problem [8-11]. The dimension of the load-space is in 
most realistic problems low in comparison with the 
dimension of the space of basic variable. It may be 
advantageous for a necessary integration in the load­
space. The estimation of the plastic failure probabil­
ity in the load-space is performed using the propor­
tional loading approach. A problem resulting from 
the reliability formulation in the load-space is that 
the limit state functions have a randornnised form 
Loading proportions therewith correspond to random 
and, in general case, individual resistances. 

In this paper a method for the estimation of the 
collapse probability of rigid ideal plastic frames is 
suggested. The method combines features of direc­
tional simulation and radial sampling with the analy­
sis of the frames using the proportional loading ap­
proach. The discretisation of the load space is re­
placed by random choice of the loading proportions. 
The analysis of a frame for each simulated propor­
tion is performed on the bases of static or kinematic 
formulation of the limit equilibrium problem. These 
formulations are expressed as a dual pair of linear 
programming (LP) problems. A connecting link be­
tween the radial sampling procedure and the limit 
equilibrium problem is the load direction and distri­
bution vector appearing in the formulations of the 
problem. This vector may be expressed and simulated 
as a radial direction in the load-space. 
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2. Discretisation ofthe load-spaceand radial 
sampling 

The simplest way of the estimation of the plastic 
failure is to discretise the load-space in subspaces, 
each being characterized by one proportion of loads. 
The failure probability is then estimated for each 
proportion, and the overall failure probability is ob­
tained through the summation over all proportions 
[8,9]. The mean and variance of a random frame 
resistance corresponding to an individual load pro­
portion are approximated using an incremental 
loading model [1,7]. 

The approach ,discretisation" plus ,approxima­
tion of moments of the resistance distribution" has 
obvious shortcomings. Firstly, an increase in the di­
mension of the load-space causes a nonlinear in­
crease in the number of loading proportions to be 
analyzed (see a numerical illustration in Ref [10]). 
Secondly, the mean and variance of the frame resis­
tance corresponding to the considered loading pro­
portion are approximated assuming that only one 
mode of the plastic failure identified for mean values 
of plastic moment capacities is possible. This is not 
always the case. Finally, the probability distribution 
of the resistance is assumed only on the basis of the 
two approximated distribution parameters. It is 
stated that the exact form of the probability distribu­
tion is not critical because the variability in the resis­
tance is generally much less than that in the loads 
[9,10]. However, the variability in the resistance tends 
to increase with the complexity of the frame, more 
exactly, with the number of weakly correlated plastic 
moment capacities. A simple criterion for answering 
the question whether the variability in the resistance 
is small enough to neglect the distribution type prob­
lem is not given. 

Several attempts to remove the above­
mentioned problems were reported. The dimension 
of the load-space may be reduced by a reformulating 
of the initial probability estimation problem [10]. For 
example, only load combinations with a high likeli­
hood of causing failure are used, or else two or more 
independent loads are assumed to be fully correlated. 
In such a manner the estimation problem is simpli­
fied even if with the loss in generality. 

An alternative method of the discretisation of 
the load-space consists in a grouping of the loading 
proportions corresponding to the same mode of fail­
ure [11 ]. The method consists in the Monte Carlo 
analysis of a LP problem called the kinematic formu-

lation of the limit equilibrium problem [12,13]. The 
LP problem is repeatedly solved for different obser­
vations of basic variables obtained through Monte 
Carlo simulation. The solving results are grouped 
according to the mode of failure, and the probability 
distribution of the resistance is statistically fitted for 
each mode from the computed values of the load 
magnitude (critical load factor). The overall plastic 
failure probability is then the sum of all failure prob­
abilities corresponding to the failure modes that were 
observed during the Monte Carlo analysis. Conse­
quently, the fitted resistance distribution is taken as 
representative for a segment of the load-space asso­
ciated with an individual failure mode. 

The combination ,simulation plus LP" may be 
applied to the estimation of the plastic failure with­
out consideration of the individual failure modes and 
discretisation of the load-space. The loading in the 
kinematic and static formulations of the limit equi­
librium problem is expressed as a product of the un­
known load magnitude and a predetermined load 
direction and distribution vector [13]. This vector 
defines the loading proportion, and it may be ex­
pressed as a unit directional vector. The kinematic 
and static formulations necessarily results in the same 
maximal load magnitude (collapse load). The plastic 
failure probability may be computed by integrating 
over all directions in the load space. The probability 
integral may be evaluated through the simulation that 
consists in the random choice of the directions. Such 
a evaluation lies at the basis of the directional simu­
lation [3,7]. It is performed not in the standard 
Gaussian space but in the load-space, and therefore 
the evaluation procedure is referred as the radial 
sampling [14]. 

3. Mechanical model 

Consider a plane frame of known configuration 
characterized by the vector m0 e I(' which compo­
nents are plastic moment capacities in n predeter­
mined critical sections. The frame is acted upon by a 
set of concentrated loads represented by the vector 
I E I(" which is expressible as a product of the load 
magnitude l and the load direction and distribution 
vector a. The difference n - m is the number of de­
grees of freedom. The load-bearing capacity of the 
frame for a given a is expressed in terms of the maxi­
mal load magnitude A.a. It may be found by solving the 
static or kinematic formulations of the limit equilib­
rium problem. The static formulation has the form 
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max {A- I Em ~ m0, -Em ~ m0, Am - A-a = 0} (1) 

where E is the unit matrix; m is the vector of bending 

moments; A is the matrix of equilibrium equations, 
and 0 is the zero-vector. 

If the plastic moment capacities and loads are 
taken as random and represented by the respective 
random vectors M 0 and L, the load magnitude A, and 
the load-bearing capacity A-o are stochastized for a 
given a. One speaks in this case about plastic failure 
probability conditioned on the direction a in the load 
space ](" [7, 11]. The ideas of the radial sampling in 
the load-space can in this case be applied to estimate 
the plastic failure probability. 

4. Estimation of the plastic failure probability by 
radial sampling in the load-space 

The probability of plastic failure, p1, may be ex­
pressed in the Cartesian coordinates as 

P[ = JRn+m l(x, Y) fMo(x)fL(Y) dx dy (2) 

where f MO (.)and fL (.) are the joint probability 

density function (PDF) of the vector of limiting mo­
ments and the load vector, respectively; 1(.) is an 

indicator function defined by 

t(mo, l) = { 1 if r(m0 ,a) ~ s(l) 
0 if r(m0 ,a) > s(l) (3) 

Here the scalar 

s = s( 1) = iitll = A- (4) 

is a norm of the load vector value /, and the scalar 

r(mo,a) = A-o (5) 

is computed by solving the LP problem (1) for the 
value of the random vector of limiting moments, m0, 

and the load direction and distribution vector 

a = tfiitll (6) 

The simple Monte Carlo estimate of the failure 
probability Pt in this case has the form 

P[I,N = N-
1 L~=1 1(m01 , t1) (7) 

where m01 and 11 are observations of M 0 and L. 

The random external loading L in this case is 
represented as product of the magnitude variable 

s = IlLII (8) 

and the direction and distribution vector 

A = L/IILII (9) 

This fits into the logic pattern of the reliability esti­
mation by the directional sampling and, first of all, 

radial sampling in the load-space [7,6,14,15]. The 
random directional unit vector A is, in general, non­
uniformly distributed on the m-dimensional unit 

(hyper)sphere Om in It". If the random external 
loading L is defined only on the positive subspace 
R+ of It", as for instance, the loads are non­
alternating, the vector A is nonuniformly distributed 
on the spherical segment 

Wm=OmflR+ 

It is possible to rewrite (2) in (hyper-) polar co­
ordinate system as 

PJ = f.e •• [I (l-Fs(~a))1R(¥)ds ]fA(a)da 

J aerom Pf!A(a)fA(a) da (10) 

where Fs(.j.) is the conditional cumulative distribu­

tion function (CDF) of the magnitude of the load 
vector, S; fA(.) is the PDF of the random unit vector 

A; fR(.j.) is the conditional PDF of the frame resis-

tance for a given radial direction A = a. The prob­
ability p fiA (.)in Eq. (10) is called the probability of 

failure for a particular direction A = a in the load 
space [7]. 

A Monte Carlo estimate of Pt is obtained simu­
lating N outcomes ai of the unit vector A and averag-

ing the corresponding sample values p !lA {a 1} : 

A 1 N 
PJ2,N = N L Pf!A(a 1) (11) 

j=l 

A computation of the sample value p JIA {a J) con­

sists in an evaluation of the integral 

00 

P fiA (a) = J {1- Fs(~a))!R(~a)ds (12) 
0 

for the simulated direction ai· That is the point to 
estimating the plastic failure probability by the radial 
sampling, in the case at hand, consists in an integra­
tion over the radial directions. 

5. Radial integration 

The conditional plastic failure probability, 

P !lA (a) given by Eq(12) can be evaluated carrying 

out the one-dimensional integration over the radial 
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direction a provided that the functions Fs(.J.) and 

fR(.J.)can be evaluated for each sand a. The condi­

tional CDF Fs(.J.) may be expressed in terms of the 

joint density fL(.)with the use of the mapping 

l = <Pn(s,a) from the (s,a) -space to the /-space 

(see e.g.[16, Sec.7.19]). Firstly, the function Fs(.J.) 

may be given by 

s 

Fs( ~a) J fs(zla)dz 
0 

s 

(!A(a)f
1 J fs,A(z,a}dz 

0 

[I !s .• (z,a)dz r l !s .• (z,a)dz (13) 

where fs(.J.) is the conditional PDF of S; fA(.) is the 

marginal PDF of A; and fs,A (.) is the joint PDF of S 

and A. Secondly, the latter PDF may be represented 
as 

fs,A( s,a) = I det<P '( s,a)l fL(<Pn( s,a)) 

= I del o(~la)l fL(<Pn( s,a)) (14) 

where detB denotes the determinant of B. Finally, 
the function Fs(.J.) takes the form 

s 

x f I det<P '( z,a)l fL(<Pn( z,a))dz (15) 
0 

The integrals in Eq (15) are one-dimensional and so 

they can be evaluated by a numerical technique. 
A problematical term of the integrand in Eq (12) 

is the conditional probability density function fR (.J.} 

of the resistance R(M0 ,a}. As may be seen from the 

LP problem (1), the distribution of R(M0 ,a) depends 

for given a on the joint distribution of the limiting 
moments. 

To obtain an analytical expression of the 

PDF fR(.J.) and hence the corresponding CDF FR(.J.) 
is a trivial task when the plastic moment capacities in 

all critical sections are modelled only by a single ran­
dom variable, i.e., M0. The resistance R(M0 ,a) in this 

situation is a linear function of M 0, and both of them 
have the same type of probability distribution. The 
expression (12) in this case may be rewritten in the 

form 

PflA(a) = J fs(~a}FR(~a}ds (16) 
0 

that is simpler from the computational point of view. 
At the other extreme is the case when the plastic 

moment capacities Mo; are stochastically independ­

ent. The values of FR(-J.} can in this case be evalu-

ated by integrating the marginal densities f MOi ( ) 

[17). 
If the dimensionality of the load-space, m, is not 

large, the values of a may be discretised and mo­
ments of the distribution of R(M0 ,a} approximated 

by the method given in Refs [9,11). The method has a 

limitation that there is only one mode of plastic col­

lapse considered for each discretised direction a. 
In the general case, the radial integration may be 

performed via the simple Monte Carlo simulation. 

One possibility is that observations for the estimation 

of p !lA (a;) are sampled from the distribution f R (.J.} 

by solving the LP problem (1). The Monte Carlo 
estimate takes in this case the form 

A N-1"\'N A ( ) P[J,NK = L..;=1PfiA.K a; 

= N-
1 L.:1 ~ K-

1 I;=1 (1- Fs(r(m01 ,a;) I a; ))(17) 

where Pf!A.K(a;) is the estimate of PfiA(aJ 

The properties of the radial sampling estimator 

PfJ,NK = N- 1 L_:1 ~ K-
1L;=1(1- Fs(r(M01 ,A;) lA;)) 

may be discussed comparing them with ones of the 
simple Monte Carlo estimator 

A -1 "\'N ( ) Pf1,N = N L..J=11 M 01 , L1 

where M 01 , L1 and A; are random vectors with 

PDF's that are identical to the PDF's of 
M 0 , Land A, respectively. 

It is well known that the estimation of the plastic 

failure probability Pt using Pfl,N is performed by 

generating the sample t(mo~ol1 ), 
t( moN ,l N) which usually consists of zeros with only 

few ones. If the unknown probability Pt is small 

enough, we will often obtain zero values of the 
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estimate p r1,N for N less than 1/pr. This is not the 

case if the estimator ?13,NK is used to assess Pt. 

Each term in the double sum of Eq (17) contributes 
to the result p fJ,NK with a value lying between zero 

and one. Hence, a non-zero estimate p fJ,NK will be 

obtained even for small size of the sample 

(1-FsHmo1.a;) I a;)).··· 

... ,(1-Fs(r(moK.aN) I aN)). 
no matter how small Pt is. 

The generation of the sample elements 

t(m01 ,11) and (1-Fs(r(m01 ,a;)la;)) requires to 

solve once the LP problem (1). Thus the estimator 

PfJ,NK is more efficient than Pr1,N, the number of 

solvings of the LP problem being the same. 
Futhermore, numerical experiments show that the 

sequence 

k- 1 2:~= 1(1- Fs(r(m01 ,a;) I a;)). k = 1, 2, ... 

converges to p !lA (a;) relatively fast. 

Table 1. Frames considered 

One might expect that the variance of the esti­

mator PfJ,NK is high even though the sampling PDF 

fA(.) is nonuniform The failure probabilities 

p fiA (a;) can vary significantly for different loading 

proportions a; . A variance reduction technique, say, 

importance sampling should be applied here together 
with the radial sampling procedure to lower the vari­

ance of PfJ,NK. This task, however, is outside the 

purposes of this paper . 

6. Examples 

Consider the frames in Table 1. These structures 
have been previously used for comparison studies 
reported in Ref [9]. The random plastic moment 
capacities and loads are assumed to be normally or 
lognormally distributed with the characteristics given 
in Table 2. The plastic moment capacities are consid­
ered as either fully correlated or uncorrelated, that is 
p[Mo;.Mo1] = 1 or p[Mo;,M01 ] = 0. Four values 

0.3/0.05, 0.3/0.1, 0.2/0.1, and 0.1/0.1 of the ra­
tio v L 1 v M of coefficients of variation of loads to 

plastic moment capacities were used. 

Number of frame Discretisation scheme and identical sections• 

1 

(Frame 1) 

2 

(Frame 2) 2 4 s 

10m 

M04 = Mo5 

6 7 12 l3 

8 10 11 ~4 16 17 

10m 10m 

Mo4 = Mo5, Mo,to = Mo.u, Mo.t6 = Mo.11 

3 plastic moment capacities in the identical sections are modelled by the same random variable 
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Table 2. Characteristics of plastic moment capacities and loads 

Plastic moment capacities 
Frame 1 Frame 2 

E[Mo;] = 135 kNm, i = 1, ... , 8; E[Mo;] = 100 kNm, i = 1, ... , 20; 

VM; = VM = 0.05,0.1, i =1, ... , 8; V Mi = V M = 0.05,0.1 , i = 1, ... , 20; 

p(Mo;,Moil=l,p(MOi,Moil= O,i c#j and ij =1, ... , 8 p[Moi, Moil= 1, p[Moi, Moil= 0, i *- j and ij = 1, ... , 20 

Loads 
Frame 1 Frame 2 

E[Lt) = 50 kN, E[Lz) = 40 kN; E[Lt)=SOkN, E[L;] = 40kN, i =2, ... , 4; 

VLl = VL2 = VL =0.1, 0.3; V Li = v L = 0.1, 0.3, i = 1, ... , 4; 

p[L1, Lz) = 0; p[Li, Li) = 0, i *" j and ij = 1, ... , 20; 

p[Mi, Lil = 0 for each i and j p[Mi, Lil = 0 for each i and j 

Note: E[. ], v, and p[.,.] denotes mean, coefficient of variation, and correlation coefficient, respectively 

Table 3. &timates of failure probabilities computed with p{ M Oi, M 0 1 ) = 1 for normally-distributed loads and moment 

capacities 

Ratio of C.O.V. of Monte Carlo esti- Radial sampling estimates 
load to resistance mates 

vLfvM PJI,N(N) Pf2,N(N) 

n 
0.3 2.50·10-4(1·11f) 3.36 ·10-4(1-102) -

2.60·10-4(1-llf) 3.37·10-4(1·102
) 0.05 

3.00·10-4(1·11f) 3.77-10-4(1·102) 
0.3 2.18·10 3(1-llf) 2.33·10-3(1-102) -
0.1 2.32·10-3(1-11f) 2.37·10-3(1·102) 

2.32·10-3(1-llf) 2.46·10-3(1-102) 
0.2 1.80·10-4(1-llf) 2.41·10-4(1·102) -

1.90·10-4(1·11f) 2.42·10-4(1-102) 0.1 
2.40·10-4(1-l!f) 2.48·10-4(1·102) 

0.1 0.55-10 5(1·107
) 1.73·10 \1-102) -

0.1 0.57·10-5(1-107) 1.73-10-5(1-102) 
0.62·10-5(1·107

) 1.74·10-5(1-102) 

I 
l 

l 
l l 

1 l 
0.3 1.49·10 3(1·10S) 1.79·10-3(1-102) 2.04·10-3(2·102) -

0.05 1.8l10-3(lllf) 2.57·10-3(1·102) 2.16·10-3(2·102) 
1.88·10-3(1-llf) 3.13-10-3(1·102) 2.70·10-3(2·102

) 

0.3 6.57·10 3(1-llf) 7.10-10-3(1·102
) 7.28·10 J(2·102) -

0.1 7.13-10-3(1-llf) 8.26·10-3(1·102) 7.41-10-3(2·102) 
7.53·10-3(1·10S) 9.61·10-3(1·102) 8. 74·10-3(2·102

) 

0.2 4.10·10-4(1·11f) 5.13-10-4(1·102) 4. 70·10-4(2·102
) -

0.1 4.20·10-4(1-llf) 5.96·10-4(1·102) 5.41·10-4(2·102) 
4.90·10-4(1-llf) 6.26·10-4(1-102) 6.61-10-4(2·102) 

0.1 0 (1·106
) 0.97·10 5(1-102) 0.94·10 5(2·102

) -
0.1 0.2·10-5(1·106) 1.00·10-5(1·102) 0.98·10-5(2·102

) 

0.4·10-5 ( 1·1 06) 1.12-10-\1·102
) 1.03·10-5(2·102) 

o.s-10-5 ( 1·106) 
a . . . 

Probabilities are taken from Ref [9) . 
- = data not available. 
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Method of discretisation Monte Carlo 
of the load-space• simulation• 

Load Load 
space- space-
plastic nonlinear 

3.88·10-4 7.06·10-4 5.5·10-4 

2.61-10 3 3.79·10 3 3.60·10-4 

- - -

2.54·10 5 3.70·10-5 -

- 3.23·10-3 2.8·10 3 

- 8.92·10 3 9.0·10-3 

- - -

- 7.85·10 5 -



The load-space for the Frame 1 and Frame 2 is 
two- and four-dimensional, respectively. The map­
ping I = <1>2 ( s, a) from the ( s, a) -space to the /-

where s and t/J are polar coordinates in the two­
dimensional load-space. The mapping <t>4 (s,a) is 

expressed by equalities 
space has in the two-dimensional case the form 11 = s · cos¢1 · sinth, · sinth, = s ·a 1 

11 = s·cost/J = s·a1 

/2 = s·sint/J = s·a2 

/2 = s · sin¢1 · sinth_ · sinth, =s·a2 

/3 = s · costh_ · sinth, =s-a3 

with /4 = s-costh, =s·a4 

det<l> '( s,a) = s 

Table 4. Estimates of failure probabilities computed with p[M0; ,M01 ] = 0 for normally-distributed loads and 

moment capacities 

Ratio of Monte Carlo 
C.O.V. of estimates Radial sampling estimates 

load to 
resistance h1.N(N) h3.NK(N,K) 
vLfvM 

n 
0.3 1.20-10-4 (llcf) 1.77-10-4 (1-102,1-102) 

- 1.50-10-4 (llcf) 1.85-10-4 (1-102,1-102) 0.05 
1.70-10-4 (llcf) 1.93-10-4 (1-102,1-102) 

0.3 4.00-10-4 (1-lcf) 4.23-10-4(1·102,1-102
) 

- 5.10-10-4 (1-lcf) 4.25-10-4(1-102,1-102
) 0.1 

5.60-10-4 (1-lcf) 4.31-10-4(1-102,1-102
) 

0.2 1.00-10 6 (1·107
) 1.42-10 6 (1-102,1-102

) 
- 1.90·10-6 (1-107

) 1.55-10-6 (1-102,1-102) 0.1 
2.00·10-6 (1-107

) 2.11-10-6 (1-102,1-102
) 

0.1 - 0.55-10 14 0.11-10 13 

-
(1-102,1-102

) (1-102,2-102
) 0.1 

6.11-10-13 3.42-10-13 

(1-102,1-102
) (1-102,2-102

) 

7.18·10-13 3.74·10-13 

(1-102,1-102) (1-102,2-102) 

I 
I I I 

l 1 l 
0.3 1.06-10 3(5-104

) 0.90-10 3 (1-102,1-102
) 1.12-10 3 (1-102,2-102

) 
- 1.14·10-3(5-104

) 2.02-10"3 (1-102,1-102) 1.25·10-3 (1-102,2-102) 0.05 
1.20-10"3(5·1~) 2.22-10"3 (1-102,1-102

) 1.59·10-3 (1-102,2-102) 

0.3 2.92-10"3(5-104
) 3.31-10 3 (1·102,1-102) 2.25-10 3 (2-102,1-102) 

-
2.98-10"3(5-104

) 4.09·10-3 (1·102,1·102
) 3.17-10"3 (2-102

, 1-102
) 0.1 

3.06·10-3(5·104
) 5.57·10-3 (1-102,1·102) 3.90·10-3 (2-102,1-102) 

0.2 1.00-10 5(1-1cf) 7.00-10 5 (1-102,1-102
) 3.21-10 5 (2-102,1-102

) 
- 4.00·10-\1-1cf) 10.3·10-5 (1-102,1-102) 5.01·10-5 (2-102,1-102

) 0.1 
6.00·10-\1·1cf) 22.2·10-5 __(1-102, 1·102) 5.31-10-5 (2-102,1-102

) 

0.1 - 4.87-10 5 (2-102,2-102) - 4.95·10-5 (2·102,2-102) 0.1 
5.00·10-5 (2-102,2-102) 

• Probabilities are taken from Ref [9]. 
- = data not available. 

with 
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Method of discretisa- Monte 
tion Carlo 

of the load-space• simulation• 
Load Load 

space- space-
plastic nonlinear 

2.42·10-4 4.82·10-4 1.8·10-4 

8.80·10-4 15.6·10-4 5.1·10-4 

- - -

1.50·10 7 6.40·10 7 -

- 2.62·10 3 1.0·10 3 

- 5.27-10 3 3.0·10 3 

- - -

- 2.66·10 6 -



with 

dettlJ '( s,a) = s3 ·sin~ ·(sin?J)
2 

where s and 1/JJ., ... , ?J are polar coordinates in the 
four-dimensionalload-space. 

The estimates p fl,N , p f2,N, and p f3,NK de-

fined by Eqs (7), (11), and (17), respectively, were 
computed for both distribution types of loads and 
plastic moment capacities. The simple Monte Carlo 

estimate p fl,N was computed in both cases 

P{M0;, M01 ) = 1 and P{M0;, M01 ) = 0. The radial 

sampling estimate p r 2,N was computed in the case 

P{ Mo;, M 01 ) = 1 using an evaluation of the integral 

in the Eq (16) by means of 32-point Gauss quadra­
ture. This formula was also used for the evaluation of 
the evaluation of integrals in the expression of the 

Table 5. Estimates of failure probabilities computed with p[ M o;, M 01 ] = 1 for lognormally-distributed loads and 

moment capacities 

Ratio of Monte Carlo 
C.O.V. of estimates Radial sampling estimates 

load to 
resistance PjJ,N(N) PJz.N(N) 

vLfvM 

n 
0.3 3.91-10 3(1·1cf) 4.02·10 3(1·102

) 4.28·10-3(1·1lf) -
3.99·10-3(1·1cf) 4.42·10-3(1-102

) 0.05 5.00·10-3(l1lf) 
4.27-10-\1-lcf) 5.75·10-3(1·102

) 5.21-10-3(1-llf) 
0.3 6.64·10 3(1-lcf) 6.71-10 3(1·102

) 6.89-10-3(1-llf) -
6.67·10-3(1·1cf) 7.07·10-3(1·102

) O.l 7.79·10-3(1·1lf) 
6.91-10-3(1-lcf) 8.52·10-3(1·102

) 8.05·10-3(1·1lf) 
0.2 2. 70·10-4(1-lcf) 3.36·10-4(1-102

) 3.84·10-4(1·1lf) - 3.00·10-4(1·1cf) 3.53·10-4(1·102
) O.l 4.43·10-\1-llf) 

3.10·10-4(1-lcf) 5.21·10-4(1·102
) 4.53·10-3(1·1lf) 

O.l - 8.02·10 7(1·102
) 8.28·10-7 (1-llf) -

8.19·10-7(1-102
) O.l 8.54·10-7 (1-llf) 

8.48·10-7(1·102
) 8.57·10-7 (1·1lf) 

I 
I 

l 
I I 

1 l 
0.3 1.75·10 2 (5-Ht) 1.68·10 2 (1·102

) 1.53·10-2 (2·102
) -

1.90·10-2 (5·104
) 1.99·10-2 (1-102) 0.05 2.03·10-2 (2·102) 

1.90·10-2 (5·1~) 2.32·10-2 (1-102) 2.51·10-2 (2·102
) 

0.3 2.44·10 2 (5·104
) 2.36·10 2 (1·102

) 2.12-10-2 (2·102) -
O.l 2.54·10-2 (5·1~) 2.72-10-2 (1-102) 2.72-10-2 (2·102) 

2.57·10-2 
( 5-104) 2.98·10-2 (1-102) 3.25·10-2 (2·102) 

0.2 1.36-10 3 (5·104
) 1.76·10 3 (1-102

) 1.43·10-3 (2·102) -
O.l 1.68·10-3 (5·1~) 1.92·10-3 (1-102) 1.82·10-3 (2·102) 

1.68·10-3 (5·104
) 2.48·10-3 (1102) 2.31·10-3 (2·102) 

O.l 0 (1·106
) 5.60·10 6(1·102

) 6.04·10-6(2·102) -
O.l 5.66·10-6(1·102) 6.58·10-6(2·102) 

7.31·10-6(1·102) 7.56·10-6(2-102) 

• Probabil'. 1t1es are taken from Ref (9]. 
- = data not available. 
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of the load-space• 
Load Load 

space- space-
plastic nonlinear 

4.8·10 3 6.6·10 3 7.0·10 3 

7.5·10 3 10.0·10 3 8.8·10-4 

- - -

9.0·10 7 19.0·10 7 -

- 1.3 10 2 2.6·10 2 

- 1.8·10 2 4.0·10 2 

- - -

- 1.4·10 5 -



conditional CDF Fs(-1-} (Eq(15)). The radial sam­

pling estimate p fJ,N was computed in the case 

P{ Mo;, M 01 } = 0. The observations CXj of the random 

vector A were sampled from the distribution f-t( a) by 
the formula 

Three values of the estimates p fl,N , p f2,N, 

and p fJ,NK were computed for each combination of 

distribution type, correlation coefficient 

P{Mo;. Mo1}, ratio vLfvM, and sample sizes N 

andN·K. The computed values were sorted in ascend­
ing order and are summarized in Tables 3 to 6. The 
estimates cited from Ref [9] are also shown. 

where li is the ith observation of the load vector. 

Table 6. Estimates of failure probabilities computed with p[ M o;, M 0 J] = 0 for lognormally-distributed loads and moment 

capacities 

Ratio of Monte Carlo 
C.O.V. of estimates Radial sampling estimates 

load to 
resistance PJI,N(N) Pf3,NK(N,K) 
vLfvM 

Tl 
0.3 4.03·10 3 (1·Hf) 2.77·10 3 (1-102,1·102) 4.23·10-3 (1-102,2·102) - 4.11-10-3 (1·1d') 4.12-10-3 (1·102,1-102) 0.05 4.28·10-3 (1-102,2·102) 

4.20·10-3 (1-ld') 8.47-10-3 (1·102, 1-102) 4.51-10-3 (1-102,2·102) 
0.3 5.49·10 3 (1·1d') 3.38·10 3 (1·102,1-102) 4.98·10-3 (1-102,2·102) -

5.49·10-3 (1-ld') 4.82·10-3 (1-102,1-102) 0.1 5.00·10-3 (1·102,2-102) 
5.87-10-3 (1-ld') 9.20·10-3 (1-102,1-102) 5.24·10-3 (1·102,2-102) 

0.2 2.00·10 5 (1-ld') 4.49·10 5 (1-102,1-102) 6.56·10-5 (1·102,2-102) - 5.00·10-5 (1·1d') 6.66·10-5 (1-102,1·102) 0.1 6.95-lo-5 (1·102,2-102) 
9.00.10-5 (1-ld') 25.8·10-5 (1-102,1-102) 9.47·10-5 (1·102,2-102) 

0.1 - 0.34·10 11 (1·102,1-102) 0.57·10 11 (1·102,2·102) - 1.54·10-11 (1·102, 1·102) 0. 79·10-11 
( 1·102 ,2·102) 0.1 

5.65-10-11 (1-102,1-102) 1.05·10-11 (1-102,2·102) 

I 
l l l 

l 1 l 
0.3 1.67-10 2 (5·104

) 1.31-10 2 (1-102,1·102) 1.50·10-2 (2·102, 1-102) -
1.82·10-2 (5·104

) 1.63·10-2 (1·102,1-102) 0.05 1.60·10-2 (2·102, 1-102) 
1.85·10-2 ( 5·104

) 2.12-10-2 (1·102,1-102) 1.91-10-2 (2·102,1-102) 

0.3 2.11-10 2 (5·104
) 2.47·10 2 (1-102,1·102) 1.93·10-2 (2·102,1-102) - 2.20·10-2 ( 5·104
) 2.92-10-2 (1-102,1-102) 0.1 2.23·10-2 (2·102,1-102) 

2.22-10-2 (5-Hf) 3.43·10-2 (1·102,1-102) 2.82-10-2 (2·102,1-102) 

0.2 0.62·10 3 (5·104
) 0.41·10 3 (1-102,1·102) 1.08·10-3 (2·102,1-102) - 0.68·10-3 

( 5·104
) 1.40·10-3 (1-102,1·102) 0.1 1.16·10-3 (2·102,1-102) 

0. 76·10-3 
( 5-104

) 2.11-10-3 (1-102,1·102) 1.35·10-2 (2·102,1-102) 

0.1 - 0.48-10 12 (1-102,1·102) 6.74·10-12 (2·102,1-102) - 11.0·10-12 (1-102, 1-102) 0.1 6.77-10-12 (2·102,1-102) 
60.7-10-12 (1-102,1·102) 30.3·10-12 (2·102,1-102) 

a ... 
Probabdthes are taken from Ref [9]. 

- = data not available. 
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Method of discretisation Monte 
of the load-space• Carlo 

simulation• 
Load Load 

space- space-
_IJlastic nonlinear 

4.40·10 3 6.10·10-3 6.7·10-3 

5.70·10 3 8.00·10 3 7.0·10 3 

- - -

2.40·10 7 9.00·10 7 -

- 1.2·10 2 2.5·10 2 

- 1.5·10-2 3.0·10-2 

- - -

- 5.1·10-6 -



The results show an agreement between the es­
timates p fJ,N and p fJ,NK . The values p fJ,NK com-

puted for the ratio vrfvM equal to 0.1/0.1 can be 

seen only as hypothetical because it was difficult to 
check them by simple Monte Carlo simulation. A 
somewhat greater difference between values of 
p f3,NK and estimates cited from Ref [9) may be 

explained by .differences between the radial sampling 
method and estimation methods used in Ref [9). 

7. Conclusions 

The proposed combination of the radial sampling 
procedure and the limit equilibrium method is an 
effective technique for the estimation of the plastic 
failure probability of plastic frames. It allows to com­
pute relative small failure probabilities, which are 
often required in structural problems. The procedure 
does not require any adaptive intervention in the 
estimating of the plastic failure probability. Addi­
tional investigations are needed to reduce the vari­
ance of the probability estimator of the radial sam­
pling procedure. 
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VIENAS PLASTINI1) REMlJ PATIKIMUMO VERTI 
NIMO STOCHASTINIU MODELIAVIMU BUDAS 

E.R. Vaidogas 

Santrauka 

Straipsnyje nagrinejamas plastiniq remq patikimumo 
vertinimas stochastinio modeliavimo metodu, kuris vadi­
namas radialiniu emimu. Patikimumo problema yra formu­
luojama apkrovq erdveje. Naudojamas faktas, kad dauge­
liui praktiniq problemq apkrovq erdves dimensija yra gero­
kai mazesne uz baziniq kintamqjq erdves dimensijll. Plasti­
nes avarijos tikimybe vertinama naudojantis proporcingo 
apkrovos didinimo metodu. Atsisakoma apkrovq erdves 
diskretizavimo pagal apkrovq proporcijas. Deterministiniu 
reml.J mechaniniu modeliu parinktas statines formuluotes 
uzdavinys, turintis tiesinio programavimo uzdavinio form!\. 
Plastines avarijos vertinimui naudojama radialinio emimo 
ir tiesinio programavimo uzdavinio kombinacija. Jungia­
moji grandis tarp radialinio emimo ir mechaninio modelio 
yra apkrovos krypciq ir pasiskirstymo vektorius, kuris 
iSreiSkiamas kaip krypties kosinusq vektorius. 

ISsprc;sti dviejq remq pavyzdziai. Gauti rezultatai lygi­
nami su kitq autoriq rezultatais. 
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