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Abstract. This article utilizes gene expression programming (GEP) technique to develop a prediction model in order to 
automate estimating the construction cost of water and sewer replacement/rehabilitation projects. A database gathered 
for developing the model was established on the basis of data related to 210 actual water and sewer projects obtained 
from the City of San Diego, California, USA. To verify the predictability of the GEP model, it was examined to estimate 
the cost of the projects that were not included in the modelling process. Sensitivity analysis technique and professional 
experiences were employed to determine the contributions of the qualitative factors and quantifiable parameters affecting 
the cost estimate. The proposed model with correlation coefficient of 0.8467 is adequately capable of estimating the cost 
of water and sewer replacement/rehabilitation projects. The GEP-based design equation can easily be used for predesign 
purposes to help allocate budgets and available limited resources effectively.
Keywords: cost estimate, genetic programming, utility projects, water and sewer replacement/rehabilitation projects.

Introduction

Cost estimation is fundamental at feasibility study of 
infrastructure projects. Accurate estimation will help 
decision makers consider best alternatives without mis-
construing technical and economic approaches. At the 
conceptual phase of a project the urgency of undertaking 
the project is explored, technical and funding options are 
evaluated, and objectives of the project are set (Wide-
man 1995).

In common form of an infrastructure project devel-
opment, a public agency (owner) designs a project and 
invites the private sector firms (Contractors) to bid the 
construction of the project. Contract to undertake the 
project is awarded to the lowest bidder (DeCorla-Souza, 
Mayer 2010).

Cost estimate at the conceptual phase becomes cost 
and budget control baseline for both the owner and the 
Contractor (Hendrickson, Au 1998).

Reliable cost prediction, based on limited informa-
tion at early stages of the planning phase of modernizing 
and upgrading infrastructure projects, becomes of grave 
importance to utilize limited available resources accord-
ingly and allocate adequate budgets for their successful 

completion. Shehab et al. (2010) reported that according 
to the municipality officials’ experience, in the past, un-
realistically high cost estimates withheld the projects for 
future fiscal years, or low cost estimates resulted in inad-
equate budget allocation and constructing projects below 
ideal standards (Shehab, Farooq 2013). Recurrent inci-
dents of sewer overflows into rivers and streams as well 
as water main breaks in the cities in the United States 
manifest that there is a dire need for upgrading aging 
and deteriorating drinking water and wastewater infra-
structures. In fiscal year 2012, the U.S. Environmental 
Protection Agency (EPA) funded the Clean Water pro-
gram $1.5 billion and the Drinking Water program $918 
million from congressional appropriations. EPA grants 
capitalization funds to states of USA, which in turn pro-
vides low- or no-interest loans to local communities or 
utilities to pay for water distribution pipelines, treatment 
plants, sewer lines, and other similar infrastructure. EPA 
estimated funding requirements of almost $335 billion for 
drinking water infrastructure and $298 billion for waste-
water infrastructure (Gómez 2013).

Various methodologies of machine learning tech-
niques such as regression models and artificial intel-
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ligence techniques can be employed for modelling a 
nonlinear system such as cost estimation. Two most re-
nowned artificial intelligence methods used in nonlinear 
modelling are artificial neural networks (ANNs) (Haykin 
1999) and Genetic Programming (GP) (Koza 1992; Gan-
domi et al. 2013). 

Artificial intelligence methods have been widely 
used as prediction tools in recent decades. Review of 
comparative studies on artificial intelligence and tradi-
tional statistical techniques in various fields of applica-
tions shows that artificial neural networks outperform re-
gression models as a tool for classification and prediction 
problems (Paliwal, Kumar 2009; Kim et al. 2004).

ANNs are one of the most well-known pattern rec-
ognition systems that are capable of learning from expe-
rience. ANNs are vastly used in cost estimating of build-
ing and infrastructure projects (Tatari, Kucukvar 2011). 
Several researchers attempted to develop cost estimation 
models in the earlier stages of developing infrastructure 
projects using regression models or ANNs. Hegazy and 
Amr (1998) used a neural network approach to develop 
a parametric cost estimating model for highway projects. 
Adeli and Wu (1998) formulated a regulation neural net-
work based on a solid mathematical foundation for es-
timation of highway construction costs. Sodikov (2005) 
used ANN to analyse the impact of a different set of vari-
ables on the highway project cost and proposed a cost 
estimation technique for developing countries.

Successful usage of ANNs and regression models on 
cost estimation of aforementioned infrastructure projects 
encouraged some researchers to apply such models on 
cost estimation of sewer and water replacement or reha-
bilitation projects. 

Using regression techniques, Clark et al. (2002) pro-
posed seven separate cost estimating equations for water 
supply distribution models, summation of which would 
yield to the direct cost of replacing a new water distribu-
tion system. Besides shortfalls of regression techniques 
in comparison with other techniques, and the tedious 
procedure of using several models, indirect costs such as 
Contractor’s overhead, profit, bonds, insurance and social 
costs were not taken into account.

Shehab et al. (2010) developed two models for util-
ity rehabilitation projects using ANN and regression anal-
ysis and argued that ANN provided more accurate results.

Alex et al. (2010) developed cost prediction model 
using ANN for installation of water and sewer systems 
incorporating factors such as geographical location of 
the project, seasonal variation, average monthly temper-
ature and historical construction cost data divided into 
four categories of labour, equipment, material and other 
costs. However, estimating the cost of mentioned four 
categories requires undertaking a detailed resource and 
productivity analysis as well as punctilious construction 
technology assessments which at the early stages of the 
studying the project seems to be abstract and superfluous.

Shehab et al. (2010) utilized ANN to develop a 
cost prediction model for installation of water and sew-

er systems using 50 historical data sets to evaluate the 
impact of six categories of pipes, sidewalks, manholes, 
pavement, soil, services and assemblies on the cost of 
the projects. Developing a model based on fewer sample 
projects does not yield a plausible and reliable model. 
Furthermore, despite promising application of ANNs on 
engineering problems, the process of obtaining a solu-
tion from available information is unknown and extract-
ing practical prediction equations are not usually possi-
ble. Moreover, a neural network structure requires the 
researcher to predefine it (Alavi, Gandomi 2011). 

Genetic algorithm (GA) is a robust optimization 
method based on the basic idea of genetics and natu-
ral selection. GA is considered to be efficiently applica-
ble to vast spectrum of different engineering problems 
(Milani, G., Milani, F. 2008).

Genetic programming (GP) (Koza 1992) is a deriva-
tive of GA. GP solutions are computer programs in lieu 
of binary strings (Banzhaf et al. 1998). GP is a nonlinear 
structured alternative to fixed length solutions (Ferreira 
2006). GP is based on Darwin’s theory of evolution, ex-
pressed as “survival of the fittest”. A group (population) 
of computer programs (individuals) continues reproduc-
ing with each other till the best individuals will survive 
and finally evolve to perform well in the specified sce-
nario (Walker 2001). There are wide-range applications 
of GP in prediction, optimization and classification prob-
lems in both science and engineering domains (Yaghouby 
et al. 2010, 2012; Gandomi, Roke 2014).

GP’s ability to develop simple prediction equations 
with no need to considering an existing relationship is 
its main superiority over the conventional statistical and 
ANN techniques (Gandomi et al. 2012). GP is intrinsi-
cally capable of finding the best solution by evaluating 
fitness of the computer programs over numerous gen-
erations; on the contrary, as mentioned earlier, in ANN, 
data should be normalized at the outset, and best network 
architecture first should be established (Gandomi, Roke 
2015).  

When the analyst creates an equation, applicability 
and validity of the cost estimation model is more discern-
ible since an equation can check with common sense es-
pecially in the case of proposals requiring acquisition of 
management and owner approval (Smith, Mason 2010).

Gene expression programming (GEP) is a recent 
variant of GP. The GEP is able to evolve computer pro-
grams of different sizes and shapes. GEP is extremely 
adaptable and supersedes the existing evolutionary tech-
niques (Ferreira 2001). Several scientists applied GEP to 
civil engineering realm (Azamathulla 2013; Alavi, Gan-
domi 2011; Gandomi et al. 2011; Azamathulla, Ahmad 
2013).

This study utilized the GEP technique to build a pre-
dictive model for cost estimation of water and sewer util-
ity rehabilitation and replacement infrastructure projects 
to our best knowledge for the first time. The developed 
model considers readily available variables with substan-
tial impact on the cost of the projects. Sensitivity analysis 
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technique and professional experiences were employed to 
determine the contributions of the qualitative factors and 
quantifiable parameters affecting the cost estimate. 

1. Genetic programming

GP, an extension of GA, was invented by Cramer (1985) 
and further developed by Koza (1992) and Ferreira 
(2006). Although GP applies most of key ideas of GA 
and uses GA operators such as selection, crossover and 
mutation with slight modifications, its nonlinear structure 
creates a more versatile system of representation than that 
of GA (Ferreira 2006; Gandomi et al. 2012). GP produces 
computer programs with dynamic variability and hierar-
chical character presented in form of parse trees (Koza 
1992). A population member in hierarchically structured 
tree-based GP composes of functions and terminals se-
lected from a set of functions and a set of terminals. Fig-
ure 1 is an illustration of a simple tree-based GP model 
(Gandomi et al. 2012). GP can be implemented using any 
programming language (like LISP) capable of working 
with computer programs as data and linking, compiling 
and executing new programs (Koza 1992). The GP rep-
resents basic structures of the approximation model along 
with values of its parameters; however GA solutions are 
fixed length strings of numbers. The GA, similar to other 
traditional optimization techniques, is used in parameter 
optimizations to evolve the best values for a given set of 
model parameters (Javadi, Rezania 2009; Alavi, Gandomi 
2011).

The GP optimizes a population of computer pro-
grams in terms of a fitness landscape which defines how 
good a candidate solution (program) to achieve the set 
aim is; in other words, GP intends to optimize the fitness 
function, a particular objective function, which is used 
to evaluate the fitness of each program (Alavi, Gandomi 
2011).

GEP is a linear extension of GP comprised of auton-
omous entities of genotype and phenotype. In genetics, 
an organism’s complete hereditary information is called 
genotype; and an organism’s actual observed properties, 
such as morphology, development, or behaviour is called 
phenotype. Ferriera (2001) translated the language of 
chromosomes into the language of expression tree (ET), 
a tree-like structure. 

1.1. Gene expression programming (GEP)
The GEP is a natural development of GP first invented 
by Ferreira (2001). The GEP consists of five main com-
ponents: 1) function set; 2) terminal set; 3) fitness func-
tion; 4) control parameters; and 5) termination condition 
(Gandomi et al. 2012).

In GEP, individuals are linear strings of fixed length 
(the genome or chromosomes) which later are repre-
sented in form of nonlinear structures of different sizes 
and shapes (phenome, i.e. expression trees (ETs)). Since 
genotype and phenotype of an individual are independ-
ent, only the genome is carried to the next generation. 
Respectively, replication and mutation of the structures 
are not required any more (Ferreira 2006).

Therefore, the main players in GEP are the chromo-
somes and ETs. An advantage of the GEP technique is 
that the creation of genetic diversity is extremely simpli-
fied because genetic operators work at the chromosome 
level (Gandomi et al. 2012).

 Furthermore, multigenic nature of GEP forms com-
plex multisubunit expression trees (ETs) (programs) 
which are both separate entities and part of a more com-
plex, hierarchical structure at the same time (Ferreira 
2001). Each GEP gene contains a list of symbols with a 
fixed-length that can be any element from a function set 
like {þ, −, ×, ∕, Log} and the terminal set like {a, b, c, 3} 
(Gandomi et al. 2012).

Ferreira (2001) created a new language of GEP, 
called Karva language to read and express the informa-
tion encoded in the chromosomes which, as an important 
feature of GEP, are capable of representing any pars-tree.

The mathematical expression below:

  (4 × a) / (2 + cos (b + c)), (1) 

can be expressed  in Karva language as follows:

  /× + 4a2cos + bc,  (2)

where a, b, and c – variables; and 2 and 4 – constants. 
The variables or constants used in a problem are called 
terminals. This GEP gene can be illustrated as an ET 
shown in Figure 2. This kind of expression is the pheno-
type of GEP individuals (Ferreira 2001).

Fig. 1. Illustration of a GP model in a tree-like structure Fig. 2. Typical illustration of an ET
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The conversion starts from the first position in the 
K-expression, which corresponds to the root of ET, and 
reads through the string one by one. 

By recording the nodes from left to right in each 
layer of the ET, from root layer down to the deepest one, 
an ET can be expressed in K-expression. The assemblage 
of ET is complete when the deepest layer is composed 
only of terminals, meaning that there is no longer any 
function left to make a link to any terminal. The transfer 
of information from a gene into an ET is called transla-
tion (Ferreira 2001). Since GEP chromosomes comprise 
of predetermined fixed length genes, the only variable 
would be the size of the corresponding ETs, meaning that 
some elements are not useful for the genome mapping. 
Therefore, the acceptable length of a K-expression may 
be equal or less than the length of the GEP gene. GEP 
applies a head-tail method to secure the validity of a ran-
domly selected genome. Each GEP gene is composed of 
a head and a tail. The head may contain both function and 
terminal symbols, whereas the tail may contain terminal 
symbols only (Alavi, Gandomi 2011; Ferreira 2001).

Random generation of each individual’s fixed-length 
chromosomes creates the initial population of GEP mod-
el. Later on, the chromosomes are expressed, and the fit-
ness of each individual is examined. The individuals with 
better fitness are then selected to reproduce with modi-
fication. The individuals of this new generation are sub-
jected to the same developmental process: expression of 
the genomes, confrontation of the selection environment, 
and reproduction with modification. The previous pro-
cess is repeated for a definite number of generations until 
a solution has been found. By roulette wheel sampling 
(with elitism) method, the individuals with better fitness 
are selected and replicated into the next generation. This 
secures the survival and cloning of the best individual 
to the next generation (Alavi, Gandomi 2011). Figure 3 
demonstrates the basic steps of GEP (Ferreira 2001).

In this study, the GEP approach was utilized to ac-
quire a valid relationship between the cost of sewer and 
water replacement/rehabilitation projects and impacting 
variables. 

2. Data preparation

This study is proposing a predictive model for cost esti-
mation of rehabilitation and/or replacement of sewer and 
water projects utilizing GP technique leading to improved 
results as well as simplified procedures. To develop the 
prediction model, 210 actual proposals related to water 
and sewer projects submitted by the lowest bidders to 
the City of San Diego, CA, USA (1999–2013) were ob-
tained. Basically, The City of San Diego designs the util-
ity systems. The design may be performed in house; or 
outsourced by hiring a private engineering company. Af-
terwards the City invites prequalified construction Con-
tractors to bid the designed project. The bid which is sub-
mitted by the competing Contractors is based on bill of 
quantities; and comprises of itemized component values, 

The City awards each construction contract to the lowest, 
qualified bidder. Since each project’s cost estimation in-
cludes many components such as pipes, manholes, pave-
ment, curb and gutter, water pollution control plan, etc., 
the most important items with higher impact on the out-
come, which could be easily assessed in the conceptual 
stage also, were chosen as inputs to the GP model. These 
items were selected by the aid of sensitivity analysis and 
expert judgment. Sensitivity analysis provides a useful 
tool for analysing the impact of changes in input vari-
ables in terms of bid evaluation (Grimsey, Lewis 2004). 
Sensitivity analysis carries out a clear and adjustable pro-
cedure by varying the parameters randomly one at a time 
to observe the impact of changes on the outcome. For 
any given parameter a number of incremental changes 
are made and the final indicator value (outcome) is com-
puted each time recording the degree of change from its 
baseline (Jenkins et al. 2011). Variables, which their var-
iation could have a substantial impact on the projects’ 
outcome, will be separated as alternative input variables 
for GP model. Afterwards professional judgment/experi-
ence is utilized to choose among the variables that can be 
readily and accurately assessed at the conceptual stage. 
There are a few qualitative factors that can impact pro-
ductivity such as soil classification, pavement condition, 
traffic and finally seasonal effect. The latter’s impact is 
not substantial in San Diego since no dramatic weather 

Fig. 3. Basic representation of the GEP algorithm
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fluctuation is observed in San Diego’s weather forecast. 
Qualitative factors mentioned above were identified by 
evaluating corresponding project bid items to incorporate 
in developing GP cost estimation model.

2.1. Data analysis
While most of the projects studied in this research in-
volved the replacement/rehabilitation of both sewer and 
water mains in a neighbourhood, some jobs were exclu-
sively water or sewer replacements or sewer rehabilita-
tion. Prevalently utilized construction method was exca-
vation (open trench) replacement; and cured-in-place pipe 
(CIPP) rehabilitation method. Occasionally different re-
habilitation technologies such as close fit lining, and slip 
lining or trenchless replacement methods such as boring 
and pipe bursting were applied. 

Trenchless methods are more expensive in compari-
son to open trench methods; they are the best option for 
the installation of pipelines under a road, railroad, free-
way, or in other situations where trenching is not possi-
ble; there is little business and human costs (social costs) 
associated with traffic congestion, restriction of access, 
dirt, noise, air pollution. Natural habitats and landscaping 
will remain undisturbed. Therefore, revegetation and ero-
sion control provisions will not be required. These meth-
ods are less labour intensive with faster completion (EPA 
1999). But it is observed that in the City of San Diego, 
these methods have been utilized only where there was 
not a possibility of implementing an open trench tech-
nology therefore the common practice was assumed to 
be open trench and CIPP if it was possible, thus the con-
struction technology selection was not an influential fac-
tor in model development.  

To perform sensitivity analysis using what–if analy-
sis function on an Excel spread sheet following actions 
were taken: 

 – Bringing all data pertinent to each project in one 
spread sheet since the City of San Diego announces 
information regarding each bid result such as bid 
items, quantities, unit costs and proposed cost by the 
lower bidder in separate spread sheets. 

 – Identifying the variables (bid items) which seem to 
have a significant impact on the outcome of the pro-
jects (and can be easily assessed in the conceptual 
stage).

 – Identifying a likely range for these variables, cen-
tered on the most likely assumed values.

 – Calculating the impact of different combinations of 
these variables on the total cost of the projects (Rog-
ers, Duffy 2012).  
Normally each proposed project is broken down into 

approximately 110–140 bid items. By aid of sensitivity 
analysis, 24 bid items were identified to be most influen-
tial on the cost estimation of the projects. The 24 items 
were grouped into 4 categories consisting of: 

1. Replacement/rehabilitation of sewer and water 
mains. 

2. Installation of manholes, sewer laterals, private re-
plumbs and water services with various diameters 
and thicknesses. 

3. Pavement conditions including asphalt concrete, 
concrete pavement replacement, temporary resur-
facing, slurry seal, asphalt concrete patching, pave-
ment removal, crack sealing, pavement fabric, cold 
milling, pavement restoration adjacent to trench, 
striping, extra thick pavement removal. According 
to professional experience, most of the field order al-
lowance (which usually is listed as a bid item) ends 
up to be allocated for pavement repair purposes be-
cause most of the time, the pavement condition is 
not objectively evaluated on the conceptual stage; 
therefore field order item was taken into account un-
der pavement category. 

4. Soil conditions taking into account the soil type im-
pact and proposed costs of shoring, dewatering and 
pipe installation since if the soil condition declines, 
the installation would be more difficult, slower, la-
bour incentive and cost of activities such as shoring 
and dewatering would increase and consequently the 
price allocated for overall installation would rise. 

5. Traffic control including traffic control plans and 
set up cost and studies conducted on the neighbour-
hood’s traffic conditions.  
The formulas below are proposed to be used to sim-

plify the input variables for GP model where:
Sdiameter (inches), pipe type = Sewer Main Length (Lin-

ear Feet); Sdiameter (inches) r = CIPP Sewer Main Length  
(Linear Feet); Wdiameter (inches) = Water Main Length (Lin-
ear Feet); SLdiameter (inches) = Number of Sewer Laterals; 
WS diameter (inches) = Number of Water Services, MH = 
Number of Manholes.

Input Variables to GP model are listed below:    
X1: Soil Condition (1 = best through 10 = least de-

sirability according to the table of relative desirability of 
soils (MultiQuip Inc 2011)); 

X2: Pavement Condition (1: Good (allocated cost 
per category (3) items lower than 10% of total cost) 2: 
Average (between 10–25%) 3: Bad (above 25%));    

X3: Traffic Control (1: moderate, 2: busy).
Each bid item’s quantity related to a certain pipe 

(with different size and property) can be used as one in-
put variable for GP model; but this way the number of 
input variables will unnecessarily be numerous. In order 
to simplify GP model, Eqn (3) is proposed to combine 
quantities of different pipes with different sizes and prop-
erties to bring certain bid items (that have linear relation 
with each other) together and generate one input for GP 
model in lieu of numerous input variables, where the pa-
rameter values in Eqn (3) are the average unit price of 
related item per unit price of 8” sewer main item during 
1999–2013. And Subscripts “s” and “c” stand for Sched-
ule and Class PVC pipes respectively.
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Similar to Eqn (3), in order to reduce the number of input 
variables to one input, Eqn (4) was used to combine the 
number of sewer laterals, water services, and manholes with 
different sizes and properties to generate one input for GP 
model, where the parameter values in Eqn (4) are the aver-
age unit price of related item per unit price of 4” sewer lat-
eral during 1999–2013. Subscripts “pr”, “n”, and “r” stand 
for private re-plumb, new and rehab respectively:

  
5 6 4  2

1

1.3 5.6 2.09

0.97 5 2.74 .
p r

n r

X SL SL SL WS

WS MH MH

= + + + +

+ +
 (4)

Nominal values of the projects’ proposed costs by the 
lowest bidders were converted to real values by the 
relevant price indexes released by U.S. Department of 
Labour, Bureau of Labour Statistics (Coinnews Media 
Group LLC 2014). It is worth mentioning that the out-
come of GP formula would yield a cost estimate in real 
prices; in order for the user to come up with the nomi-
nal cost estimate, the outcome should be brought back to 
nominal values.  

2.2. Database
The model was developed based on 210 sets of data re-
lated to sewer and water replacement/ rehabilitation pro-
jects obtained from the City of San Diego, CA, USA. The 
essential objective of a Machine Learning approach is 
to find solutions that perform well not only on the cases 
used for learning but also on cases of new unseen data. 
This is known as generalization ability, and failure to 
fulfil this is called overfitting (Goncalves, Silva 2011). 
Overfitting is usually the result of excessively trained al-
gorithm which in spite of decreasing the training error, it 
increases the testing error rapidly (Gandomi et al. 2012). 
An efficient approach to prevent overfitting and improve 
generalization of the model is to test the derived mod-
els on a validation set to achieve a better generalization 
(Banzhaf et al. 1998) which was employed in this study. 
Correspondingly, the available data sets were randomly 
divided into learning, validation, and testing subsets. To 
perform genetic evolution, the learning data were used for 
training purposes. To determine the generalization capa-
bility of the models on the untrained data, the validation 
data were used for model selection purposes. Training 
data alluded to learning and validation data which both 
were involved in the modelling process. Finally, as the 
outcome of the runs, the model with best performance on 
both of the learning and validation data sets is selected. 
To examine performance of the optimal model derived 
from GP on unseen data, the testing data were engaged 
which had no affiliation with building the models.

In order to achieve a uniform data division, several 
combinations of the training and testing sets were select-
ed in a way that the statistical properties of the involved 
parameters (e.g., maximum, minimum, and mean) were 
consistent in the training and testing data sets (Gandomi 
et al. 2012). Out of the 210 data sets, 185 data vectors 
were taken for the training process (160 sets for learning 
and 25 sets for validation). The remaining 25 sets were 
used for the testing of the derived model.

3. Model development

3.1. Performance measures 
Selection of the best model was based on the strategies 
below (Gandomi et al. 2012):

1. The simplest model, although this was not a main 
factor, which was controlled by the user through the 
parameter settings (e.g., number of genes or head 
size); 

2. The model with the best fitness value on the learning 
data;

and
3. The model with the best fitness value on the valida-

tion data.
The best GP model was inferred by minimizing the 

following objective function (OBJ) which was used to 
verify acceptability of predicted output versus the actual 
bid proposals. 

 

ValitatingLearning-No.
Learning

Training

Validation
Validation

Training

N

,

o.
OBJ +

No.

2No.
No.

ρ

ρ

 
 =
 
   (5)

where No.Training, No.Learning, and No.Validation are 
respectively, the number of training, learning, and vali-
dation data and ρ  is the performance index as follows 
(Gandomi, Roke 2013):

 
RRMSE

1 R
ρ =

+
. (6)

The RRMSE and R are widely used parameters for 
the performance measurement respectively, the root mean 
squared error, mean absolute error, and correlation coeffi-
cient (Milani, Benasciutti 2010). The following equations 
were used to determine the RRMSE and R values:
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where hi and ti are respectively, the actual and calculated 
outputs for the ith output, ih  and it  are average of the 
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actual and calculated outputs; and n – number of samples. 
Since R value does not change by equal shifting of the 
output values predicted by a model, it is acknowledged 
not to be a good indicator on its own for evaluating the 
accuracy of a model on its own. On the other hand, be-
sides assuming the impact of various data divisions for 
the learning and validation data, the performance index 
( ρ ) simultaneously takes into account the changes of 
RRMSE and R. Lower RRMSE and higher R values yield 
in lower OBJ indicating a more accurate model (Gan-
domi, Roke 2015).  The values obtained for R, RRMSE, 
and ρ are respectively, 0.8467, 0.4065, and 0.220.

3.2. Model development using GP
Several preliminary runs were made to observe the per-
formance. The number of programs in the population 
that GP evolves is set by the population size (number of 
chromosomes). A run takes longer with a larger popula-
tion size. The proper number of population depends on 
the number of possible solutions and complexity of the 
problem (Gandomi et al. 2012).

Three optimal levels were set for the population 
size (50, 150, and 300). The architecture of the models 
evolved by GP is determined by head size and number of 
genes. The head size determines the complexity of each 
term in the evolved model. The number of terms in the 
model is determined by the number of genes per chromo-
some. Each gene codes for a different sub-ET. Five opti-
mal levels were considered for the head size and number 
of genes. For the number of genes greater than one, the 
addition and multiplication linking functions were used to 
link the mathematical terms encoded in each gene. There 
are 2 (linking functions) × 4 (head size) × 5 (number of 
genes) = 40 different combinations of the parameters. All 
of these combinations were tested, and replications for 

each combination were carried out.  Table 1 demonstrates 
parameter settings for GP algorithm.

The period of time acceptable for evolution to oc-
cur without improvement in best fitness is set through 
the generations without change parameter. In this study, 
basic arithmetic operators and mathematical functions 
were utilized to get the optimum GP model. The mean 
absolute error function was used to calculate the overall 
fitness of the evolved programs. On this GP model vari-
able pressure function (variable pressure = 0.01) has been 
also employed.

The program was run until there was no longer sig-
nificant improvement in the performance of the models. 
The GP algorithm was implemented using GeneXpro-
Tools (2014).

4. Results and discussion

4.1. GP-Based formulation 
The GP-based formulation of project cost estimation (K$) 
in terms of x1, x2, x3, x4, x5 is as follows:
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x

+ +
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The formulation mentioned above displays a com-
plex arrangement of operators, variables, and constants 
that are used to predict cost estimation. The expression 
tree of the derived equation is given in Figure 4. The 
proposed equation is composed of four independent sub-
programs (genes) interrelated by the addition operator. 
Embodying a particular character of the problem, each 
subprogram adds a distinct function to the developed so-
lution (Ferreira 2001). In other words, each evolved sub-
program contains important information about the physi-
ology of the final model (Gandomi et al. 2012). Each 
gene, as a part of the final equation, is engaged to address 
a certain aspect of the problem. 

4.2. Comparison of GP model with the City of  
San Diego’s engineering estimate
The City of San Diego announces a suggested cost esti-
mate for each project in the project’s bid documents. A 
project cost estimate, called engineering cost estimate, is 
attained through an in-house lengthy and rather expensive 
system which operates on an educated guess based on 
the past bids and the judgement of the project manager 
who puts the project bid documents together. Most of the 
time the engineering estimate is so much higher than the 
lowest bidder’s proposed price or is lower. As mentioned 
before, engineering estimate becomes a gauge for budget 
allocation. Unrealistically high cost estimate prevents the 
project from being implemented or low budget alloca-
tion results in many shortfalls in the future. Besides, the  

Table 1. Parameter settings for the GP algorithm

Parameter Settings
General                                                                         
Chromosome
Genes
Head size
Tail size
DC size
Gene size 
Linking function
Genetic operator
Mutation rate
Inversion rate                                                                                                               
IS transposition rate 

50,150, 300
2, 4, 6, 10, 12 
2–6
9
9
23
∑, ∏

0.044
0.1
0.1

RIS transposition rate
 One-point recombination rate
Two-point recombination rate
Gene recombination rate 
Gene transposition rate
Numerical Constants
Constants per gene
Data type
Lower bound
Upper bound 

0.1
0.3
0.3
0.1
0.1

9
Flouting-point
–10
10
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announced engineering estimate somehow gives direction 
to the bidders. When an unrealistically high engineering 
estimate is announced, the Contractors are inclined to in-
flate their bid price to earn a bigger profit margin.

To confirm that the proposed GP model would be a 
capable tool, the results driven from GP formulation were 
compared to the City’s engineering estimates. Compari-
son of the results of GP equation with the engineering 
estimate proves the outperformance of the GP equation. 
Besides an improved accuracy of GP equation, its usage 
is very easy. The formula is built on the basis of extensive 
sets of data with plenty of possible real life scenarios. 
Furthermore, GP model takes into account qualitative fac-
tors that could impact productivity such as soil classifica-
tion, pavement condition, and traffic.

4.3. Model validity 
According to Smith (1986), there is a solid correlation 
between the predicted actual values if a model maintains 
R > 0.8. Should the MAE values be at the minimum, the 
solution is considered reliable (Gandomi et al. 2011).

The results demonstrates that the proposed GP mod-
el with low RMSE and MAE and high R values is able to 
predict the target values with satisfactory accuracy. Reli-
able predictive ability and generalization performance of 
the model is concluded from the good performance of 
the model on the training (learning and validation) and 
testing data. 

Greatly affecting the accuracy of the final models, 
the amount of data used for the modeling process gains 
importance (Gandomi et al. 2012). Frank and Todeschini 
(1994) stated that a model can be considered acceptable 
if the minimum ratio of the number of objects per the 
number of selected variables is 3 preferably 5 yielding to 
more accurate solution.  In this study, this ratio is as high 
as 160 ∕ 5 = 32.

To examine external verification of the GP model 
on the testing data sets, Golbraikh and Tropsha’s sugges-
tion, that at least one slope of regression lines (k or k0) 
through the origin should be close to 1, was checked as 
well (Golbraikh, Tropsha 2002).

The considered validation criteria and the perti-
nent outcomes acquired by the proposed model are pre-
sented in Table 2. Derived model satisfies the required 
conditions. The validation phase justifies soundness and 
strength of the prediction model. 

The main feature of the proposed GP-based model 
is that it can readily be implemented by using the attain-
able accurate information with substantial impact on the 
project cost. Furthermore qualitative factors which affect 
productivity such as traffic, soil classification and pave-
ment condition are incorporated into the model.

Most of the existing prediction models rely on as-
suming the structure of the model in advance, which may 
fall short. Thus, they cannot efficiently consider the inter-
actions between the dependent and independent variables 
(Gandomi, Alavi 2011b).

On the other hand, GP produces clear relationships 
for project’s cost estimation without assuming prior 
forms of the existing relationships. It directly learns from 
data presented to them. This is the same task followed 
by ANNs and other soft computing techniques (Gandomi 
et al. 2012).

A remarkable advantage of GP over ANNs is that it 
generates a transparent and structured representation of 
the system studied. Because of the large complexity of 
the network structure, ANNs do not give a transparent 
function relating the inputs to the corresponding outputs 
(Gandomi, Alavi 2011a).

4.4. Variable importance
The relative importance of each predictor variable in the 
GP analysis can be assessed on GP model. GeneXpro-

Fig. 4. Expression tree for cost estimation of sewer and water 
projects

Table 2. Statistical parameters of the GP model for the external 
validation

Item Formula Condition GP

1 R  0.8 R< 0.8467
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Tools computes the variable importance of all the vari-
ables in the model by randomizing its input values and 
then computing the decrease in the R-square between the 
model output and the target. The results for all variables 
are then normalized in order that they add up to 1 (Gen-
eXproTools 2014).  The variable importance of the pre-
dictor variables are displayed in Figure 5. As it is shown, 
the sewer and water mains incur the highest cost which 
is known from professional point of view too. 

4.5. Parametric study
A parametric analysis was performed in this study to 
verify the robustness of GP-based prediction equation. 
The methodology is to change only one parameter at the 
time while other parameters are kept constant at the aver-
age values of their entire data sets. Figure 6 presents the 
parametric analysis of cost estimation in the GP model. 
An expected behaviour pattern is seen in the Figure 6. 
According to reported professional experience too sewer 
and water main installations incur most of the cost of a 
project.  

Conclusions

GEP, a variant of GP, was utilized to formulate the cost 
estimation of sewer and water rehabilitation/replacement 
projects. The proposed model, serving as a successful 
prediction tool, was developed based on data pertaining 
to 210 sewer and water replacement/rehabilitation pro-
jects from year 1999 to 2013 acquired from the City of 
San Diego, California, USA. 

The conclusions below are drawn from this research: 
1. Validity of the model was examined on testing data 

sets which were not part of training data sets. The 
GP prediction model efficiently satisfied the condi-
tions of different criteria considered for its external 
validation as well.

2. The developed system offers an improved cost es-
timation model with higher accuracy in comparison 
with the owner’s published engineering estimates; 
however our model is an explicit formula.   

3. Unlike engineering estimates, using such a simple 
formula opts out the need to go through expensive 
and protracted  cost estimation process on the con-
ceptual stage of a project assessment 

4. The GP cost estimation formula gives a simple solu-
tion with fairly less inputs which are easily attain-
able at the conceptual stage of a project assessment.  

5. GP model takes into account the qualitative produc-
tivity factors such as traffic, soil and existing pave-
ment conditions.  

6. This model will lead to a more objective resource 
allocation for funding and decision making purposes 
and offers a more accurate cost baseline for both 
bidders and the City.
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