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Statybine mechanika 

A POSTPROCESSED ERROR ESTIMATION IN THE FINITE ELEMENT ANALYSIS 

R. Bausys 

1. Introduction 

An error estimation has become a subject of an 
intensive research in the field of the finite element 
analysis. The error estimation techniques assess the 
amount of solution error due to finite element mesh 
discretization. The assessment of the discretization 
errors can be performed in two ways: a priori and pos­
teriori error estimation. A priori error estimates pro­
vide only qualitative assessment of the solution and 
finite element mesh such as the smoothness of the 
solution, the regularity of the mesh, asymptotic rate of 
convergence which is essential for theoretical investi­
gation. A posteriori error estimates can be utilised to 
give more specific assessment of errors in different 
measures. A posteriori error estimation can be carried 
out in various ways, and well-known approaches for 
control of the discretization error can be classified into 
main categories as follows: 

1) Element residual methods. The residual is the 
function defining the measure of how much the ap­
proximate solution fails to satisfy governing equations 
and boundary conditions. The residual is computed 
over each element and used as the initial information 
in local problems in order to determine the local error 
(1-3). They strongly depend upon the governing opera­
tors and thus require care in extensions to more com­
plex non-linear problems. 

2) Subdomain-residual methods. Here the local 
problem for the error of residual in an element of the 
interest is formulated over a patch of the elements 
surrounding the element, which is computed in terms 
of the solution of local problems of a higher-order 
finite element approximation of the original prob­
lem (4). 

3) Duality methods. These methods, valid for self­
adjoint ellliptic problems, use duality theory of convex 
optimization. There a primal and dual problem for the 
element error are obtained which provide upper and 
lower bounds of the local element errors [5). 

4) Interpolation methods. These error estimates 
were derived using interpolation theory and the best 
approximation property of the finite element method. 
They generally require a posteriori error estimation of 
higher-order derivatives and hence rely heavily upon 
superconvergence properties. More specifically, the 
estimates utilise that the finite element error is 
bounded by the interpolation error of which the error 
estimate is well established [ 6-7]. 

5) Extrapolation methods. Here the estimation of 
the error is done comparing two global solutions 
which are computed on the same mesh but differ by 
one polynomial order. This approach is based on 
Richardson's extrapolation [7]. 

6) Postprocessed error estimators. The essence of 
these error estimators is to replace the exact solution 
with a postprocessed solution. The improved post­
processed flux is constructed from the original finite 
element solution by some postprocessing techniques, 

alternatively called recovery procedures. Therefore, 
the reliability of the error estimators of this type pri­
marily depends on the quality of the recovered solu­
tion (8-10). 

Recently, an objective methodology for assessing 
the reliability of a posteriori error estimators has been 
developed by Babuska et al. (11 ). 

In this paper we focus our attention on the appli­

cation of the Superconvergent Patch Recovery tech­
nique for displacements (SPRD) to the elliptic prob­
lems which appear in elastostatics. The SPRD tech­
nique is based on a higher order displacement field 
fitted to a superconvergent values in a least squares 
sense over local element patches. This approach was 
implemented for the error estimation in free vibration 
problems [12-13). 

The numerical experiments reported in this paper 
cover examples of two-dimensional linear quadrilat­
eral and triangular elements. Numerical results show 
for the postprocessed solution an improved accuracy 
and improved convergence rate of the error of the 
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improved solution compared to the FE solution and 

the other postprocessed error estimation techniques. 

2. A postprocessed error estimation 

The problems discussed in this paper can be de­

scribed in the form of 

Lu + f = 0 inn (1) 

together with appropriate boundary conditions. Here 

L is a differential operator acting on the unknown 

function u , f denotes some function which is known 

inside the domain n. 
In order to investigate the accuracy of the solu­

tion, we need to discuss the dicretization error. The 

point-wise discretization error is simply the difference 

between exact solution and the finite element solution: 

e = u - uh u (2) 

where u is the exact solution and u11 is the correspond­

ing FE-approximation. 

The point-wise discretization error is difficult to 

interpret, so certain norms to measure error are used 

to assess finite element approximation. One of the 

most popular measurements of the discretization error 

is based on the energy norm, expressed as 

1 

llell = [le~Leudn.y (3) 

Traditional error estimates for finite element 

methods are a priori bounds, predicting the asymptotic 

rate of convergence as the size of elements tends to 

zero which can be expressed 

llell ::; Ch P llull p+ 1 (4) 

where C is a constant, h is the characteristic size of the 

finite elements, p is the polynomial order of the finite 

element space and llullp+1 can be expressed as 

which reflects the smoothness of the exact solution. 

Presence of any singularity in the problem affects the 

degree to which the solution is smooth and therefore 

the rate of convergence. 

The essence of the postprocessed error estimator 

is to replace the exact solution with a postprocessed 

solution of higher quality: 

(6) 

where eu is the point-wise estimated error. Using the 

improved solution we have an estimation of Eq.(3) 

I 

11~1 = [le!"uu dO. )
2 

(7) 

In practice, we calculate this norm by summing over 
all elements in the domain 0.: 

2 
11el 

2 
nel 

11~1 = L.ll~l; = L f e[ Leu dO.; (8) 
i=l i=l 0; 

where 0.; is an element domain and nel is the total 

number of elements. 

The quality of any error estimator is dictated by 

an effectivity index: 

= llu· -uhll 
llu - uhll 

(9) 

It has been known that if the postprocessed solution 

exhibits superconvergence property, meaning that the 

rate of convergence of the postprocessed solution is at 

least one order higher than finite element solution, it 

can be shown that the postprocessed type of the error 

estimator is asymptotically exact [9]. By asymptotical 

exactness, we understand that as the characteristic size 
of the elements h~ 0, the effectivity index converges 

to unity i.e. () ~I . Alternatively, this condition can be 

expressed as 

Assuming 

llu -uhll = 

(10) 

that the true error converges as 

C h h P and the error of the postprocessed 

solution llu -u ·11 = c. hp+a for some superconver­

gent solution with a~ I, we can obtain 

(11) 

Showing that the effectivity index approaches unity as 
h ~ 0. In the above, a c I indicates whether the recov­

ered solution has a higher rate of convergence than 

the finite element solution. 

3. An improved solution by patch recovery 

The construction of an improved solution based 

on superconvergence phenomenon is explained in the 

following part. The main idea is that the approximate 

solution, the primary function (displacements) or its 

derivatives (stresses) exhibits higher rate of conver-
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gence at some specific points than the global rate. (17) 

These points are called the superconvergent points of and 

the finite element solution. It has been known that the 

nodal points of the finite element approximation are 

found to be the exceptional points at which the prime 

variables (displacements) have higher order accuracy 

in respect of the global accuracy [14]. Thus, applying a 

recovery technique which consists of a least squares fit 

of a local polynomial to displacement values at higher 

accuracy points, we obtain displacement field of the 

superior accuracy. The recovered displacement field 
over an element r e T h is constructed as 

s 

where r is used to denote finite element r nodes, s de­

notes additional nodes of the element of the recovered 

displacement field, N; ( x) and N; ( x) are local basis 

functions of the order p+ 1 associated with the original 

element nodes and the additional ones, respectively. 

The nodal values of the original finite element 

displacements are of the superior accuracy and are 

assumed fixed ( U:) = (u;) . The recovered displace-

ment values (u;) at the additional nodes are ob­

tained by solving least squares problem in the reduced 
element patch Q r which represents the union of the 

element under consideration and the part of the sur­

rounding elements: 

Find u • e P p+J such that 

(13) 

where 

(18) 

The unknown parameters b are determined by the 

solution of the weighted least squares problems which 

gives us the system of the linear equations 

where wj is a weighting function. The weighting func­

tion is a positive continuous function which is the unity 

for the element defining the patch and decreases mo­

notonically with increasing distance away from master 

element. In this study, we used 

(20) 

where d,. is the maximum distance from the centre of 

the master element of the patch to sampling points of 

the patch, dj is the distance from the centre of the 

master element to j-th sampling point and c is the 

positive constant; we have used c=O.Ol. 

In order to maintain locality of the least squares 

fit we use a reduced element patch with the size of 2h 

in the present patch recovery technique for displace­

ments. Defining the construction of reduced element 
patch, for each element r e T h we denote be E( 't) 

the set of its edges. So for each element 't the patch 
.Q r which consists of the part of elements surround-

ing the master element is denoted by 

.Qr = U r' (21) 
* reE (r') 

liS 

J0 -c(u1*) = 'LwfR[(xj)Ru(xj) 
j=l 

(14) For the triangular elements, set E* (r') coincides 

with E( r), and for quadrilateral elements, set E* ( r') 

where the residual Ru (x 1) is defined by expression as 

(15) 

and 

(ul') = [Q( x)Jb (16) 

Here x1 is the location of j-th sampling point in the 

element patch Q r , w j is the weight assigned to the j­

th sampling point and ns is the total number of the 
sampling (nodal) points in the element patch .Qr and 

b are unknown coefficients. [Q(x)] contains the ap­

propriate polynomial terms of p+ 1 order. For the 2D­

case and for instance linear triangle, Q(x) is given by: 

consists of the adjacent edges connected to one of the 

nodes of the element (E*(r')cE(r)). The details 

concerning construction of the reduced element patch 

can be found in [12-13]. 

We observe that the recovered displacement field 

which can be obtained by solving least squares prob­

lem (13) can be discontinuous over the element 

boundaries. In order to determine a continuous recov­

ered displacement field we propose a simple averag­

ing for the points at the element boundaries of the 

overlapping patch solutions. 

When the recovered displacements are deter­
mined over all elements r e T h , we obtain the dis-
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placement field of the higher accuracy and a postproc­

essed error estimation can be performed. 

4. Numerical example 

We consider the model problem governed by the 
differential equation 

-~u = f inn (22) 

where ~ = (~ + ()
2

2
] is the Laplace operator, u 

dX 2 ()y 

is unknown function , f is some given data, and the 

Dirichlet boundary condition with prescribed values 

onCl!J. (23) 

where an denotes boundary of the unit square domain 

n = (0,1) X (0,1). We prescribe the boundary data and 

choose the 'load' function f that corresponds to an 
exact solution of the form 

u(x,y) = x(l-x)y(l-y)(l+2x+7y) (24) 

This problem has been used by Zienkiewicz and Zhu 
[8] to demonstrate the properties of the proposed er­
ror estimator. The derivatives are defined: 

dU dU 
with ax = - and a = -

dX y ()y 
a= Vu (25) 

The regular meshes are used in the computa­
tional experiments. Numerical results are presented 

for both quadrilateral and triangular linear elements 
in order to test whether the proposed SPRD proce­
dure is adequate to estimate the error of the finite 

element solution. 
The following labels are used in figures and text: 

FE for the original finite element solution, SPR for 
the Zienkiewicz and Zhu [8] superconvergent patch 

recovery technique, SPRD for the superconvergent 

patch recovery technique for displacements presented 
here and DI for the displacement interpolation recov­
ery technique developed in [15]. 

The error in energy of recovered solutions ob­
tained using different recovery procedures is com­
pared with that of finite element solution in Fig 1. For 
the sake of comparison the results obtained by DI 

technique are also presented in the case of quadrilat­

eral elements in Fig lb. The improved derivatives ob­
tained by SPRD technique exhibits O(hp+I) superior 

rate of convergence as expected and shows higher ac­
curacy than SPR and DI approaches. So the proposed 
SPRD technique provides asymptotically exact error 
estimate. 
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b) quadrilateral element 

Fig 1. Convergence of the energy norm of error 

In Figs 2 and 4, the point-wise error distribution 
of the derivative component cr.. is shown obtained us­

ing the finite element method and recovery ap­

proaches SPR and SPRD using linear quadrilateral 
and triangular elements. 

The point-wise error distribution of the derivative 
component cry is presented in Figs 3 and 5 obtained 

using the same solution procedures. 

5. Conclusions 

A method for obtaining postprocessed solution 
of the higher order accuracy has been presented. The 
proposed SPRD technique is essentially a least square 
fit of the prime variables (displacements) at supercon­

vergent points. This approach provides suiperconver-.. 
gent displacement field ui over local reduced ele-

ment patches. Since the SPRD technique recovers 
superconvergent displacement field that is at least one 
order higher than finite element solution, the method 
can successfully be implemented in error estimation of 
the finite element solution. The proposed approach 
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Fig 2. Distribution of absolute error in flux component crx 
using quadrilateral elements 

Fig 3. Distribution of absolute error in flux component cry 
using quadrilateral elements 
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Fig 4. Distribution of absolute error in flux component <rx 
using triangular elements 

Fig 5. Distribution of absolute error in flux component cry 
using triangular elements 
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was devised in such a way that it works locally but not 
globally. This entails that the cost involved using this 
approach is small compared to that of the finite ele­

ment computations. 
As evidenced by numerical experiments, a power­

ful technique has been developed for recovery of im­
proved solutions. The obtained numerical results are 
compared with the results of the most popular error 
estimator developed by Zienkiewicz and Zhu. 
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POPROCESORINIS PAKLAIDT) NUSTA'IYMAS 
BAIGTINIT) ELEMENTT) ANALIZE.JE 

R. Bausys 

Santrauka 

Straipsnyje pateikiamas originalus metodas po­
procesoriniam aukStesnes tikslumo klases sprendiniui gauti. 
Sis biidas paremtas superkonvergavimo pradinio baigtiniq 
elementq sprendinio savybemis. Jrodyta, kad kiekviename 
elemente egzistuoja taskai, kuriuose baigtiniq elementq 
sprendinys turi didesnj konvergavimo greitj palyginti su 
globaliu visai diskreCiajai erdvei jrodomu konvergavimo 
greiCiu. Sie ta8kai vadinami superkonvergavimo baigtiniq 
elementq sprendinio taskais. Poslinkiq lauko superkonver­
gavimo taskai sutampa su baigtiniq elementq mazgo taskais. 
"Superkonvergavimo lopinio atstatymo" biidas originaliai 
buvo panaudotas aukStesnes tikslumo klases gradientq laukq 
(jtempciq, deformacijq) radimui. 

Siame darbe pateikta sio "superkonvergavimo lopinio 
atstatymo" biido versija, pritaikyta tiesioginiams aproksi­
macijos kintamiesiams (poslinkiams). Pagrindintr pasiiilyto 
metoda idejq sudaro atstatyto poslinkiq lauko interpoliavi­
mas naudojant superkonvergavimo poslinkiq reikSmes 
maziausiq kvadratq biidu. Su gautu poprocesoriniu spren­
diniu gali biiti jvertinta tikroji baigtiniq elementq sprendinio 
paklaida bei jos pasiskirstymas tyrinejamoje konstrukcijoje. 

Skaitiniai eksperimentai atlikti naudojant tiesinius 
keturkampius ir trikampius baigtinius elementus. Atlikus 
skaitiniq rezultatq analiztr, galima padaryti sias isvadas: 

1. Poprocesorinio sprendinio paklaidos, isreikStos 
energine norma, konvergavimo greitis yra viena eile 
aukStesnis nei pradinio baigtiniq elementq sprendinio. 

2. Poprocesorinio sprendinio, gauto pasiiilytu metodu, 
paklaidos yra maZesnes uz paklaidas, gautas viena is popu­
liariausiq procediirq, sukurta Zienkiewicziaus ir Zhu. 
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