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ON THE STRENGTH RESERVE OF CONCRETE STRUCTURES DUE TO CONDITIONS 
OF RESTRAINED FLEXURE 

M. Janas, J. Sok61-Supel 

1. Restrained flexure 

Simple flexure means transversal bending of flat 

structures in absence of membrane forces. Bending with 

in-plane displacements at supports prohibited or restricted 

is called here restrained flexure; the term is introduced 

per analogiam to restrained torsion. For structures com­

posed of "symmetric" materials (with the same strength/ 

elasticity characteristics in compression and tension) the 

simple flexure induces existence of a neutral plane (axis) 

free of deformation; therefore, even if in-plane restraints 

at support exist, they do not generate membrane forces. 

The latter will appear eventually and they may be of some 

importance only at very advanced deformation. However, 

if elastic and/or strength characteristics of the material are 

different in tension and in compression, the restraints may 

change qualitatively the structure response from the very 

beginning of the deformation process. For example, in the 

case of brittle-matrix composite structures the end fixity 

generates important compressive membrane forces. This 

effect, known as the arching action in RC beams [ 1] and 

slabs [2] strengthens considerably the structure but makes 

its response strongly unstable. The geometrical non­

linearity inherent to the behaviour of eccentrically com­

pressed slender bars is enhanced here by the deformation­

dependence of the membrane forces. Therefore, geomet­

rically linear analysis is unacceptable, in the considered 

cases, even for quite non-slender structures. The character 

of the load-deflection behaviour under restrained flexure 

is shown in Fig 1. 

Of course, such behaviour makes useless standard 

methods for determination of ultimate loads based on the 

limit analysis approach. A geometrically non-linear elas­

tic-plastic analysis is needed, which is feasible now using 

commercial FEM codes. However, the procedures are 

rather laborious and, first of all, very sensitive to input 

data and to modelling support conditions. Important un-

certainty concerning these data makes engineers reluctant 

in accounting for the discussed effect. Therefore, an ap­

proach, of the level of simplicity similar to that encoun­

tered in the strength of materials is needed. Such type of 

approach will be presented in Sec 3. 
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Fig 1. Load-deflection response to restrained flexure 
of reinforced brittle-matrix structures 

2. FEM simulation and material modelling 

Preliminary results of a geometrically non-linear 

analysis of one-way RC slabs presented in [3] have been 

obtained using ABAQUS code for no-tension elastic­

perfectly plastic model of the concrete matrix and elastic­

perfectly plastic reinforcement. Here, the study was ex­

tended to different geometrical, material characteristics 

and support restraints. To give an idea on the quantitative 

importance of the effect, load-deflection curves are given 

in Fig 2 for clamped centrally loaded strips. Results are 

given for a thick strip (with span-to-thickness ratio 

Llh=lO) and for a slender structure (Lih=30). In both 

cases an unreinforced structure and strongly reinforced 

one (1.6%) are considered. Results are compared with 

those for simple unrestrained bending. 
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Fig 2. Load-deflection behaviour of clamped restrained 
strips; 1, 3. 5 -thick (Uh = 10); 2, 4, 6- slim (Uh = 30); 
1, 2, 5, 6- reinforcement 1.6%; 3, 4- unreinforced; 5, 6 
- simple bending 

Different approximations of the compressive re­

sponse of the concrete (Fig 3 b) were considered. It ap­

peared, as seen from Fig 3 a, that the shape of the stress­

strain curve has small impact on the most important fea­

ture of the structure behaviour: its ultimate-peak load; this 

value is predominantly dependent upon the yield stress 

and the initial elastic modulus. This conclusion confirms 

that the simplest bi-linear model may be accepted in the 

parametric study. 
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Fig 3. a) Load-deflection behaviour of an unreinforced 
clamped strip for b) different approximations of the real 
stress-strain curve (1): 2- bi-linear approximation using 
the initial modulus; 3, 4 - tri-linear, 5 - bi-linear with a 
secant modulus 

Computations for some benchmark cases were per­

formed using the concrete tensile-softening model (Fig 4) 

to determine the influence of the tensile strength of the 

material. To reduce the mesh sensitivity of the simulation 

the Hilleborg fracture energy approach [4) was applied. It 

appears that even in the case of a plain concrete strip, 

where the stiffening tension effect should be the most 

important, its influence disappears welJ before the load 

attains its ultimate value. Therefore, the use of the no­

tension model for the concrete seems to be quite justified. 
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Fig 4. a) Tension-softening and no-tension models for 
concrete b) - Comparison of results for a clamped 
unreinforced strip 

All the results presented above concern fully re­

strained (clamped) concrete strip under point load at the 

mid-span. In the case of very compliant supports these 

conclusions may be no more valid but the effect of the 

arching action will be, then, of small importance and the 

simple bending approach becomes preferential. 

3. An approximate post-yield approach 

As it has been already explained, the popular limit 

analysis approach is useless for determination of the col­

lapse load of structures undergoing restrained bending. 

First, it should be remarked that the simple bending ap­

proach to the limit analysis (eg, the yield-line method) 

gives erroneous results, when applied to the structures 

composed of "non-symmetric" materials and when bend­

ing moments change the sign. It is easy to see, when an 

internal compatibility in the cross-section at yielding is 

examined (eg, [5]) that such analysis appears, in reality, 

kinematically inadmissible. This fact is responsible for 

the known yield-line paradox: test results are frequently 

superior to the upper-bound estimations of the collapse. 

load furnished by the yield-line method. However, when a 

consistent limit analysis procedure is applied to these 
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cases, the collapse loads obtained (q0 in Fig 5) are largely 

superior not only to the simple bending results qy, but 

also to real supportable loads qu (Figs 1, 5). The reason 

of this discrepancy is evident: the limit analysis theory 

deals with the incipient flow mechanism and does not 

account for geometry changes due to the prior-to-collapse 

deformation. 

rigid-plastic PYA 

""l/u 

qy ~------~~~~~--------~/ 
collapse load irr 
simple bending 

Deflection 

Fig 5. Simulation of restrained flexure by a rigid­
plastic and elastic-plastic post-yield approaches 

To take into account, in some manner, the geometry 

changes a so-called post-yield approach (PYA) was used 

already long ago [6], especially for concrete slabs [2]. It 

consists of applying the kinematical method of the limit 

analysis theory to structures with their geometry modified 

following the plastic collapse mode. This mode may cor­

respond to the initial plastic flow or may be modified 

during the deformation process. In this way a load­

deformation curve may be obtained corresponding to a 

sequence of instantaneous collapse loads for a consecu­

tively deformed structure. However, this curve descends 

from the initial rigid-plastic collapse load q0 , which can 

be never attained because of prior-to-collapse elastic­

plastic deformations. These deformations cannot be de­

termined from the rigid-plastic analysis. Unfortunately, if 

an elastic-plastic model were used, the main advantage of 

the post-yield approach - its simplicity - would be lost. 

However, it appears that only elastic deformations due to 

membrane forces are responsible for qualitative differ­

ences between the real structural response and its rigid­

plastic modelling. 

Taking into account the elastic membrane compli­

ance and neglecting flexural deformations outside the 

yield lines (plastic hinges) permits for an approach [7, 8, 

9] that describes well, at least qualitatively, the structure 

behaviour, when conserving the simplicity of the post­

yield analysis. This elastic-plastic PYA simulation may 
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strongly differ from the real response only at the initial 

stage of the deformation (Fig 5). Namely, it neglects 

flexural elastic deformations and, therefore, commences 

the load-deflection curve at flexural collapse load qy. 

However, this phase is of minor interest when the struc­

ture carrying capacity is concerned. In the vicinity of the 

ultimate-peak load, the simulation appears quite satisfac-

tory. 

Fig 6. Kinematics of an instantaneous flow of the 
deformed strip 

Let us recall the idea of this approach [7] using a 

classical case of a multi-span strip collapsed following a 

three-hinge mode, Fig 6. If a virtual rotation increment de 
is applied to a rigid-plastic strip pre-deformed following 

the initial flexural collapse mode, kinematical compati­

bility needs the vectors of relative rotation increments in 

the plastic hinges (black dots in Fig 6) to be co-planar. If 

plastic properties in the two plastic hinges at supports are 

the same (the case chosen for simplicity of the demon­

stration), this plane (instantaneous neutral plane) is par­

allel to the reference plane of the undeformed structure. 

It means that the positions of neutral axes z n in the sup­

port (negative) hinges and z P in the positive one should 

satisfy the relation: z P = zn- w. However, if the strip 

and its supports are assumed to submit elastic membrane 

deformations proportional to the membrane force incre­

ment dN, this relation becomes: 

dNltlr( ) z = z -w---- Cb +C 
p n dw L s ' 

(1) 

where L is the strip span, h is its thickness, z P , z n de­

termine positions of instantaneous neutral axes in positive 

and negative plastic hinges (Fig 6), N denotes the mem­

brane force per unit width of the strip (compression taken 



positive), 11, lr describe the positive hinge location in the 

collapsed span L; C b, C s are the strip compliance and an 

added in-plane elastic compliance of both supports (per 

unit width), respectively. It should be remarked that the 

strip elastic compliance 

L 
Cb=­

Eh 
(2) 

may represent only a11 approximation for the average 

membrane compliance of the deformed part of the struc­

ture between the support plastic hinges. In reality, for 

plastic no-tension material its value is moment dependent 

and, therefore, varies along the axis and through the de­

formation process. Since C b is assumed constant, its 

reduced average value Cbr should be estimated using a 

more exact incremental analysis, as described in Sec 2 

(see [3] ). 

It will be more convenient to use, instead of the 

compliance, a non-dimensional in-plane elastic stiffness 

of the system £ related to the elastic modulus E and the 

concrete compressive strength R: 

(3) 

The relation (1), together with the yield criterion for 

plastic hinges described with z P, zn (see, e g, [7]) and 

with the in-plane equilibrium condition, give a linear 

differential equation permitting for determination of the 

membrane force evolution N = N(w). Then, the limit 

equilibrium of the deformed system (Fig 6) permits to 

establish the load-deflection relation, Fig 5. It commences 

with the simple bending collapse load qy at displacement 

w = 0, attains its maximum (ultimate-peak load qu) at 

deflection wu and a minimum value slightly inferior to 

qy. Shortly afterwards a pure membrane response com­

mences. This relation, q = q(a) expressed in non­

dimensional values, is as follows (for details see [3, 7]): 

q = qy + (k -a)2 
-£-2 [k£- ~ -e-ea X1 + k£)f, (4) 

The non-dimensional load q is related to the load 

through the maximum value of the bending moment 

M max calculated (per unit strip width) as in a simple 

supported span and to the unit plastic moment for sym­

metric material M P = Rhl 14: 

4Mmax 
q=--. 

Rh 2 
(5) 

The non-dimensional displacement at the positive 

hinge is a = wlh. The parameter k depends upon the 

properties of the cross-sections at hinges. For double 

near-to-face reinforcement it is: 

(6) 

where 11; describes the intensity of the reinforcement in 

the i-th layer, with the yield point Q and with the cross­

section area A;: 

(7) 

Subscripts i = (p, n) denote the positive (span) and 

negative (support) plastic hinges and the superscript (') 

concerns compressed reinforcement (taken here 11; ?: 11: ). 

Hence, for unreinforced or symmetrically reinforced no­

tension cross-sections we have k = 1. For uniform cross­

sections made of a ductile but non-symmetric material, 

expression fork should be slightly modified (see [7]); for 

symmetric materials it gives, of course, k = 0 and we 

return to the simple bending, with the collapse load qy. 

Depending upon the value of the in-plane elastic 

stiffness of the structure expressed by the parameter E the 

relation (4) describes behaviour ranging from the rigid­

plastic response to simple (unrestrained) bending. Some 

results from (4) are given in Fig 7. 

It appears that the ultimate load qu is attained at a 

deflection wu equal nearly exactly to the half of the 

value corresponding to the maximum of the membrane 

force and may be taken as: 

hln(l + k£) 
wu = 

2£ 
(8) 

Hence, the ultimate load qu may be expressed, us­

ing eqs (4, 8), with the formula: 

4. Incremental (FEM) and experimental validation of 

the PYA method 

As mentioned above, for non-elastic (no-tension) 

materials the in-plane c.ompliance cb depends, in reality, 

upon the moment-to-force ratio; therefore, it varies along 

the structure axis and throughout the deformation process. 

In the PYA method this value is taken constant, which is 

exact for elastic symmetric materials. This assumption 
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may be considered acceptable if a reduced value C br , 

used instead of Cb (2), is chosen in such a manner that 

the resulting simulation of the structure response at ulti­

mate load will be sufficiently similar to the response ob­

tained from a complete incremental FEM analysis dis­

cussed in Sec 2. A parametric study for different load and 

support conditions (eg, different support compliances, 

anchored or unilateral in-plane supports, etc) shows that a 

surprisingly good agreement in results of the two ap­

proaches may be obtained. A satisfactory fit in the ulti­

mate load qu and in the corresponding deflection will be 

obtained if the reduced strip compliance Cbr = Ll E,h 

is determined using a reduced Young modulus E, taken a 

half of the material value E. 

Comparison of analytical (4) and incremental FEM 

results is given in Fig 7 for the early stage of the load­

deflection behaviour of the structural cases presented in 

Fig 2. The fit of the descending and membrane-ascending 

parts of the curves (see Fig 2) is nearly perfect. To obtain 

a satisfactory fit in the pre-membrane phase for slender 

structures an intermediary PYA solution (see [7]) should 

be used. However, this phase is beyond of our interest 

here. 

20 

1.5 
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00 

00 

Lml q 

00.1 00.2 00.3 

PYA 

FEM 

00.4 

Fig 7. Early stage of clamped strips response- compari­
son of FEM and PYA results. 1, 3 - thick strips (Uh = 
10); 2, 4- slim (Uh = 30); 1, 2- reinforcement 1.6 %; 3, 

4 -unreinforced. :!: - qu, wu following (8, 9) 

The fit in the ultimate load will be slightly better if 

some contribution of the reinforcement to the compliance 

is accounted for, especially for compliant supports. Such 

approximation 

(10) 

is used for the comparison of load-deflection PYA curves 

(4) with the FEM incremental analysis for compliant 

supports that is given in Fig 8. The case concerned there 

is a medium-slenderness (Uh = 15) concrete strips unrein­

forced or bottom-reinforced and loaded with a force at 

mid-span. Supports were hinged with an assigned in-plane 

compliance. Black triangles denote the ultimate values 

obtained from the formulae (8) and (9). 

Selected results of a series of tests on reinforced 

concrete strips are also given in Fig 8. The specimens of 

the size 90x6 em were simply supported and restrained 

against horizontal displacements with blocks of different 

horizontal compliance. Results presented concern a strong 

restraint ( C s = C b ) and bottom reinforcement of intensity 

'11 P = 0.09. The goal of the tests was, first of all, a quali­

tative demonstration of the importance of the arching 

action on the supportable load of RC structures and the 

influence of the support compliance. The restraints in­

duced an average rise in the ultimate supportable load by 

53% up to 171% for strong (11 = 0.18) and weak (11 = 

0.09) reinforcement, respectively. For unreinforced 

structures the effect was, of course, the most important; 

the rise was as high as 600%. 

I 
4 

PYA 

FEM 

Deflection [mm] 

8 12 

Fig 8. FEM-incremental, PYA-analytical (4) and experimental 
results for 3-points tests on plain and reinforced concrete strips 
with compliant in-plane supports; strips: 1 - restrained reinfor­
ced, 2 - restrained unreinforced, 3 - unrestrained reinforced, 4 
- unrestrained unreinforced 
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4. Final remarks 

It appears that the simple method based on the post­

yield approach permits for determination of the ultimate 

supportable load for RC one-way slabs with a reasonably 

good approximation. Degree of complexity of the analysis 

does not exceed the level in the elementary structural 

mechanics (strength of materials level). No more than 

knowledge of limit analysis for beams is needed. 

The same approach is applicable to two-way slabs, 

using the yield-line method. However, for this need a 

more extensive parametric study is still necessary. 

Initial deflections, structural gaps and thermal effects 

may be easily included into the approach (see [7]). This 

possibility is of importance, because these effects may 

seriously influence the value of the ultimate load. 

Finally, it should be once more underlined that re­

strained flexure may produce a very important reserve of 

the structure but makes its response very sensitive to 

support conditions and even to effects that engineers are 

frequently ready to disregard. 

References 

1. A. A. Gvozdev. The basis for the paragraph 33 of the rein­
forced concrete design code (in Russian) // Stroitelnaya 
Promyshlennost, 17, No.3, 1939, p. 51-58. 

2. R. H. Wood. Plastic and Elastic Design of Plates. London: 
Thames-Hudson, 1961. 

3. M. Janas, J. Sok61-Supel. Arching action revisited // Engi­
neering Transactions, 43, 1997, p. 71-89. 

4. A. Hilleborg, M. Modeer, P. E. Peterson. Analysis of crack 
formation and crack growth in concrete by means of fracture 
mechanics and finite elements // Cement and Concrete Re­
search, 6, 1976, p. 773-782. 

5. M. Janas. Kinematical compatibility problems in yield-line 
theory //Mag. Concrete Res., 19, 1967, p. 33-44. 

6. R. M. Haythornthwaite. Beams with full end fixity // Engi­
neering, 1957, p. 110-112. 

7. M. Janas. Arching action in elastic-plastic plates // J. 
Structural Mechanics, 1, 1973, p. 277-293. 

8. R. Park. Reinforced Concrete Slabs. New York: J. Wiley, 1980. 

9. J. R. Eyre. Direct assessment of safe strength of RC slabs 
under membrane action // J. Struct. Engng., ASCE, 123, 
1997.~ 1331-1338. 

{teikta 1999 09 20 

APIE BETONINIT) KONSTRUKCIJT) STIPRUMO 
REZERV,o\ SUVARZYTO LENKIMO S,o\LYGOMIS 

M. Janas, J, Sokot-Supel 

Santrauka 

SuvarZy!It lenkima, apibildina skersinis 1enkimas, esant su­
varZytiems arba neleistiniems .atrmniniq taM<:q poslinkiams. Jci 

medziagos tempimo ir gniuMymo savybes skiriasi, suvarZyti 
poslinkiai gali i~ esmes pakeisti konstrukcij os atsparuma,. Beto­
ninese konstrukcijose atsiranda svarbios gniuZdymo membrani­
nes jegos. Sis rei§kinys vadinamas arkos efektu [1, 2). Jis su­
stiprina konstrukcij<~, bet daro neigiama, [tak!l jos pastovumui 
(1 pav.). 

Nagrinejami viena kryptimi armuotl! gelzbetoniniq ploks­
ciq iteraciniai sprendimai, taikant baigtinius elementus ir tam­
praus-plastisko tempiamo betono model[ (2 pav.) bei skirtingas 
jo aproksimacijas. Analize gali bilti atliekama naudojant ir 
standartin(( baigtiniq elementq programa, (ABAQUS), taciau ji 
gana sudetinga ir jautri pradiniams duomenims. Todel baigtiniq 
elementl! programq panaudojimas inzineriniams tikslams yra 
abejotinas, reikia supaprastinto metoda. Toks metodas patei­
kiamas 3 skyriuje. Jo pagrindas yra netampraus (uz plastinio 
deformavimo ribos) apskaiciavimo metodas, remtasi ir autoriq 
ankstesniais pasiillymais [3, 7]. 

Metodas pagr[stas ribines pusiausvyros metodu (standus 
plastinis modelis) (6 pav.), [vertinant tamprias plokstes ir jos 
atramq deformacijas. Metodo taikymas viena kryptimi armuo­
toms gelzbetoninems plok~tems (4) leidzia kokybi~kai tiksliai 
apra5yti apkrovos-ilinkio priklausomyb((. 

Analitiniai apskai6avimo rezultatai ( 4) lyginami su itera­
cine BEM analizes rezultatais standZiai itvirtintoms juostoms 
(7 pav.). Rezultatq atitikimas taikant abu metodus yra pakanka­
rnas, jeigu juostos vidutinis pasiduodamumas cbr yra lygus 
pusei tampraus pasiduodamumo (2). Rezultatai, gauti taikant 
abu metodus, yra palyginti su bandymq rezultatais (8 pav.), 
[vertinant jq priklausomyb(( nuo atramq plokstumoje pasiduo­
damumo. Deformuojamq atramq atveju geresnis rezultatq atiti­
kimas yra gaunamas tuo atveju, kai [vertinama armavimo pasi­
skirstymo [takajuostos standumui, skaiciuojamam pagal (10). 

Paprastos aproksimacijos metodas, kuriam nereikia papil­
domq ziniq, prie~ingai negu kad elementari ribine ana!ize, 
leidzia patikimai [vertinti ribini vienos krypties armuotos suvar­
Zytos plokstes stipruma,. 
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