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STOCHASTIC ANALYSIS OF DEGRADING VIBRATORY SYSTEMS 

K. Sobczyk, J. Tr~bicki 

1. Introduction 

Temporal variations of the stress field and/or envi­

ronmental conditions can cause irreversible changes in the 

characteristics of structural/mechanical systems that may 

significantly affect their performance. These changes, 

referred to as degrading (or deterioration) phenomena, are 

usually not taken into account in the convential analysis 

of vibratory systems. Such analysis concentrates on the 

characterisation of the response under various excitations 

assuming that the systems properties are fixed. As far as 

the response of dynamical systems to random excitation is 

concerned, the methods elaborated allow to characterise a 

stochastic response process in variety of important situa­

tions and in the same time they provide the information 

for the reliability estimation [1], [2]. 

However, dynamic excitation of engineering sys­

tems, including random varying excitation, causes irre­

versible changes in the material structure and results in 

decreasing the system ability to carry the intended load­

ing. Damage caused by vibrations manifests itself pri­

marily in the stiffness degradation of the components and 

systems. There are many examples of engineering systems 

with stiffness degradation during the vibration process. 

We mention here three such illustrations. 

a) Systems consisting of n brittle fibers in parallel 

with the same stiffness but independent identically dis­

tributed resistances Ri, i = 1,2, ... , n (Daniels systems). 

The system responds dynamically to a prescribed random 

excitation S(t), t 2::0. There is no damage as long as the 

system displacement Y(t) does not exceed the smallest 

value Yo. When Y(t) changes in time some damage oc­

curs (failure of some fibers). So, during the motion the 

system goes through various degradation states. Reliabil· 

ity of Daniels systems is the probability that a specified 

function of fibers survives in a period T. 

b) Elastic-plastic oscillator, ie a vibrating mechanical 

system in which, in addition to elastic deformation, a 

plastic deformation occurs due to excursions to plastic 

domain. For example, the initial stiffness k reduces to 

a(~) k after the first excursion, where ~ is the length 

of excursion and a is a non-negative quantity. Assuming 

that plastic degradation process D(t) is scalar and equal 

to the sum of all plastic partial deformations in the inter­

val (O,t) we have a plastically degrading oscillator. 

c) Vibrating elastic (mechanical/structural) compo­

nent with fatigue process taking place in it. It can be 

modelled as a simple oscillator with mass m, damping c 

and time dependent stiffness q(A(t)) where A(t) is the 

length of a fatigue crack, and q(x) characterises the de­

pendence of stiffness on the crack length. In what follows 

this example will be discussed in more details. 

In the last years an increasing amount of research ef­

forts has been directed to stochastic modelling of various 

deterioration (or degradation) processes in mechani­

cal/structural components. Because of the practical im­

portance of fatigue damage and fracture in various engi­

neering structures, stochastic models of fatigue accumu­

lation have been a subject of special interest ([3] and ref­

erences therein). It should be underlined, however, that 

though the fatigue process is inherently associated with 

vibrations of mechanical/structural systems the research 

in random vibration theory, and in modelling of fatigue 

has been conducted without a proper mutual coupling. 

Stochastic analysis of mechanical/structural dynamic 

systems has been focused on the characterisation of the 

response (and its unsafe states, eg instability regions, 

first-passage probabilities), whereas the analysis of fa­

tigue deterioration has been concentrated on the fatigue 

crack growth analysis assuming that the characteristics of 

the response (eg stresses) are given. 
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It is clear that a more adequate approach should ac­

count for the joint (coupled) treatment of both the system 

dynamics and fatigue accumulation ( eg fatigue crack 

growth). Such an analysis allows to account for the effect 

of stiffness degradation during the vibration process on 

the response and, in the same time, gives the actual stress 

values for estimation of fatigue [4], [5], [6]. In this paper 

we discuss the basic features of the problem formulation 

and the approach to a coupled analysis of the response­

degradation via a sequential characterisation of the stiff­

ness degradation process. 

2. Coupled analysis of the response-degradation proc­

ess 

In general, the coupled response-degradation prob­

lem for non-linear vibratory systems with random excita­

tion can be formulated in the following form 

Y(t) + F[ Y(t), Y(t), D(t), X (t' y) l = 0' 

Q[ D(t), D(t), Y(t), Y(t) l = 0' 

Y(to) =Yo • Y(to) = l'!.o • D(to) =Do, 

(1) 

(2) 

(3) 

where Y(t) is an unknown response process, D(t) is a 

degradation process, F[.] is the given function of indi­

cated variables satisfying the appropriate conditions for 

the existence and uniqueness of the solution, X (t, y) is 

the given stochastic process characterising the excitation; 

y E r , and r is the space of elementary events in the 

basic scheme (r, B, P) of probability theory, 0[.] sym­

bolises the relationship between degradation and response 

process (its specific mathematical form depends on the 

particular situation) and Y0 , ll.o, D0 are given initial val­

ues of the response and degradation, respectively. 

An important special class of problem (1)-(3) is ob­

tained if relationship (2) takes the form of differential 

equation, that is 

D(t) = G[D(t),Y(t),Y(t)], (4) 

where G is the appropriate function specifying the evo­

lution of degradation; its mathematical form is inferred 

from empirical data, or it is derived from the analysis of 

the physics of the process. In equation ( 4) the degradation 

rate D(t) may depend on the actual values of Y(t),Y(t), 

but it can also depend on some functionals of Y(t),Y(t); 

for example, on the integral of Y(r), r E [t0 ,t]. In fatigue 

degradation problem with D(t) interpreted as a "normal-

ised" crack size, the most common evolution equation is 

the Paris equation which includes not Y(t) itself, but the 

stress range I'J.S = S max - S min which is related to 

Ymax- Ymin· 

Another special class of problems characterised gen­

erally by equations (1)-(3) is identified if functional rela­

tionship (2) does not include D(t), and D(t) depends on 

some statistical characteristics of the response process 

Y(t) ; a good example is a vibrating systems in which a 

degradation process depends on the time which the re­

sponse Y(t) spends above some critical level y •. This 

might be the case of an elastic-plastic oscillatory system 

with D(t) interpreted as accumulated plastic deformation 

governed by the plastic excursions of the response Y(t) 

into plastic domain. Formally, the situations which we 

have in mind can be characterised by the equations 

Y(t )+ F[Y(t) Y(t )D(t )x(t, y )}=o, 

N(t) 

D(t)=D0 + LYI;(Y), 
i=l 

(5) 

where 1J; ( y) = ll D; ( y) are random variables characteris­

ing the "elementary" degradations associated with the 

specific degradation process; the magnitude of 1J;(Y) 

depend on characteristics of the process Y(t) above a 

fixed level y *. Process N(t) is a stochastic counting 

process characterising a number of degrading events in 

the interval (t0 ,t]. Other possible situations governed by 

equations (1)-(3) are discussed in [6]. 

3. Random vibration with stiffness degradation 

Let us consider now the response-degradation prob­

lem when a stiffness degradation of elastic component of 

vibrating system is due to the fatigue accumulation (cf. 

Fig 1). In such a situation, in order to formulate the equa­

tion for a degradation D(t) we make use of the Paris-

Erdogan equation for fatigue crack size A 

(6) 

where ll K is the stress intensity factor range [3], C and 

m are empirical constants. 

As it is known, the stress intensity factor K can be 

interpreted as a quantity which characterises the stress 

distribution around the crack tip. In general, it can be rep­

resented in the form 

K = B(A)S.J'iA, (7) 
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where A is the crack length, S describes the far-field stress 

resulting from the response process Y(t) and B(A) ac­

counts for the geometry of the crack and the specimen. To 

make the further analysis easier it is convenient to deal 

not with A directly but with the non-linear transformation 

ljf (A ) of A defined as 

(8) 

where Ao is the initial crack size. Let us denote by ljf • 

the value of ljf (A) for the critical crack length A = A • , 

and define the degradation measure D as 

D 
__ lfi(A) • • 

• , ljf =lji(A ), DE[D0 ,1]. (9) 
ljf 

Of course, 

I 1 dA 
dD=-. d\ji(A)= * X.JnA) 

\jJ \jJ Bm (A nA m 

=~C(~s)m d N. 

(10) 

\jJ 

Therefore, the evolution equation for the fatigue crack 

induced degradation D(t) defined by (9) takes the form 

dD =-1 C(~S )m 
dN lfl• r ' 

(11) 

where ~ Sy is the stress range generated by the response 

process Y(r). 

Using the degradation measure D defined in (9) the 

equation (11) indicates that the increment of D in one 

equivalent cycle can be taken as 

1 m 
~D; = -. C(~S;) , 

ljf 

where ~ S; is the stress range in the i-th cycle. 

(12) 

In order to account for the cumulative nature of the 

degradation process and its randomness, let us represent 

D(r) in the form of a sequence of random variables 

DN(Y) =:D(tN), N =0,1, ... ,N*, where DN(Y) char­

acterises the state of the degradation random process after 

N cycles. Therefore 

N 

DN(Y) = L~D;(Y)' (13) 
i=l 

~D;(y) = D;(y) - D;_1 (y) . (14) 

The coupled computational response-degradation model 

has the form 

Y(r) + 2(Y(r) + q(DN_1(y))Y(r) = ~ 1 (-r,y), (15) 

DN(Y)=DN-l(Y) +~DN(y), (16) 

where ~DN (y) denotes the increment of the degradation 

process during N-th cycle. It is defined by formula (3.14) 

in which ~S N is the stress range in N-th cycle. Assuming 

that the degradation starts when response Y(t) is in its 

stationary state and that the response is a narrow-band 

process ( 2( << 1) we approximate ~Y; = Y max,i - Y min,i 

by two times the amplitude H; of the Y(t) , ie 2H; . 

Therefore, the stress range ~ S; in the i-th cycle is 

E 
~s = 2H-

I I lo ' (17) 

where 10 is the length of the elastic element ( cf. Fig 1) 

and E is its Young modulus. 

Fig 1. Diagram of a vibratory system with stiffness degra­
dation due to fatigue crack propagation 

Finally, the increment ~DN of the degradation pro­

cess occurring in (13) has the form 

where constant C1 = C 2m Em cr; I l:;'lf/- is obtained 

during the transformation from dimensional to non­

dimensional system. 

Equations (15), (16) along with (12) and (17), (18) 

constitute a complete sequential model for characterisa­

tion of the response-degradation process [Y(t), D(t)] in 

discretised time instants (cycles) N = 0,1, ... , N* . Because 

the degradation process is slow in comparison to the re­

sponse itself and the degradation process D starts when 

the system (15) reached its stationary state for initial stiff­

ness q(DN=o) generated by deterministic or random 

value of the initial damage measure DN=O = D0 we take 

the distribution of the amplitude H N given DN-I as be­

ing the Rayleigh distribution. In this model the response 
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after N cycles is affected by the stiffness degradation state 

after N -1 cycles, whereas the degradation process after 

N cycles depends on the response amplitude H N at cycle 

N, given DN-J. 

4. Numerical results 

The probabilistic characteristics of the response­

degradation process [ Y N , D N] (where Y N = H N and H N 

is the amplitude of the process Y at cycle N) can be ob­

tained via the conditioning method presented in detail in 

[6). The effectiveness of the method has been checked for 

the specific crack and specimen geometry, and for 

t; = O.Ql, C1 = 4.7015799-10-7
, m=3. The stiffness deg­

radation is the monotonically decreasing function [4) of 

the crack length A. Figures 2 and 3 illustrate the evolution 

of the mean values and standard deviations of the degra­

dation measureD for non-degraded and degraded system. 

In Fig 2 we see that in the case of degraded system 

the mean value of the degradation measure D has non­

linear characteristic in comparison to its linear character­

istic in the case of non-degraded system. The difference 

in the number of cycles required to reach the assumed 

critical level D* = 0.98 is about 25%. Fig 3 visualises the 

comparison between standard deviations of the degrada­

tion measure for considered systems. A significant growth 

of standard deviation of degradation measure in degraded 

system is observed. It is due to "non-linear" behaviour of 

the degradation measure in the case of the degraded system. 

Fig 4 shows the probability density functions of the 

degradation measure for different number of the response 

cycles N. This figure indicates also that stiffness degrada­

tion should play an important role in reliability analysis of 

the system. For example, for fixed level v* =0.8 and 

N=140 thousands of cycles we have probability of failure 

PF = 1- P( D < v*) = 0. 05 for non-degraded system (see 

dashed probability densities) and 

PF = 1- P( D < D *) = 0. 45 for degraded system (see 

continuous curves). The non-degraded system is under­

stood here as the system whose stiffness degradation is 

not taken into account. 

Fig 5 shows the probability density function of the 

response amplitude process both in the case of the system 

with non-degraded stiffness (dashed line) and system with 

degraded stiffness. The distortion of the density due to 

stiffness degradation is clearly visible for larger values of 

the number of cycles. 
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5. Conclusions 

In the paper we showed how the response­

degradation problems for randomly vibrating systems can 

be formulated and analysed effectively. 

Such a couple formulation makes it possible to ac­

count for the effect of stiffness degradation (during the 

vibration process) on the response and simultaneously it 

yields the actual stress values for the characterisation of 

the evaluation of degradation. The numerical calculations 

provide quantitative and graphical information on the 

response and degradation process. 
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PAZEISTTJ VIBRACINITJ SISTEMTJ STOCHASTINE 
ANALIZE 

K. Sobczyk, J. Trrbicki 

Santrauka 

Laikini [tempiq bei aplinkos Sl\_lygq kitimai gali lemti ne­
gr[ztamus konstrukciniq/mechaniniq sistemq savybiq pokycius. 
Sie pokyciai, vadinami paieidimais, paprastai nera [vertinami 
vibraciniq sistemq skaiCiavimais. Atliekant tokius skaiciavimus 
laikoma, kad sistemq, paveiktq [vairiq poveikilb savybes yra 
nekintarnos. 

Siame straipsnyje salia tradicinio sistemtt dinaminiq 
efektq modeliavimo yra vertinami paieidimai (pavyzdziui, 
mikroplysio didejimas). Tokia analize leidzia [vertinti ne tik 
sistemos standumo maiejimll. vibracinio proceso metu, bet ir 
leidzia nustatyti itempius. Skaitiniai pavyzdziai pateikia kicky­
bin« ir grafint< informacijll. apie vibraciniq sistemq buklt< bei 
paieidimtt procesus. 
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