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LIMIT ANALYSIS OF REINFORCED CONCRETE CROSS-SECTIONS 
UNDER CYCLIC LOADINGS 

P. Alyavdin, V. Simbirkin 

1. Introduction 

The behaviour of reinforced concrete structures 

subjected to repeated loads of certain histories was inves­

tigated in several studies (see, for instance, Refs [ 1] and 

[2]). However, the load-carrying structures are exposed to 

the actions (static, thermal, kinematic, etc) which may 

vary in random manner. As a result, there are repeated 

alternating cross-section forces changed arbitrarily within 

the specified area [3]. At present, only separate design 

combinations of loads and influences are usually taken 

into account in analysis and design procedures. In fact, 

the strength conditions of elements essentially depend on 

the interaction of variable repeated loads. The strength 

conditions in terms of generalized forces for sections 

from homogeneous ideal plastic material for different 

types of load cycles have been obtained in the studies [ 4] 

and [5]. 

In this paper, an analytical model is presented to 

analyse reinforced concrete beam and column element 

cross-sections under low-cyclic loadings. The loads and 

influences are quasi-static, no dynamic effects and fatigue 

failure are considered. The cross-section may have any 

geometrical form, prestressed as well as non-prestressed 

reinforcement is allowed. The vector of variable repeated 

forces contains axial force and bending moments about 

two central axes of cross-section. The torsion and the 

shear forces are also taken into account but their influ­

ences are assumed to be minor. Prestressing forces and 

thermal actions are considered herein as one of the load 

types when the vector of resultant internal forces is zero. 

The constitutive model for steel reinforcement is bi­

linear elastic-perfectly plastic without strain hardening. 

Concrete in compression is presumed to be elastic-plastic 

and concrete in tension is elastic and then brittle material 

[6]-[10]. Moreover, tensile strength of concrete may be 

neglected. In some cases, tensile strength of concrete has 

to be ignored because of irreversibility of cracking. 

2. General relations 

Let the cross-section of reinforced concrete element 

be subjected to the vector of variable repeated forces 

S = (N,Mx,My,T,Vx,Vy), which are changed arbitrar­

ily within the given domain Q 5 . This domain can be 

simulated by the polyhedron 

Q 5 =(SER6 :S I, a 1S 1, 
IEL 

I, a 1 = 1, a 1 ?:. 0, IE L ), 
IEL 

(1) 

where S 1 is the vector of design combinations of cross­

section forces which are caused by the action of l combi­

nation of external loadings (static, thermal and kine­

matic); a1 is the component of the barycentric coordi­

nate vector, IE L; Lis the set of load or force combina­

tions. Note that the thermal action components distributed 

in the section area may be added to the vector S. 

The domain Q 5 contains the coordinate origin or 

"zero load" S = 0 corresponding to initial non-stress state 

of section with non-prestressed steel or initial stress state 

of section with prestressed steel. The latter state is con­

sidered like a thermal action. 

In surfaces dA of concrete area Ac which have co­

ordinates x = (x, y), the stresses cr = tcrz, 'tzx• 'tzy) appear; 

the stresses cr x, 'ty, 't xy are neglected; normal stresses 

cr z in reinforcing steel of area As are only considered. 

Subscript "z" for stresses cr z is omitted and subscripts 

"c" and "s" for concrete and steel respectively are used 

below, if necessary. 

To check the plasticity of concrete in compression 

and the strength of concrete in tension a general Balandin~ 

Geniev criterion in terms of principal stresses for three­

dimensional stress state is adopted. It can be written as 

crf +cr~ +cr~ -(cr1cr 2 +crzcr3 +cr3cr1 )+ 

+(r:-1: )(cr1 +cr 2 +cr3)-1:1: ::;o, xE Ac, 
(2) 
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where 1: and 11 are the ultimate compressive and ten­

sile concrete stresses, respectively. 

For concrete in a state of plane stress, inequality (2) 

is rewritten as 

(3) 

The quadratic inequality (3) may be substituted for 

linear inequalities for concrete in compression and for 

concrete in tension, respectively: 

(4) 

(5) 

where Rc1 and Rtf are the radicals of functions located 

in the left side of (3), which depend on shear stresses 

"t zx , t zy . They are given by 

Rc1 = (r; -1: -D, )1 2, (6) 

Rtf= (r;- fcc+ Dl )12, (7) 

Dt = ~(r: + J: r -12(1:;, H;y), (8) 

their absolute values are the equivalent strengths of con­

crete. 

The total stresses in compressed concrete of area 

A~ are presented as a sum of elastic cre and residual crr 

components: 

(9) 

Concrete in tension is assumed to be a brittle mate­

rial ( crr = 0), hence 

(10) 

Furthermore, residual shear stresses in concrete are 

neglected, ie 

(11) 

With referring to Eqs (9)-(10), conditions (4) and 

(5) take the forms: 

(12) 

(13) 

The total stresses in reinforcing steel are also pre­

sented as a sum of elastic cre and residual crr compo­

nents: 

(14) 

The stress-strain relationship for steel in elastic stage 

is given by Hook's law cr~ = Es£s, and conditions of 

ideal plasticity are given by 

(15) 

where fsy is the steel stress at yield. 

Non-ideal elastic-plastic response of materials (with 

strain hardening or softening) [9] can be considered using 

approach [6]. 

It is assumed that dependence cre (s) of elastic 

stresses upon external forces at one-pass loading is 

known. If function cre (s) is monotonic, the extremal 

stresses crr, cr7+ are induced by the I dangerous load 

combination: 

It is obvious that both inequalities ( 15) may be ac­

tual at the same point x of the steel area of the cross­

section. Then, after transformations, we obtain the ine­

quality 

e+ e- 2f < 0 crs -crs - sy- , (17) 

which confines the cross-section ultimate capacity by 

condition of alternating steel yielding. 

Referring to Eqs (16), the plasticity conditions (12) 

and (15) and the strength condition (13) may be written in 

the following forms: 

min ~cl - cre (s 1 ))- crr :<:; 0; XE A;, (18) 
IEL 

min (cre (s 1)- Rtf):<:; 0; I (19) XE Ac, 
IEL 

- cre- - f sy - crr :<:; 0; XE A%. (20) 

cre+- !sy +crr :<:;0; XE A~. (21) 

Besides, the following equilibrium equations must 

be satisfied: 

f cr~ dA + f cr~ dA = 0, 
Ac 

c As 

J cr~ xdA + J cr~ xdA = 0, 
A~ A, 

f cr~ ydA + f cr~ ydA = 0. 
A~ As 

(22) 

(23) 

(24) 

The strength of RC element cross-section is assumed 

to be ensured if there are fields of residual stresses 
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cr~ (x), x E A; , and cr~ (x), x E As provided that ine­

qualities (17), (18), (20), (21) and equalities (22)-(24) 

hold. 

3. Mathematical models of the problem 

The primal problem about the ultimate capacity of 

the element cross-section can be formulated in case when 

vectors S 1 of the section force combinations consist of 

constant Sol and variable S vl terms, where S vl de­

pends only on the one parameter of load F0 : 

(25) 

Thus, the following infinite-dimensional non-linear 

programming problem is derived: the parameter of load 

should be maximised, 

(26) 

while constraints ( 17)-(24) depended on F0 are satisfied. 

The variables of this problem are the fields of opti­

mal control variables cr~ (x), x E A; , cr~ (x), x E A~ , 

and parameter F0 . 

Similarly, the inverse (design optimisation) prob­
lem can be formulated, if the vectors S 1 are known, and 

ultimate concrete stresses f~, J} and steel yield stress 

fsy (unknowns) depend on parameter A.; 

(!/J/Jsy) = A(f/, J/, fsy l where fc, .f/, fsy 

are some positive constants: parameter A should be mini­

mised, 

A~min, (27) 

while constraints (17)--(24) depended on A. are satisfied. 

This problem has the same variables as previous 

problem, if substitute F0 for A.. 

In order to obtain the numerical solutions of these 

problems they have to be reduced to the finite­

dimensional problems by division the cross-section area 

A = Ac u As into the elementary areas Mi, i E I , where 

I is the set of elementary areas. Then the vector of vari­

ables (residual stresses err ) will have dimensions of 

value III, and problems formulated can be solved by the 

conventional methods of optimisation. 

It is possible to use other simple and accurate compu­

ter aided numerical procedures based on the approach [5]. 

The technique for solving the primal problem can be 

realised by applying the following iterative scheme: 

Assume a value for parameter of load F0 corre­

sponding to the cross-section ultimate capacity derived 

without considering cyclic load interactions. 

1. Determine the extremal elastic stress distributions on 

the areas of cross-section and check for condition ( 17). 

2. Take location of neutral axis. 

3. Determine the stresses in steel and in concrete in the 

limit state. 

4. From (18), (20), (21) as from equalities obtain the 

residual stresses err . 
5. Substitute crr into Eqs (22)-(24) and obtain out-of­

balance values. 

6. Check convergence: if out-of-balances do not ex­

ceed the tolerances, the solution is found; in the 

other case go to the next step. 

7. Repeat steps 4 through 8 changing the location and 

inclination of neutral axis until the neutral axis does 

not intersect the section area. 
8. Correct F0 and go to step 2. 

To solve the inverse problem the scheme of proce­

dure may be sketched as follows: 

1. Determine the extremal elastic stress distributions 

on the cross-section areas. 

2. Assume a value for parameter A. (adopt from re­

sults of analyses carried out without considering cyclic 

load interactions). 

3-8. See the same steps of the previous scheme. 

9. Correct A and go to Step 2. 

4. Numerical examples 

On the basis of described analytical model, the com­

puter program has been developed. Some numerical re­

sults obtained by using this program are presented below. 

Example 1. In this example, the primal problem is 

solved. The cross-section considered has rectangular form 

and non-prestressed reinforcing bars as shown in Fig 1. 

<P14 f'lf'l <P14 f'/(7 

({)25 f'lf'l 

({)25 f'lf'l 

I ({)]4 (7(7 

380 

Fig 1. Cross-section for example I (dimensions in mm) 
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Fig 2. Ultimate strength surface for cross-section 
at one-pass loading 
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The ultimate stresses are: fcc = 30 MPa, fsy = 400 MPa, 

and the modules of elasticity are: E, = 20 ·103 MPa, 

E
5 

= 200·103 MPa. The load forces are reversing bend­

ing moment M and compressive axial force N. Fig 2 rep­

resents an ultimate strength surface for cross-section in 

case when the influences of interactions of variable re­

peated forces are ignored. 

Let the components of variable term S vi of vector 

of section forces S1 are within the surface shown in 

Fig 2, and constant term S01 is equal to zero. Then, the 

value of parameter of load F0 = 0.89 was obtained by 

a b. 

-621 

A~ 
-]625-~---1 

r/!14 mm 

As 
r/!25 mm 

analysis. In other words, in our particular example, the 

cross-section ultimate capacity degradation of value of 11 

percent due to the influence of cyclic load interactions is 

derived. 

Example 2. Let's solve the inverse problem for 

cross-section shown in Fig 3 a. 

The inverted tee-shaped section has non-prestressed 

lower A5 and upper A; longitudinal reinforcement. The 

Young's modulus of steel and initial modulus of elasticity 

of concrete are taken to be 200 · 1 03 MPa and 30 . 1 03 MPa, 

respectively. 

Let the cross-section be subjected to the bending 

moment M about the horizontal axis and axial force N. 

These forces may be changed within the hatched areas 

Qb !12 and !13 as shown in Fig 4. In Fig 3 b, c, d, the cor­

responding distributions of the extremal elastic stresses 

are given. 

The analysis results indicated that steel yield stress 

f sy = 450 MPa and concrete strength // = 30 MPa are 

large enough to ensure sufficient cross-section capacity 

within the full area !13 if the interaction of repeated forces 

is ignored. The following values of parameter A (see the 

inverse problem statement in the Section 3), when the 

interaction is considered, were derived: A. = 1.32 if forces 

varied within the area !11 and A = 1.26, and A = 1.44 if 

forces varied within the areas !12 and !13, respectively. 

Thus, in this example, the influence of variable cyclic 

load interactions of value up to 44 percent is observed. 

c d 

-]78 -621 

f----5900 -1030 -H----5900 

-155 

Fig 3 a. Cross-section for example 2 (dimensions in mrn) b, c, d. Distributions of extremal elastic stresses, 
MPa, for the force action areas nb Q2 and Q3, respectively 
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Fig 4. Areas of action of section internal forces: ax­
ial force N versus bending moment M 

5. Conclusions 

In this study, an analytical model is formulated and 

calculation methods are proposed to carry out a limit 

analysis of the cross-sections of RC elements subjected to 

low-cyclic loadings. The results of the numerical exam­

ples given in the paper indicated that the analysis may 

overestimate the ultimate carrying capacity of cross­

section if the influences of repeated forces interaction are 

neglected. Therefore, to ensure the safety of RC struc­

tures subjected to variable repeated loads the effects 

mentioned have to be taken into account in design prac­

tice. 
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CIKLINES APKROVOS VEIKIAMIJ GELZBETONINil) 
ELEMENT{) STIPRUMO NUSTA TYMAS 

P. Alyavdin, V. Simbirkin 

Santrauka 

Nagrinejamas kartotines mazacikles apkrovos veikiaml.[ 
gelzbetoninil.[ konstrukcijl.[ strypinil.[ elementl.[ skerspjiivil.[ lai­
komosios galios nustatymo uzdavinys. Skerspjiivil.[ forma ne­
apibre:lta, gali biiti [vairi. Armatiira gali biiti paprasta arba is 
anksto [tempta. Pjiivio [r~:~.zl.! vektoriuje [eina asine jcga ir lenki­
mo momentai. Atsizvelgiama ir i sukimo moment~:~. ir skersines 
jegas, taciau j~:~. [taka laikoma antraeile. !Sankstinis [tempimas ir 
temperatiiros poveikiai laikomi kaip viena is skerspjiivi veikian­
cil.[ apkroVI.[. 

Laikomasi prielaidos, kad betonas gniuzdymo srityje ir 
armatiira visur deformuojasi kaip idealiai, tampriai plastiskos 
medziagos; betonas tempimo srityje dirba kaip idealiai trapi 
medziaga. Remiantis prisitaikymo teorija suformuluotas gelzbe­
toninil.[ skerspjiivil.[ ribines analizes optimizacijos uzdavinys. 
Aptarta galimybe apibendrinti si~:~. formuluot~t neidealaus plas­
tiskumo atveju esant medziagos sustiprejimui ar susilpnejimui. 
Pateikti tiesioginis ir atvirkstinis sudaryto uzdavinio sprendimo 
biidai. Pateikti pavyzdziai rodo, kad apkrovos pakartotinis po­
veikis ma:lina gelzbetoninil.[ elementl.[ skerspjiivil.[ laikomi:\.i~:~. 

gali~:~. ir armavimo optimalumo parametri:\_. 
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