
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcem20

Statyba

ISSN: 1392-1525 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcem19

NEURAL NETWORK MATERIAL MODELLING

J. Ghaboussi , X. Wu & G. Kaklauskas PhD

To cite this article: J. Ghaboussi , X. Wu & G. Kaklauskas PhD (1999) NEURAL NETWORK
MATERIAL MODELLING, Statyba, 5:4, 250-257, DOI: 10.1080/13921525.1999.10531472

To link to this article: https://doi.org/10.1080/13921525.1999.10531472

Published online: 26 Jul 2012.

Submit your article to this journal

Article views: 200

Citing articles: 2 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=tcem20
https://www.tandfonline.com/loi/tcem19
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13921525.1999.10531472
https://doi.org/10.1080/13921525.1999.10531472
https://www.tandfonline.com/action/authorSubmission?journalCode=tcem20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcem20&show=instructions
https://www.tandfonline.com/doi/citedby/10.1080/13921525.1999.10531472#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/13921525.1999.10531472#tabModule

ISSN 1392-1525. STATYBA- CIVIL ENGINEERING- 1999, V tomas, Nr. 4
.. ···

NEURAL NETWORK MATERIAL MODELLING

J. Ghaboussi, X. Wu and G. Kaklauskas

1. Introduction

A constitutive law or a material model is conven­

tionally described as a mathematical model represented as

stress-strain relations that convey human perception of

the behaviour of a material. In engineering mechanics,

material modelling constitutes an integral part in the

study of the structural behaviour under external excita­

tion. With the availability of powerful computing ma­

chines and sophisticated computational methods, such as

the finite element method, and the advances in experi­

mental instrumentation and testing methods, the impor­

tance of the role that material modelling plays in compu­

tational mechanics is greatly enhanced. On the other

hand, with the introduction of modern composite materi­

als, the constitutive modelling of their complex behaviour

becomes increasingly more involved.

Recent advances in neural networks, especially the

new insights in developed learning algorithms, have fa­

cilitated the development of a fundamentally different

approach to material modelling using neural networks.

Within the framework of information science, the con­

stitutive modelling of a material is a knowledge acquisi­

tion and representation process, in which the knowledge

to be acquired and represented is the complex behaviour

of a material. Clearly, the learning or self-organising ca­

pability of neural networks can thus be utilized to build a

model of the behaviour of a material, given an appropri­

ate amount of data on that material's response to external

stimuli. This realisation, along with developments in

hardware-based programmable neural networks and neu­

ral computing theory, have drawn a potentially new hori­

zon for research in material modelling. The first two

authors and their associates were the first who proposed

to use neural networks for material modelling [1-5].

The aim of this paper is to introduce to the Lithua­

nian engineering and research society a relatively new

approach of material modelling based on neural network

method. The paper presents: 1) a description of back­

propagation neural networks, 2) a brief review of higher

order learning and adaptive architecture determination

techniques, 3) a summary on the neural network model­

ling procedures, and 4) a description of the concept and

principles of the neural network-based material model­

ling.

2. Brief description of backpropagation neural net­

works

2.1. General

Neural networks are computational models inspired

by our understanding on the biological structure of neu­

rons and the internal operation of the human brain. Re­

search in neural networks was started in the 1940s when

an endeavour in the search for means of constructing a

brain-like computing machine was undertaken, and the

mathematical foundation for this learning paradigm was

essentially laid during that period. The first computa­

tional model of a neuron or a processing unit in a neural

network, which is capable of threshold logical operation,

was proposed by McCulloch and Pitts [6].

A neural network is a non-linear dynamic system

consisting of a large number of highly interconnected

processing units, or processors. Each processing unit in

the network maintains only one piece of dynamic infor­

mation (its current level of activation) and is capable of

only a few simple computations (adding inputs, comput­

ing a new activation level, or performing threshold logi­

cal calculation). A neural network performs "computa­

tions" by propagating changes in activation between the

processors; it stores the knowledge it has "learned" as

strengths of the connections between its processors. The

large number of these processing units, and even larger

number of inter-connections, similar to the neuronal

structure of human brain, give the neural networks their

capability of knowledge representation. In addition, it is

250

through self-organisation or "learning" that a neural net­

work approaches some representation of a particular

knowledge or discovers the hidden relationships in data.

Self-organisation or "learning" is a key characteristic

of neural networks. Unlike traditional sequential pro­

gramming techniques, neural networks are trained with

examples of the concepts to capture. The network then

internally organises itself to be able to reconstruct the

presented examples.

The operation of a processor in a neural network

computation is very simple. The output of a processor,

which is computed from its activation level and many

times is the same as the activation level, is sent to other

"receiving" processors via the processor's outgoing con­

nections. Each connection from one to another processor

possesses a numeric weight representing the strength or

weight of the connection. The strength of connection is a

filter (in the form of a multiplicative coefficient) of the

output sent from one processor to another processor, and

may serve to increase, or decrease, the activation of the

receiving processor. Each processor computes its activa­

tion level based on the sum of the products of connection

strengths and outputs coming into the processor over its

incoming connections, computes its output based on this

net input, and then sends its output to other processor to

which it has outgoing connections.

The propagation of activation in a neural network

can be feedforward, feedback, or both. In a feedforward

network, a type of signal can be propagated only in a

designated direction, whereas in a network with feedback

mechanism this type of signal can flow in either direction

or recursively. For example, in a strictly feedforward

multilayer network, only inter-layer connections between

adjacent layers are allowed, and the inter-layer connec­

tions or lateral connections among nodes in the same

layer are suppressed.

The network topology, and the form of the rules and

functions are all learning variables in a neural network

learning system and lead to a wide variety of network

types.

2.2. Backpropagation neural networks

Backpropagation networks and their variants, as a

subset of multilayer feedforward networks, are currently

the most widely used networks in applications. The back­

propagation neural network is given its name due to the

251

way that it learns - by backpropagating the errors seen at

the output nodes. The major distinction among feedfor­

ward neural networks is manifested by the learning rule

utilised. The backpropagation network is a multilayer

feedforward neural network with the generalised delta

rule as its learning rule.

The processing units m a backpropagation neural

network as shown in Fig 1 are arranged in layers. Each

neural network has an input layer, an output layer, and a

number of hidden layers. Propagation takes place in a

feed forward manner, from input layer to the output layer.

The pattern of connectivity and the number of processing

units in each layer may vary with some constraints. No

communication is permitted between the processing units

within a layer. The processing units in each layer may

send their output to the processing units in higher layers.

Input
layer Hidden

Output
layer

Fig 1. An example of backpropagation neural network

Associated with each connection is a numerical

value which is the strength or the weight of that connec­

tion: wiJ = strength of connection between units i and j.

The connection strengths are modified during the training

of the neural network. At the beginning of a training pro­

cess, the connection strengths are assigned random values.

As examples are presented during the training, through

application of the "rule of learning", the connection

strengths are modified in an iterative process. As the suc­

cessful completion of the training, when the iterative pro­

cess has converged, the collection of connection strengths

of the whole network has captured and stored the knowl­

edge and the information presented in the examples used

in its training. Such a trained neural network is ready to

be used. When presented with an input pattern, a feed

forward network computation results in an output pattern

which is the result of the generalisation and synthesis of

that it has learned and stored in its connection strengths.

Therefore, in a backpropagation network, two com­

putational procedures are performed in a learning cycle:

the feedforward computation of activation and the back­

ward propagation of error signals for the modification of

connection weights via the generalised delta rule. A feed­

forward computation proceeds as follows:

1) The units in the input layer receive their activations in

the form of an input pattern and this initiates the feed

forward process;

2) The processing units in each layer receive outputs

from other units and perform the following computa­

tions:
a) Compute their net input N i,

M

Ni = L wikok'
k=l

(1)

where ok = output from units impinging on unit j, and

M = number of units impinging on unit j.

b) Compute their activation values from their net in­

put values,

(2)

where F1 is usually a sigmoid function and its exact

form is determined by the specified range of activation

values. For example, if the activation values are taken in

the range of(- 1.0, 1.0), then F(N) = 2.0(1 1 (l+e·N-e)-

0.5), where e is the bias value at that processing unit.

c) Compute their outputs from their activation values.

Usually, the output is taken the same as the acti­

vation value.

(3)

3) The output values are sent to other processing units

along the outgoing connections.

Several mechanisms for imparting self-organisation

or learning to these multilayer feedforward networks have

been developed. One form of supervised learning, devel­

oped by Rumelhart et al. [7], is called the generalised

delta rule and is the learning mechanism used in back­

propagation neural networks. The modification of the

strengths of the connections in the generalised delta rule,

as described in [7], is accomplished through performing

the gradient descent on the total error space in a given

training case.

(4)

In this equation, ll = a learning constant called the

"learning rate", V E~w !J) = gradient of the total error with

respect to the weight between units i and j, and 8 . =
d

. J
gra 1ent of the total error with respect to the net input at

unitj. At the output units 81 is determined from the dif­

ference between the expected activations t . and the
J

computed activation a j:

81 = V 1 -a JF'(N 1) (5)

where F' is the derivative of the activation function.

At the hidden units the expected activations are not

known a priori. The following equation calculates 8 . for
J

the hidden units:

(6)

In this equation, the error attributed to a hidden unit

depends on the error of the units it influences. The

amount of error from these units attributed to the hidden

unit depends on the strength of connection from the hid­

den unit to those units; a hidden unit with a strong exci­

tatory connection to a unit exhibiting error will be

"blamed" for this error, causing this connection strength

to be reduced.

3. Higher order learning and adaptive architecture

determination

As has been stated in the previous section, the gene­

ralised delta rule [7] is basically a steepest descent

scheme with constant step length in a network setting,

performing a gradient descent on the error function with

respect to the weight space. For multilayer feedforward

neural networks, the error function is usually a highly

non-linear function defined as:

1 N
E(w) = lim - "LEk ,

N-'>oo N k=l
(7)

where Ek =lt(xd-o(xk,w)j
2

; t(xk) is the expected

output; o(x k, w) is the network prediction which is a

function of the input vector x and network weight vector

w; and N is the number of training cases. This error sur­

face is dominated with flat areas and troughs, which ren­

der the learning with the generalised delta rule in a back­

propagation network very slow. Another drawback of a

standard backpropagation network is the need for pre-

252

determination of network architecture and the inability to

incorporate a priori possessed knowledge.

The modelling capability and performance of a

backpropagation network is mainly determined by the

network architecture and its rule of learning. Recently,

several approaches have been proposed to improve the

performance of backpropagation neural networks. In gen­

eral, there are five ways to approach a solution to this

problem: 1) using better data representation scheme for

input and output, 2) employing higher order learning al­

gorithms or heuristic algorithms that more quickly find

the minimum of the error surface [8-11], 3) preprocessing

the input pattern, introducing independence into the input

vector space [12], thus facilitating the determination of

the decision space, 4) designing innovative training

schemes so that certain knowledge is pre-oriented in the

network before the final training session [13,14], and 5)

incorporating network geometry adaptation with efficient

learning algorithms.

From the derivation of the generalised delta rule, it is

tempting to postulate that all the minimisation schemes

are applicable as learning rules for multilayer feedfor­

ward networks. Furthermore, numerical analysis tells us

that higher order schemes such as Newton's method,

quasi-Newton methods, and Conjugate Gradient methods

have better numerical properties than the steepest descent

method with respect to the rate of convergence and nu­

merical stability [15,16]. Nevertheless, for neural network

learning algorithms which are eventually to be employed

in massively parallel hardware implementation of these

networks, it is desirable that they not only be computa­

tionally efficient, but also suitable for implementation via

local update only, thus conserving the parallelism of net­

work operations. With the generalised delta rule, the for­

mula for weight update with a momentum term is:

llw(t) = -Y]dEjdw(t) +a llw(t -1), (8)

such as the Quickprop algorithm [9], the Delta-Bar-Delta

algorithm [10], the Pseudo-Newton algorithm [8], and

quasi-Newton style methods [17], etc, using either heu­

ristic rules or higher order information to compute the

learning parameters. Experience shows that heuristic

rules are simple, robust, and computationally efficient,

while the acquisition of higher order information is usu­

ally computationally expensive.

Except for some trivial problems, the network ar­

chitecture on the hidden layers cannot be determined in

advance. The common approach to architecture determi­

nation uses trial and errors, for simple problems. For real

world engineering problems such as material modelling,

it is imperative to have adaptive or dynamic mechanisms

to determine the network architecture. Since the input and

output of a network are determined by the nature of the

problem and the representation scheme selected, adaptive

schemes for architecture determination have adopted

mechanisms of either "growing" or "pruning" the number

of processing in hidden layers. A "growing" process

starts with a basic or small network (usually one or a

small number of hidden units), and then adds or grows

additional processing units or a set of units including

layer(s) to the network as the training process progresses

until the convergence of training is reached. A "pruning"

process usually starts with a larger network than needed,

and then deletes redundant processing units or links dur­

ing or after a training session with the hope that the gen­

eralisation capability of the trained network would be

improved. Sometimes, "pruning" is also performed on

nodes in the input and output layers in order to determine

the most important set of variables in the representation

scheme. The former approach is represented in the Dy­

namic Node Creation scheme [18], the Cascade Correla­

tion Learning Architecture [13], and the Self-Organising

Neural Network [14], and the latter in Skeletonization

[19], and Kamin's pruning scheme [20].

where TJ is the learning rate and a the momentum factor, In general, the "growing" approach is more efficient

and both of them are assumed constants. The update of and robust than the "pruning" scheme for the determination

weights can be proceeded either in batch mode or in on- of network architecture. For certain classification prob-

line mode. The former refers to updating weights after all !ems, pruning can be incorporated to improve network

the training sets have been presented, and the later after generalisation. However, for real value functional mapping

each training set. For second and higher order algorithms problems in which accuracy on predictions becomes more

with adaptive determination of TJ or a, the update of demanding, pruning might have an adverse effect.

weights is usually implemented in batch mode. To date, On functional mapping, theoretical studies have

numerous new learning schemes have been proposed, proven that a multilayer feedforward network with one

253

hidden layer and enough hidden nodes is a universal ap­

proximator, ie, any function can be embedded in a three

layer network [21, 22]. This conclusion is valid in the

limit sense of statistical measurement. However, for effi­

ciency in learning, two or more hidden layers are usually

used in applications [23].

For material modelling problems investigated by the

authors [2-4], the architecture adaptation scheme is based on

"growing" approach [18] with the use of two hidden layers.

4. Neural network modelling procedure

In applying neural networks as a computational and

knowledge representation tool to solve any non-trivial

problem, the modelling process usually involves the fol­

lowings aspects: 1) problem representation, 2) architec­

ture determination, 3) learning process determination, 4)

training of the neural network with training data, and 5)

testing of the trained network with testing data for gener­

alisation evaluation. These five aspects also constitute the

framework of the neural network-based material model­

ling process to be described later.

In general, the problem representation process con­

sists of evaluating the applicability of the neural network

paradigm, the selection of the type of neural networks,

data acquisition, data processing, and the design of repre­

sentation schemes for input to and output from the net­

work. The representation schemes are determined not

only by the nature of the problem, but also by the way

that models are to be used. There are basically two kinds

of representation schemes: distributed representations and

local representations. For function mapping problems

such as material modelling, local representation scheme

is usually adopted.

Architecture determination usually involves the se­

lection of the number of layers and nodes in each layer,

as well as the interconnection scheme. Obviously the size

of the input and output layer is solely determined by the

representation scheme devised. However, the size of each

hidden layer and the number of hidden layers are strongly

influenced by the complexity of the problem, features or

regularities embedded in the training data, and the effi­

ciency of learning algorithms. In other aspect, the way

that nodes in different layers are connected is also very

important because it controls the pathway for information

flow or propagation in a network. Though the connection

between layers can be forward, backward, and recurrent,

or be established between subsets of processing units in

different layers, for simplicity, complete connection be­

tween adjacent layers is usually enforced in multilayer

feedforward neural networks, especially when dealing

with function mapping problems.

After the data representation scheme and initial net­

work architecture are defined, the determination of a ge­

neric learning process involves making decision on the

type of processing units such as the L unit and the LIT unit

(where Lis summation and IT is multiplication), the selec­

tion of activation function, and the design of learning algo­

rithms. Once the whole learning system is constructed, the

training and testing process can be performed.

Training means that the defined network is presented

with processed training data and learns or discovers the

relationships embedded in the data using learning algo­

rithms. Convergence of learning is reached if the error as­

sociated with the network prediction falls within a speci­

fied error tolerance. If a presentation of the whole training

data to the network is defined as a learning cycle or an

epoch, the iterative training process usually requires many

hundreds or thousands epochs to reach convergence. After

the network is properly trained, its generalisation capability

is evaluated in the testing phase. If the trained network

generalises reasonably well on novel but similar cases, the

resulting neural network can then be qualified as a legiti­

mate model for use in the problem domain.

For real world engineering problems, this whole

modelling process is likely to be an iterative process, and

the generalisation evaluation on the trained network from

the testing phase functions more like a feedback signal.

Since a neural network learning system is an integration

of different mutually interacting learning components,

one or sometimes even all of the previous processes may

need to be examined and adjusted if the generalisation

capability of the trained network is unsatisfactory. The

discrepancy between the expected output and network

prediction may be result from any of the following

sources: 1) an inappropriate representation scheme of the

problem; the training data is not comprehensive enough

to represent the essence of the problem; or the domain is

not suitable to neural networks; 2) the current architecture

of the network is insufficient to accommodate the knowl­

edge to be captured; 3) the learning algorithm is not effi­

cient and robust enough to handle the complexity of the

problem; and 4) the training is pre-maturely terminated.

254

5. Neural network-based material modelling metho­

dology

The basic strategy for developing a neural network­

based model of material behaviour is to train a multilayer

feedforward neural network on the stress-strain results

(data) from a series of experiments on a material. If the

experimental data about the material behaviour are fairly

comprehensive, the trained neural network would contain

sufficient information about the material behaviour to

qualify as a material model. Such a trained neural net­

work not only would be able to reproduce the experi­

mental results it was trained on, but through its generali­

sation capability it should be able to approximate the re­

sults of their experiments on the same material. The de­

gree of accuracy in this generalisation depends on both

how comprehensive and representative the training set is

and how well the network is trained.

Clearly, the procedures used in the construction of a

neural network-based constitutive model of a material

would fall into the general framework of the neural net­

work modelling process described in the previous section.

Because of the nature of a material model and its in­

tended use within the finite element method, the model­

ling procedure has its own characteristics and requires

special considerations.

As has been mentioned before, the first step in con­

structing a neural network-based material model is the

determination of representation scheme for material be­

haviour in the input and output. The composition of the

input and output layers depends primarily on the intended

use of the neural networks. Although neural networks

offer considerable flexibility in this regard, it is natural

that the first attempt in the development of neural net­

work-based material models should follow the traditional

mathematical models for use with finite element methods.

As such, the processing units in the input and output lay­

ers all represent stresses, strains, their increments, and in

some cases a portion of the stress-strain history. Since the

material behaviour is highly path dependent, the input

must have sufficient information for the neural network

to characterize the stress-strain state of the material and

contain certain information on the previous history.

Therefore, two representations schemes - the so-called

one-point and three-point schemes, are introduced to

characterize the behaviour of a material in different stress

states. These representation schemes can be either stress-

controlled which means that the network is to predict

strain increments corresponding stress increments, or

strain-controlled on the contrary.

For instance, in a stress-controlled one-point repre­

sentation scheme, the stress-strain state of a material at

one point in the stress space and strain space and the next

stress increments at that point are included in the input,

and the corresponding strain increments are in the output.

For a strain-controlled one-point representation scheme,

however, the strain increments are in the input and stress

increments are in the output. The three-point representa­

tion scheme is an expansion of the one-point scheme,

with an expanded input including two additional stress­

strain states in the stress-strain history.

Decisions regarding the neural network architecture

are of primary importance in the successful construction

of neural network-based material models. The capacity of

a neural network is a function of the number of hidden

layers and the number of processing units in each layer

[22]. The pattern of connectivity between the layers is

also part of this equation. However, in this study a simple

pattern of connectivity is used: each processing unit has

outgoing connections to all the processing units in the

next layer. The capacity of the neural network is also

somehow related to the amount of the information in the

training data and the complexity of the knowledge con­

tained in that data. Currently there are no quantitative

theories or good qualitative rules for determining the ca­

pacity of a multilayer feedforward neural network, as this

aspect is not yet well understood. Though theoretical

studies have concluded that one hidden layer with enough

hidden nodes can accomplish the modelling of any func­

tions [21, 22], in practice, especially with modelling of

continuous functions, it has been observed that the use of

two hidden layers would yield a more efficient training.

According to the authors' experience, two hidden layers

are used for material modelling problems. With the use of

two hidden layers, the size of each hidden layer is deter­

mined by the modified dynamic node creation scheme.

Consequently, the final size of each hidden layer thus

determined corresponds to the network architecture when

a minimal or optimal training data set is successfully

trained. This minimal or optimal training data set is de­

fined as a set of data that contains sufficient information

to characterise the behaviour of a material.

255

Whether or not a neural network has been trained

with the minimal training data set is indicated by how

well the trained network generalises on the testing cases.

Ideally, if the network is trained with a quasi-optimal or

quasi-minimal training set, reasonable generalisation

should be observed on the testing results. Otherwise, if

the training set is too small, poor testing performance

would be expected, as the trained network has not been

presented with all examples of the relevant information

so as to generalise properly. On the other hand, if the

training data set is too large, no substantial improvements

would result from further training, after the network has

been trained with the minimal training data set.

In the incremental training scheme proposed [2],

training and testing proceed in the following way: 1) start

with a small network and a small training set, and train

the network until convergence; 2) add additional data to

the training set, and restart training on the augmented

data with the previously converged network; add nodes to

hidden layers; 3) when a training set containing a reason­

able number of stress-strain data has been successfully

trained, perform the generalisation tests on untrained

stress-strain cases; and 4) if all the testing results appear

in good agreement with expected behaviour, stop train­

ing; otherwise repeat the data set addition and generalisa­

tion testing processes.

There are some benefits to using incremental train­

ing with tests for generalisation evaluation. First, with the

use of the dynamic node generation scheme and incre­

mental presentation of the entire training data set, the

network is not overwhelmed by the large amount of in­

formation at the initial stage of training so that the learn­

ing process converges faster than when guessing a net­

work architecture and presenting the network with the

whole training set at once. Secondly, starting with a small

amount of data and monitoring the generalisation per­

formance of the neural network at certain stages of train­

ing, a quasi-minimal training set can usually be obtained.

However, the true minimal training set is not theoretically

defined at this time, but it is known to depend on both the

comprehensiveness of the available experimental data on

a material and the characteristics of the problem.

Concluding remarks

Research interest in neural networks, as a paradigm

of computational knowledge representation, has experi-

enced considerable increase in recent years. This new

interest is supported by the realisation that neural com­

puting is inherently parallel and functionally more close

to the operation of the brain; that is, it has the capability

of self-organisation or learning. With the advance and

sophistication in some branches of neural-networks, the

technology has been successfully tailored for a wide

range of problems, such as the modelling of some cogni­

tive processes, vision, image processing, pattern recogni­

tion, and some engineering fields. It is obvious that with

the continuous development on the computational theory

and hardware implementation of neural networks, this

technology will potentially provide an efficient and viable

tool for solving certain engineering problems that are

difficult for mere conventional approaches.

Research in the application of neural networks to

problems in computational mechanics is quite recent [1].

It can be concluded that the use of neural networks for the

modelling of material behaviour is viable and promising.

Such an approach does not make a priori assumptions

about the behaviour of a material, but rather bases its pre­

diction of stress-strain behaviour on the experimental data

with which it has been trained.

References

1. J. Ghaboussi, J. H. Garrett and X. Wu. Knowledge-Based
Modelling of Material Behaviour Using Neural Networks II
ASCE Journal of Engineering Mechanics Division, Jan.
1991.

2. X. Wu and J. Ghaboussi. Neural Network-Based Material
Modelling// Technical Report No 599, Structural Research
Series, Dept. of Civil Eng., University of Illinois at Urbana­
Champaign, 1995. 198 p.

3. J. Ghaboussi, D. A. Pecknold, M. Zhang and R. HajA!i.
Neural Network Constitutive Models Determined from
Structural Tests // Proceedings, 11th ASCE Engineering
Mechanics Conference, Ft. Lauderdale, May 1996.

4. G. Kaklauskas, J. Ghaboussi, and X. Wu. Neural Network
Modelling of Tension Stiffening Effect for RIC Flexural
Members // Proceedings, EURO-C 1998-Computational
Modelling of Concrete Structures, Badgastein, Austria,
March 31 -April 3, 1998, p. 823-832.

5. J. Ghaboussi and D. Sidarata. A New Nested Adaptive Neu­
ral Network for Modelling of Constitutive Behaviour of
Materials // International Journal of Computers and Geo­
technics (to be published).

6. W. S. McCulloch and W. Pitts. A Logical Calculus of the
Ideas Immanent in Nervous Activity // Bulletin of Mathe­
matical Biophysics 5, 1943, p.l15-133.

7. D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning
Interr.al Representations by Error Propagation II Parallel
Distributed Processing, Vol 1: Foundations, D.E. Rumelhart
and J. McClelland (Eds.), The MIT Press, MA, 1986, p.
318-362.

256

8. S. Becker and Y. Le Cun. Improving the Convergence of
Backpropagation Learning with Second Order Methods //
Proceeding of the 1988 Connectionist Models Summer
School, Cernegie Mellon University, Pittsburgh, 1988.

9. S. E. Fahlman. Faster-Learning Variations on Backpropa­
gation: An Empirical Study II Proceedings of the 1988
Connectionist Models Summer School, Morgan Kaufmann
Publishers, Inc., 1988.

10. R. A. Jacobs. Increased Rate of Convergence through
Learning Rate Adaptation // Technical Report (COINS TR
87-117). Dept. of Computer and Information Science, Uni­
versity of Massachusetts at Amherst, MA, 1987.

11. J. Moody. Fast Learning in Multi-resolution Hierarchies II
D. S. Touretzky (Ed.). Advances in Neural Information
Processing Systems 1, Morgan Kaufmann, 1989.

12. S. J. Orfanidis. Gram-Schmidt Neural Nets II Neural Com­
putation 2, 1990, p. 116-126.

13. S. E. Fahlman and C. Lebiere. The Cascade-Correlation
Learning Architecture // Technical Report CMU-CS-90-
100, School of Computer Science, Carnegie Mellon Univer­
sity, Pittsburgh, Feb. 1990.

14. M. F. M. Tenorio and W.-T. Lee. Self-Organizing Neural
Networks for Optimum Supervised Learning// TR-EE-89-
30, School of Electrical Engineering, Purdue University,
June 1989.

15. L. A. Hageman and D. M. Young. Applied Iterative Meth­
ods. The Academic Press, New York, 1981.

16. G. H. Golub and C. F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, 1983.

17. R. L. Watrous. Learning Algorithm for Connectionist Net­
works: Applied Gradient Methods of Nonlinear Optimiza­
tion II Proceedings of the IEEE International Conference on
Neural Networks, Vol II, 1987, p. 619-627.

18. T. Ash. Dynamic Node Creation in Backpropagation Net­
works II ICS Report 8901, Institute for Cognitive Science,
University of California, San Diego, La Jolla, Feb. 1989.

19. M. C. Mozer and P. Smolensky. Skeletonization: A Tech­
nique for Trimming the Fat from a Network via Relevance
Assessment// CU-cS--421-89, Dept. of Computer Science,
University of Colorado at Boulder, Jan. 1989.

20. E. D. Kamin. A Simple Procedure for Pruning Backpropa­
gation Trained Neural Networks II IEEE Transactions on
Neural Networks, June 1990, Vol1, No 2, p. 239-242.

21. G. Cybenko. Approximations by Superpositions of a Sig­
moidal Function II CSRD Report No 856, Center for
Supercomputing Research and Development, University of
Illinois at Urbana-Champaign, Feb. 1989.

22. K. Hornik, M. Stinchcomebe and H. White. Multilayer
Feedforward Networks Are Universal Approximators II
Neural Networks, Vol2, 1989, p. 359-366.

23. R. P. Lipman. An introduction to Computing with Neural
Nets II IEEE ASSP Magazine, April 1987, p. 4-22.

{teikta 1999 OS 20

MEDZIAGTJ NEURONINITJ TINKLTJ FIZIKINIAI
MODELIAI

J. Ghaboussi, X. Wu, G. Kaklauskas

Santrauka

Straipsnyje supaiindinama su neuroniniq tinklq metodo
taikymu, kuriant fizikinius medziagq modelius. Neuroniniq
tinklq metodas, pagristas zmogaus smegenq darbo modeliavimo

principais, tik si desimtmeti praktiskai pradetas taikyti [vairiose
mokslo srityse. Pirmieji du sio straipsnio autoriai pirmieji pa­
saulyje pritaike neuroniniq tinklq metod<t fizikiniams mode­
Hams kurti.

Neuronini tinkl<t sudaro mazgai (neuronai), tarpusavyje
sujungti rysiais. Mazgai yra suskirstyti i grupes, vadinamas
s1uoksniais: pradiniq duomenq ir rezultatq sluoksniai bei tarpi­
niai sluoksniai (1 pav.). Mazgai charakterizuojami aktyvumu, o
rysiai stiprumu. Mazgo aktyvumas nustatomas kaip iji ateinan­
ciq rysiq stiprumo ir atitinkamq mazgq aktyvumo sandaugq
suma. Rysiq stiprumas, kuris gali tureti tick teigiamq, tick nei­
giam<t skaitintt reiksmft, nustatomas neuroninio tinklo ,moky­
mo" metu. Tinklas dainiausiai ,mokomas" pradiniq duomenq ir
rezultatq pavyzdziu pagal tam tikras mokymo taisykles. IS visq
zinomq neuroniniq tinklq bene placiausiai taikomas gr[Ztamasis
neuroninis tinklas (backpropagation neural network).

Straipsnyje supazindinama su griztamuoju neuroniniu tin­
klu, jo ,mokymo" taisyklemis, dinaminiais mazgq kurimo prin­
cipais bei tinklq kurimo metodologija. Straipsnio pabaigoje
pateikiama medziagq fizikiniq modeliq kurimo neuroniniais
tinklais metodologija.

Jamshid GHABOUSSI. Professor. University of Illinois, 31 I 8
Newmark Civil Engineering Laboratory 205 North Mathews
Avenue Urbana, Illinois 61801, USA.

PhD (1971, civil engineering) from the University of Cali­
fornia at Berkeley. Since 1973 he served on the faculty of Uni­
versity of Illinois at Urbana-Champaign. Full professor since
1984. Over 25 years of experience in research and development
in several fields of engineering computation. Author of more
than 100 publications. Consultant on numerous major enginee­
ring projects.

Xiping WU. Research Engineer in Offshore Division, Exxon
Production Research Company in Houston, Texas.

PhD (1991, structural engineering) from the Dept of Civil
Engineering, University of Illinois at Urbana-Champaign. He
jointly developed the neural network-based methodology for
constitutive modelling and structural damage assessment, as
well as innovative neural network learning algorithms and ar­
chitecture. More than 30 professional publications and 7 years
of academic research and teaching experience in Singapore and
USA in structural engineering, computational mechanics and
engineering applications of soft computing methods. Research
interests: soft computing methods, structural dynamics, earthqu­
ake engineering, structural reliability analysis and ice mecha­
nics.

Gintaris KAKLAUSKAS. PhD, Senior Researcher and Asso­
ciate Professor. Dept of Reinforced Concrete Structures, Vilnius
Gediminas Technical University, Sauletekio al. 11, 2040 Vil­
nius, Lithuania.

A graduate of Vilnius Civil Engineering Institute (pre­
sently Vilnius Gediminas Technical University) (1982, civil
engineer). PhD (1990). Research visits: Aalborg University
(Denmark, 1991), University of Glamorgan (UK, 199411995),
University of Illinois, Urbana-Champaign (USA, 1996). Author
and co-author of 2 monographs, 1 invention and a number of
papers. Research interests: development of constitutive rela­
tionships for concrete and numerical simulation of reinforced
concrete structures.

257

