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NEURAL NETWORK MATERIAL MODELLING 

J. Ghaboussi, X. Wu and G. Kaklauskas 

1. Introduction 

A constitutive law or a material model is conven­

tionally described as a mathematical model represented as 

stress-strain relations that convey human perception of 

the behaviour of a material. In engineering mechanics, 

material modelling constitutes an integral part in the 

study of the structural behaviour under external excita­

tion. With the availability of powerful computing ma­

chines and sophisticated computational methods, such as 

the finite element method, and the advances in experi­

mental instrumentation and testing methods, the impor­

tance of the role that material modelling plays in compu­

tational mechanics is greatly enhanced. On the other 

hand, with the introduction of modern composite materi­

als, the constitutive modelling of their complex behaviour 

becomes increasingly more involved. 

Recent advances in neural networks, especially the 

new insights in developed learning algorithms, have fa­

cilitated the development of a fundamentally different 

approach to material modelling using neural networks. 

Within the framework of information science, the con­

stitutive modelling of a material is a knowledge acquisi­

tion and representation process, in which the knowledge 

to be acquired and represented is the complex behaviour 

of a material. Clearly, the learning or self-organising ca­

pability of neural networks can thus be utilized to build a 

model of the behaviour of a material, given an appropri­

ate amount of data on that material's response to external 

stimuli. This realisation, along with developments in 

hardware-based programmable neural networks and neu­

ral computing theory, have drawn a potentially new hori­

zon for research in material modelling. The first two 

authors and their associates were the first who proposed 

to use neural networks for material modelling [1-5]. 

The aim of this paper is to introduce to the Lithua­

nian engineering and research society a relatively new 

approach of material modelling based on neural network 

method. The paper presents: 1) a description of back­

propagation neural networks, 2) a brief review of higher 

order learning and adaptive architecture determination 

techniques, 3) a summary on the neural network model­

ling procedures, and 4) a description of the concept and 

principles of the neural network-based material model­

ling. 

2. Brief description of backpropagation neural net­

works 

2.1. General 

Neural networks are computational models inspired 

by our understanding on the biological structure of neu­

rons and the internal operation of the human brain. Re­

search in neural networks was started in the 1940s when 

an endeavour in the search for means of constructing a 

brain-like computing machine was undertaken, and the 

mathematical foundation for this learning paradigm was 

essentially laid during that period. The first computa­

tional model of a neuron or a processing unit in a neural 

network, which is capable of threshold logical operation, 

was proposed by McCulloch and Pitts [6]. 

A neural network is a non-linear dynamic system 

consisting of a large number of highly interconnected 

processing units, or processors. Each processing unit in 

the network maintains only one piece of dynamic infor­

mation (its current level of activation) and is capable of 

only a few simple computations (adding inputs, comput­

ing a new activation level, or performing threshold logi­

cal calculation). A neural network performs "computa­

tions" by propagating changes in activation between the 

processors; it stores the knowledge it has "learned" as 

strengths of the connections between its processors. The 

large number of these processing units, and even larger 

number of inter-connections, similar to the neuronal 

structure of human brain, give the neural networks their 

capability of knowledge representation. In addition, it is 
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through self-organisation or "learning" that a neural net­

work approaches some representation of a particular 

knowledge or discovers the hidden relationships in data. 

Self-organisation or "learning" is a key characteristic 

of neural networks. Unlike traditional sequential pro­

gramming techniques, neural networks are trained with 

examples of the concepts to capture. The network then 

internally organises itself to be able to reconstruct the 

presented examples. 

The operation of a processor in a neural network 

computation is very simple. The output of a processor, 

which is computed from its activation level and many 

times is the same as the activation level, is sent to other 

"receiving" processors via the processor's outgoing con­

nections. Each connection from one to another processor 

possesses a numeric weight representing the strength or 

weight of the connection. The strength of connection is a 

filter (in the form of a multiplicative coefficient) of the 

output sent from one processor to another processor, and 

may serve to increase, or decrease, the activation of the 

receiving processor. Each processor computes its activa­

tion level based on the sum of the products of connection 

strengths and outputs coming into the processor over its 

incoming connections, computes its output based on this 

net input, and then sends its output to other processor to 

which it has outgoing connections. 

The propagation of activation in a neural network 

can be feedforward, feedback, or both. In a feedforward 

network, a type of signal can be propagated only in a 

designated direction, whereas in a network with feedback 

mechanism this type of signal can flow in either direction 

or recursively. For example, in a strictly feedforward 

multilayer network, only inter-layer connections between 

adjacent layers are allowed, and the inter-layer connec­

tions or lateral connections among nodes in the same 

layer are suppressed. 

The network topology, and the form of the rules and 

functions are all learning variables in a neural network 

learning system and lead to a wide variety of network 

types. 

2.2. Backpropagation neural networks 

Backpropagation networks and their variants, as a 

subset of multilayer feedforward networks, are currently 

the most widely used networks in applications. The back­

propagation neural network is given its name due to the 
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way that it learns - by backpropagating the errors seen at 

the output nodes. The major distinction among feedfor­

ward neural networks is manifested by the learning rule 

utilised. The backpropagation network is a multilayer 

feedforward neural network with the generalised delta 

rule as its learning rule. 

The processing units m a backpropagation neural 

network as shown in Fig 1 are arranged in layers. Each 

neural network has an input layer, an output layer, and a 

number of hidden layers. Propagation takes place in a 

feed forward manner, from input layer to the output layer. 

The pattern of connectivity and the number of processing 

units in each layer may vary with some constraints. No 

communication is permitted between the processing units 

within a layer. The processing units in each layer may 

send their output to the processing units in higher layers. 

Input 
layer Hidden 

Output 
layer 

Fig 1. An example of backpropagation neural network 

Associated with each connection is a numerical 

value which is the strength or the weight of that connec­

tion: wiJ = strength of connection between units i and j. 

The connection strengths are modified during the training 

of the neural network. At the beginning of a training pro­

cess, the connection strengths are assigned random values. 

As examples are presented during the training, through 

application of the "rule of learning", the connection 

strengths are modified in an iterative process. As the suc­

cessful completion of the training, when the iterative pro­

cess has converged, the collection of connection strengths 

of the whole network has captured and stored the knowl­

edge and the information presented in the examples used 

in its training. Such a trained neural network is ready to 

be used. When presented with an input pattern, a feed 

forward network computation results in an output pattern 



which is the result of the generalisation and synthesis of 

that it has learned and stored in its connection strengths. 

Therefore, in a backpropagation network, two com­

putational procedures are performed in a learning cycle: 

the feedforward computation of activation and the back­

ward propagation of error signals for the modification of 

connection weights via the generalised delta rule. A feed­

forward computation proceeds as follows: 

1) The units in the input layer receive their activations in 

the form of an input pattern and this initiates the feed 

forward process; 

2) The processing units in each layer receive outputs 

from other units and perform the following computa­

tions: 
a) Compute their net input N i, 

M 

Ni = L wikok' 
k=l 

(1) 

where ok = output from units impinging on unit j, and 

M = number of units impinging on unit j. 

b) Compute their activation values from their net in­

put values, 

(2) 

where F1 is usually a sigmoid function and its exact 

form is determined by the specified range of activation 

values. For example, if the activation values are taken in 

the range of(- 1.0, 1.0), then F(N) = 2.0(1 1 (l+e·N-e)-

0.5), where e is the bias value at that processing unit. 

c) Compute their outputs from their activation values. 

Usually, the output is taken the same as the acti­

vation value. 

(3) 

3) The output values are sent to other processing units 

along the outgoing connections. 

Several mechanisms for imparting self-organisation 

or learning to these multilayer feedforward networks have 

been developed. One form of supervised learning, devel­

oped by Rumelhart et al. [7], is called the generalised 

delta rule and is the learning mechanism used in back­

propagation neural networks. The modification of the 

strengths of the connections in the generalised delta rule, 

as described in [7], is accomplished through performing 

the gradient descent on the total error space in a given 

training case. 

(4) 

In this equation, ll = a learning constant called the 

"learning rate", V E~w !J ) = gradient of the total error with 

respect to the weight between units i and j, and 8 . = 
d

. J 
gra 1ent of the total error with respect to the net input at 

unitj. At the output units 81 is determined from the dif­

ference between the expected activations t . and the 
J 

computed activation a j: 

81 = V 1 -a JF'(N 1) (5) 

where F' is the derivative of the activation function. 

At the hidden units the expected activations are not 

known a priori. The following equation calculates 8 . for 
J 

the hidden units: 

(6) 

In this equation, the error attributed to a hidden unit 

depends on the error of the units it influences. The 

amount of error from these units attributed to the hidden 

unit depends on the strength of connection from the hid­

den unit to those units; a hidden unit with a strong exci­

tatory connection to a unit exhibiting error will be 

"blamed" for this error, causing this connection strength 

to be reduced. 

3. Higher order learning and adaptive architecture 

determination 

As has been stated in the previous section, the gene­

ralised delta rule [7] is basically a steepest descent 

scheme with constant step length in a network setting, 

performing a gradient descent on the error function with 

respect to the weight space. For multilayer feedforward 

neural networks, the error function is usually a highly 

non-linear function defined as: 

1 N 
E(w) = lim - "LEk , 

N-'>oo N k=l 
(7) 

where Ek =lt(xd-o(xk,w)j
2

; t(xk) is the expected 

output; o(x k, w) is the network prediction which is a 

function of the input vector x and network weight vector 

w; and N is the number of training cases. This error sur­

face is dominated with flat areas and troughs, which ren­

der the learning with the generalised delta rule in a back­

propagation network very slow. Another drawback of a 

standard backpropagation network is the need for pre-
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determination of network architecture and the inability to 

incorporate a priori possessed knowledge. 

The modelling capability and performance of a 

backpropagation network is mainly determined by the 

network architecture and its rule of learning. Recently, 

several approaches have been proposed to improve the 

performance of backpropagation neural networks. In gen­

eral, there are five ways to approach a solution to this 

problem: 1) using better data representation scheme for 

input and output, 2) employing higher order learning al­

gorithms or heuristic algorithms that more quickly find 

the minimum of the error surface [8-11], 3) preprocessing 

the input pattern, introducing independence into the input 

vector space [12], thus facilitating the determination of 

the decision space, 4) designing innovative training 

schemes so that certain knowledge is pre-oriented in the 

network before the final training session [13,14], and 5) 

incorporating network geometry adaptation with efficient 

learning algorithms. 

From the derivation of the generalised delta rule, it is 

tempting to postulate that all the minimisation schemes 

are applicable as learning rules for multilayer feedfor­

ward networks. Furthermore, numerical analysis tells us 

that higher order schemes such as Newton's method, 

quasi-Newton methods, and Conjugate Gradient methods 

have better numerical properties than the steepest descent 

method with respect to the rate of convergence and nu­

merical stability [15,16]. Nevertheless, for neural network 

learning algorithms which are eventually to be employed 

in massively parallel hardware implementation of these 

networks, it is desirable that they not only be computa­

tionally efficient, but also suitable for implementation via 

local update only, thus conserving the parallelism of net­

work operations. With the generalised delta rule, the for­

mula for weight update with a momentum term is: 

llw(t) = -Y]dEjdw(t) +a llw(t -1), (8) 

such as the Quickprop algorithm [9], the Delta-Bar-Delta 

algorithm [10], the Pseudo-Newton algorithm [8], and 

quasi-Newton style methods [17], etc, using either heu­

ristic rules or higher order information to compute the 

learning parameters. Experience shows that heuristic 

rules are simple, robust, and computationally efficient, 

while the acquisition of higher order information is usu­

ally computationally expensive. 

Except for some trivial problems, the network ar­

chitecture on the hidden layers cannot be determined in 

advance. The common approach to architecture determi­

nation uses trial and errors, for simple problems. For real 

world engineering problems such as material modelling, 

it is imperative to have adaptive or dynamic mechanisms 

to determine the network architecture. Since the input and 

output of a network are determined by the nature of the 

problem and the representation scheme selected, adaptive 

schemes for architecture determination have adopted 

mechanisms of either "growing" or "pruning" the number 

of processing in hidden layers. A "growing" process 

starts with a basic or small network (usually one or a 

small number of hidden units), and then adds or grows 

additional processing units or a set of units including 

layer(s) to the network as the training process progresses 

until the convergence of training is reached. A "pruning" 

process usually starts with a larger network than needed, 

and then deletes redundant processing units or links dur­

ing or after a training session with the hope that the gen­

eralisation capability of the trained network would be 

improved. Sometimes, "pruning" is also performed on 

nodes in the input and output layers in order to determine 

the most important set of variables in the representation 

scheme. The former approach is represented in the Dy­

namic Node Creation scheme [18], the Cascade Correla­

tion Learning Architecture [13], and the Self-Organising 

Neural Network [14], and the latter in Skeletonization 

[19], and Kamin's pruning scheme [20]. 

where TJ is the learning rate and a the momentum factor, In general, the "growing" approach is more efficient 

and both of them are assumed constants. The update of and robust than the "pruning" scheme for the determination 

weights can be proceeded either in batch mode or in on- of network architecture. For certain classification prob-

line mode. The former refers to updating weights after all !ems, pruning can be incorporated to improve network 

the training sets have been presented, and the later after generalisation. However, for real value functional mapping 

each training set. For second and higher order algorithms problems in which accuracy on predictions becomes more 

with adaptive determination of TJ or a, the update of demanding, pruning might have an adverse effect. 

weights is usually implemented in batch mode. To date, On functional mapping, theoretical studies have 

numerous new learning schemes have been proposed, proven that a multilayer feedforward network with one 
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hidden layer and enough hidden nodes is a universal ap­

proximator, ie, any function can be embedded in a three 

layer network [21, 22]. This conclusion is valid in the 

limit sense of statistical measurement. However, for effi­

ciency in learning, two or more hidden layers are usually 

used in applications [23]. 

For material modelling problems investigated by the 

authors [2-4], the architecture adaptation scheme is based on 

"growing" approach [18] with the use of two hidden layers. 

4. Neural network modelling procedure 

In applying neural networks as a computational and 

knowledge representation tool to solve any non-trivial 

problem, the modelling process usually involves the fol­

lowings aspects: 1) problem representation, 2) architec­

ture determination, 3) learning process determination, 4) 

training of the neural network with training data, and 5) 

testing of the trained network with testing data for gener­

alisation evaluation. These five aspects also constitute the 

framework of the neural network-based material model­

ling process to be described later. 

In general, the problem representation process con­

sists of evaluating the applicability of the neural network 

paradigm, the selection of the type of neural networks, 

data acquisition, data processing, and the design of repre­

sentation schemes for input to and output from the net­

work. The representation schemes are determined not 

only by the nature of the problem, but also by the way 

that models are to be used. There are basically two kinds 

of representation schemes: distributed representations and 

local representations. For function mapping problems 

such as material modelling, local representation scheme 

is usually adopted. 

Architecture determination usually involves the se­

lection of the number of layers and nodes in each layer, 

as well as the interconnection scheme. Obviously the size 

of the input and output layer is solely determined by the 

representation scheme devised. However, the size of each 

hidden layer and the number of hidden layers are strongly 

influenced by the complexity of the problem, features or 

regularities embedded in the training data, and the effi­

ciency of learning algorithms. In other aspect, the way 

that nodes in different layers are connected is also very 

important because it controls the pathway for information 

flow or propagation in a network. Though the connection 

between layers can be forward, backward, and recurrent, 

or be established between subsets of processing units in 

different layers, for simplicity, complete connection be­

tween adjacent layers is usually enforced in multilayer 

feedforward neural networks, especially when dealing 

with function mapping problems. 

After the data representation scheme and initial net­

work architecture are defined, the determination of a ge­

neric learning process involves making decision on the 

type of processing units such as the L unit and the LIT unit 

(where Lis summation and IT is multiplication), the selec­

tion of activation function, and the design of learning algo­

rithms. Once the whole learning system is constructed, the 

training and testing process can be performed. 

Training means that the defined network is presented 

with processed training data and learns or discovers the 

relationships embedded in the data using learning algo­

rithms. Convergence of learning is reached if the error as­

sociated with the network prediction falls within a speci­

fied error tolerance. If a presentation of the whole training 

data to the network is defined as a learning cycle or an 

epoch, the iterative training process usually requires many 

hundreds or thousands epochs to reach convergence. After 

the network is properly trained, its generalisation capability 

is evaluated in the testing phase. If the trained network 

generalises reasonably well on novel but similar cases, the 

resulting neural network can then be qualified as a legiti­

mate model for use in the problem domain. 

For real world engineering problems, this whole 

modelling process is likely to be an iterative process, and 

the generalisation evaluation on the trained network from 

the testing phase functions more like a feedback signal. 

Since a neural network learning system is an integration 

of different mutually interacting learning components, 

one or sometimes even all of the previous processes may 

need to be examined and adjusted if the generalisation 

capability of the trained network is unsatisfactory. The 

discrepancy between the expected output and network 

prediction may be result from any of the following 

sources: 1) an inappropriate representation scheme of the 

problem; the training data is not comprehensive enough 

to represent the essence of the problem; or the domain is 

not suitable to neural networks; 2) the current architecture 

of the network is insufficient to accommodate the knowl­

edge to be captured; 3) the learning algorithm is not effi­

cient and robust enough to handle the complexity of the 

problem; and 4) the training is pre-maturely terminated. 
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5. Neural network-based material modelling metho­

dology 

The basic strategy for developing a neural network­

based model of material behaviour is to train a multilayer 

feedforward neural network on the stress-strain results 

(data) from a series of experiments on a material. If the 

experimental data about the material behaviour are fairly 

comprehensive, the trained neural network would contain 

sufficient information about the material behaviour to 

qualify as a material model. Such a trained neural net­

work not only would be able to reproduce the experi­

mental results it was trained on, but through its generali­

sation capability it should be able to approximate the re­

sults of their experiments on the same material. The de­

gree of accuracy in this generalisation depends on both 

how comprehensive and representative the training set is 

and how well the network is trained. 

Clearly, the procedures used in the construction of a 

neural network-based constitutive model of a material 

would fall into the general framework of the neural net­

work modelling process described in the previous section. 

Because of the nature of a material model and its in­

tended use within the finite element method, the model­

ling procedure has its own characteristics and requires 

special considerations. 

As has been mentioned before, the first step in con­

structing a neural network-based material model is the 

determination of representation scheme for material be­

haviour in the input and output. The composition of the 

input and output layers depends primarily on the intended 

use of the neural networks. Although neural networks 

offer considerable flexibility in this regard, it is natural 

that the first attempt in the development of neural net­

work-based material models should follow the traditional 

mathematical models for use with finite element methods. 

As such, the processing units in the input and output lay­

ers all represent stresses, strains, their increments, and in 

some cases a portion of the stress-strain history. Since the 

material behaviour is highly path dependent, the input 

must have sufficient information for the neural network 

to characterize the stress-strain state of the material and 

contain certain information on the previous history. 

Therefore, two representations schemes - the so-called 

one-point and three-point schemes, are introduced to 

characterize the behaviour of a material in different stress 

states. These representation schemes can be either stress-

controlled which means that the network is to predict 

strain increments corresponding stress increments, or 

strain-controlled on the contrary. 

For instance, in a stress-controlled one-point repre­

sentation scheme, the stress-strain state of a material at 

one point in the stress space and strain space and the next 

stress increments at that point are included in the input, 

and the corresponding strain increments are in the output. 

For a strain-controlled one-point representation scheme, 

however, the strain increments are in the input and stress 

increments are in the output. The three-point representa­

tion scheme is an expansion of the one-point scheme, 

with an expanded input including two additional stress­

strain states in the stress-strain history. 

Decisions regarding the neural network architecture 

are of primary importance in the successful construction 

of neural network-based material models. The capacity of 

a neural network is a function of the number of hidden 

layers and the number of processing units in each layer 

[22]. The pattern of connectivity between the layers is 

also part of this equation. However, in this study a simple 

pattern of connectivity is used: each processing unit has 

outgoing connections to all the processing units in the 

next layer. The capacity of the neural network is also 

somehow related to the amount of the information in the 

training data and the complexity of the knowledge con­

tained in that data. Currently there are no quantitative 

theories or good qualitative rules for determining the ca­

pacity of a multilayer feedforward neural network, as this 

aspect is not yet well understood. Though theoretical 

studies have concluded that one hidden layer with enough 

hidden nodes can accomplish the modelling of any func­

tions [21, 22], in practice, especially with modelling of 

continuous functions, it has been observed that the use of 

two hidden layers would yield a more efficient training. 

According to the authors' experience, two hidden layers 

are used for material modelling problems. With the use of 

two hidden layers, the size of each hidden layer is deter­

mined by the modified dynamic node creation scheme. 

Consequently, the final size of each hidden layer thus 

determined corresponds to the network architecture when 

a minimal or optimal training data set is successfully 

trained. This minimal or optimal training data set is de­

fined as a set of data that contains sufficient information 

to characterise the behaviour of a material. 
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Whether or not a neural network has been trained 

with the minimal training data set is indicated by how 

well the trained network generalises on the testing cases. 

Ideally, if the network is trained with a quasi-optimal or 

quasi-minimal training set, reasonable generalisation 

should be observed on the testing results. Otherwise, if 

the training set is too small, poor testing performance 

would be expected, as the trained network has not been 

presented with all examples of the relevant information 

so as to generalise properly. On the other hand, if the 

training data set is too large, no substantial improvements 

would result from further training, after the network has 

been trained with the minimal training data set. 

In the incremental training scheme proposed [2], 

training and testing proceed in the following way: 1) start 

with a small network and a small training set, and train 

the network until convergence; 2) add additional data to 

the training set, and restart training on the augmented 

data with the previously converged network; add nodes to 

hidden layers; 3) when a training set containing a reason­

able number of stress-strain data has been successfully 

trained, perform the generalisation tests on untrained 

stress-strain cases; and 4) if all the testing results appear 

in good agreement with expected behaviour, stop train­

ing; otherwise repeat the data set addition and generalisa­

tion testing processes. 

There are some benefits to using incremental train­

ing with tests for generalisation evaluation. First, with the 

use of the dynamic node generation scheme and incre­

mental presentation of the entire training data set, the 

network is not overwhelmed by the large amount of in­

formation at the initial stage of training so that the learn­

ing process converges faster than when guessing a net­

work architecture and presenting the network with the 

whole training set at once. Secondly, starting with a small 

amount of data and monitoring the generalisation per­

formance of the neural network at certain stages of train­

ing, a quasi-minimal training set can usually be obtained. 

However, the true minimal training set is not theoretically 

defined at this time, but it is known to depend on both the 

comprehensiveness of the available experimental data on 

a material and the characteristics of the problem. 

Concluding remarks 

Research interest in neural networks, as a paradigm 

of computational knowledge representation, has experi-

enced considerable increase in recent years. This new 

interest is supported by the realisation that neural com­

puting is inherently parallel and functionally more close 

to the operation of the brain; that is, it has the capability 

of self-organisation or learning. With the advance and 

sophistication in some branches of neural-networks, the 

technology has been successfully tailored for a wide 

range of problems, such as the modelling of some cogni­

tive processes, vision, image processing, pattern recogni­

tion, and some engineering fields. It is obvious that with 

the continuous development on the computational theory 

and hardware implementation of neural networks, this 

technology will potentially provide an efficient and viable 

tool for solving certain engineering problems that are 

difficult for mere conventional approaches. 

Research in the application of neural networks to 

problems in computational mechanics is quite recent [1]. 

It can be concluded that the use of neural networks for the 

modelling of material behaviour is viable and promising. 

Such an approach does not make a priori assumptions 

about the behaviour of a material, but rather bases its pre­

diction of stress-strain behaviour on the experimental data 

with which it has been trained. 
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MEDZIAGTJ NEURONINITJ TINKLTJ FIZIKINIAI 
MODELIAI 

J. Ghaboussi, X. Wu, G. Kaklauskas 

Santrauka 

Straipsnyje supaiindinama su neuroniniq tinklq metodo 
taikymu, kuriant fizikinius medziagq modelius. Neuroniniq 
tinklq metodas, pagristas zmogaus smegenq darbo modeliavimo 

principais, tik si desimtmeti praktiskai pradetas taikyti [vairiose 
mokslo srityse. Pirmieji du sio straipsnio autoriai pirmieji pa­
saulyje pritaike neuroniniq tinklq metod<t fizikiniams mode­
Hams kurti. 

Neuronini tinkl<t sudaro mazgai (neuronai), tarpusavyje 
sujungti rysiais. Mazgai yra suskirstyti i grupes, vadinamas 
s1uoksniais: pradiniq duomenq ir rezultatq sluoksniai bei tarpi­
niai sluoksniai (1 pav.). Mazgai charakterizuojami aktyvumu, o 
rysiai stiprumu. Mazgo aktyvumas nustatomas kaip iji ateinan­
ciq rysiq stiprumo ir atitinkamq mazgq aktyvumo sandaugq 
suma. Rysiq stiprumas, kuris gali tureti tick teigiamq, tick nei­
giam<t skaitintt reiksmft, nustatomas neuroninio tinklo ,moky­
mo" metu. Tinklas dainiausiai ,mokomas" pradiniq duomenq ir 
rezultatq pavyzdziu pagal tam tikras mokymo taisykles. IS visq 
zinomq neuroniniq tinklq bene placiausiai taikomas gr[Ztamasis 
neuroninis tinklas (backpropagation neural network). 

Straipsnyje supazindinama su griztamuoju neuroniniu tin­
klu, jo ,mokymo" taisyklemis, dinaminiais mazgq kurimo prin­
cipais bei tinklq kurimo metodologija. Straipsnio pabaigoje 
pateikiama medziagq fizikiniq modeliq kurimo neuroniniais 
tinklais metodologija. 
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