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DEFLECTION ESTIMATES OF REINFORCED CONCRETE BEAMS BY DIFFERENT 
METHODS 

G. Kaklauskas, D. Bacinskas, R. Simkus 

1. Introduction 

Civil engineers for analysis of reinforced concrete 

structures can choose between traditional code and mod­

ern numerical methods. Design codes of different coun­

tries [1-3] are often based on different assumptions and 

techniques for strength, cracking and deformation analy­

sis. Although these methods ensure safe design, they do 

not reveal the actual stress-strain state of cracked struc­

tures and often lack physical interpretation. Numerical 

methods which were rapidly progressing within last dec­

ades are based on universal principles and can include all 

possible effects such as material non-linearities, concrete 

cracking, creep and shrinkage, reinforcement slip, etc, 

being responsible for complexity of this material. How­

ever, it must be said that the progress is mostly related to 

development of mathematical apparatus, but not material 

models, or in other words, the development was rather 

qualitative than quantitative. 

Recently a new constitutive relationship for cracked 

tensile concrete based on smeared crack approach has 

been proposed [ 4] for deformation analysis of flexural 

reinforced concrete members. The relationship has been 

developed on a basis of a number of stress-strain curves 

for tensile concrete [4-6] obtained from beam tests re­

ported in literature. 

This work investigates accuracy of the proposed 

constitutive model. For that purpose, deflections have 

been calculated for a large number of experimental rein­

forced concrete beams reported by several investigators. 

Comparison with the experimental deflections and with 

estimates of four other methods has been performed. 

2. Deflection calculation methods 

In this section, five deflection estimation methods for 

flexural reinforced concrete members are briefly de-

scribed. The first three methods chosen for comparison 

are the American Code (ACI Committee 318 [1]), the 

Eurocode EC2 [2], and the Russian (old Soviet) Code 

(SNiP 2.03.01-84 [3]) methods. Although these methods 

are based on different analytical approaches, all of them 

proved to be accurate tools for deflection assessment of 

members with high and average reinforcement ratios. It 

should be noted that these methods have quite a different 

level of complexity since the Russian Code method em­

ploys a great number of parameters and expressions 

whereas the ACI and EC2 methods are simple and include 

only basic parameters. The fourth method, here called as 

present analysis or layered method, is based on classical 

techniques of strength of materials extended to applica­

tion of layered approach and full material diagrams. For 

modelling of behaviour of cracked tensile concrete, it 

employs the constitutive stress-strain relationship pro­

posed by the first author [ 4]. The fifth method, based on 

regression analysis, has been developed by the third 

author [7]. 

ACI method [1]. The curvature of a reinforced conc­

rete member is determined by the classical expression 

K = M I EJ where EI is the flexural stiffness. Branson 

[8] offered constant modulus of elasticity of concrete, 

Ec, for all loading stages, but varying moment of inertia, 

I . Thus, for the elastic stage, I 8 is written as for the 

gross concrete section ignoring reinforcement and for the 

load corresponding to the steel yielding I cr is calculated 

as for the cracked section. For loading points between the 

concrete cracking and yielding of the steel, Branson [8] 

derived the following equation to express the transition 

from I g to I cr that was observed in experimental data: 

I =(Mcr]
3

I +[l-(Mcrl
3

]/ e M g M cr · (1) 
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Here M is the external moment; M cr = f ,.1 g I y 1 is 

the cracking moment; fr = 0.643.J/: [MPa] is the 

modulus of rupture; y1 is the distance from centroid to 
' extreme tension fiber; fc is the compressive concrete 

cylinder strength. 

Deflection for simple beams can be assessed from 

2 f = sK/0 , (2) 

where s is the factor depending on a loading case; K is 

the curvature corresponding to the maximum moment, 
and 10 is the beam span. 

EC2 method [2]. In the EC2 model, a reinforced 

concrete member is divided into two regions: region I, 

uncracked, and region II, fully cracked. In region I, both 

the concrete and steel behave elastically, while in region 

II the reinforcing steel carries all the tensile force on the 

member after cracking. Average curvature is expressed as 

(3) 

where K1 and Kz correspond to the curvatures in regions 

I and II, respectively. 
A distribution coefficient ~ indicates how close the 

stress-strain state is to the condition causing cracking. It 

takes a value of zero at the cracking moment and ap­

proaches unity as the loading increases above the crack­

ing moment. It is given by the relation 

(4) 

where fJ1 is a coefficient taking into account the bond 

properties of the reinforcement, it is taken 1 for deformed 

bars and 0.5 for plain (smooth) bars; /3 2 is a coefficient 

assessing the duration and nature of the loading, it takes a 

value of 1 for short-term loads and 0.5 for sustained or 

cyclic loads; CJ sr and CJ s are the stresses in the tension 

steel calculated on the basis of a fully cracked section 

respectively under the cracking load and the load conside­

red. 

Russian (old Soviet) Code Method [3]. It is an em­

pirical method based on a large number of experimental 

data which fundamentals were proposed by Murashev in 

1950. The curvature of the cracked non-prestressed mem­

ber is expressed through average strains of tensile rein­
forcement £ sm and compressive concrete at the extreme 

fiber Ecm: 

K = Esm + Ecm 

d 
(5) 

where 

(6) 

From (5), (6) and (7) the curvature relationship is as 

follows: 

(8) 

where M is the external moment; z is the distance from 

the compressive to tensile resultant in a section; d is the 

effective depth; 1Jf s is the ratio of the average steel strain 

£ sm and the steel strain in the cracked section £ s ; lfl c is 

a similar factor defined for extreme compressive concrete 

fiber; As is section area of tensile reinforcement; Es and 

E c are modulus of elasticity for steel and concrete re­

spectively; ~ is compression zone depth factor; factor v 
assesses non-elastic strains in the concrete of the com­

pression zone and factor cp f takes into account influence 

of the compressive reinforcement and compressive flange 

ofT -section. 

In the development of this method, particular atten­

tion has been paid to deriving an empirical expression for 
factor lfl s . 

Present analysis method. This method is based on 

classical techniques of strength of materials extended to 

application of layered approach and full material dia­

grams. For modelling the behaviour of cracked tensile 

concrete, it employs results obtained by the first author 

[4]. It is based on the following approaches and assump­

tions: 1) assumption of 'plane sections'; 2) assumption of 

perfect bond between concrete and reinforcement; 3) 

smeared crack approach; 4) layered approach; 5) use of 

full stress-strain material relationships assumed to be con­

stant for different layers of the same material. 

According to the layered approach, the beam's cross­

section is divided into a number of horizontal layers cor­

responding to either concrete or reinforcement. Each 

layer may have different material properties assumed to 

be constant over the layer thickness. Thickness of the 

reinforcement layer is taken from the condition of the 

equivalent area. For reinforcement material idealisation, a 

bilinear, trilinear (Fig 1, a) or more complex stress-strain 

259 



relationship can be adopted. The stress-strain relationship 

for the compressive concrete has been assumed as in 

Fig 1, b where the ascending part has been taken accord­

ing to the well-known expression [9]: 

a,~+;;-( :Jl (£0 ~ 2[; IE,) (9) 

The authors presently are working on developing a 

new stress-strain relationship for cracked tensile concrete. 
This analysis employs the shape of CJ 1 - E 1 relationship 

a 

b 

0.1 fc' 

' 
Eo 0.0035 fc 

c 

Fig 1. Stress-strain relationships: a- reinforcement; b - com­
pressive concrete; c - tensile concrete 

[ 4] shown in Fig 1, c the descending part of which has the 

expression: 

(JI =at~·[1-Et _1+/3(1-a)/a]. 
f3 {3(Et)b 

(10) 

where 

(11) 

In present analysis, tensile strength of concrete is 

taken as [3]: 

' ~31.:2 
ft = 0.2yV Rfs [MPa], (12) 

where R15 is 150 mm cube compression strength. 

Due to present state of knowledge [ 4], parameters 

a and b were assumed as 0.625 and 1 respectively. Then 

Eq (10) acquires the following shape: 

CJ
1 

= 0.625/
1
,(1- Et - 1+0.6/3J. (13) 

f3 f3Et ) 

Parameter f3 defining the length of extension of 

CJ 1 - E 1 curve (see Fig 1, c) is equal to E 1 correspond­

ing to zero stress. According to [4] f3 is taken as 

2 f3 = 32.8-27.6p+7.12p ' 

f3 = 5' if p?. 2% ' 

where p is reinforcement percentage. 

(14) 

A computer program has been developed for assess­

ment of average stress and strain state at any point of the 

beam as well as for calculation of curvatures and deflec­

tions. For a given external moment, the computation is 

performed in iterations by the following steps: 

1. In the first iteration, elastic material properties are 

assumed for all the layers. 

2. Geometrical characteristics are calculated for the 

transformed cross-section. 

3. Curvature of the section is calculated from the ex­

pression: 

(15) 

where (El) tr is the flexural stiffness of the transformed 

cross-section. 

4. Longitudinal strain at every layer i is taken as 

(16) 
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where Yi is the distance of i layer from the centroid of 

the transformed cross-section. 

5. For the assumed material diagrams (Fig 1), stress 

CJ i corresponding to strain E i is obtained. A secant de­

formation modulus E i = CJ i I E i is determined. 

6. Values of the obtained secant deformation modu­

lus Ei for every layer are compared with the previously 

assumed or computed ones. If the agreement is not within 

the assumed error limits, a new iteration is started from 

step 2. 

7. After convergation of deformation modulus E i 

for all the layers, final values of strains, stresses and cur­

vature are assessed. For deflection calculation which is 

performed by Mohr's integral technique, analogous com­

putations are carried out for other sections of the beam. 

Shimkus method [7]. The proposed curvature rela­

tionship is based on regression analysis made for 583 

experimental beams: 

M 
aM (--b) 

u M 
/(= u 

Ecitr 
(17) 

where parameters a and b for non-prestressed members 

= 370 0.19(a-1.75)-2.5(f.Ws-0.134) a . e , 

b = 0.085(lna + ~(lna) 2 + 2.44. 

I tr 
a=--2-. 

nAsh 

(18) 

(19) 

(20) 

Here M and M u are the external and the ultimate 

bending moments; Ec is the modulus of elasticity of 

concrete; 

section; 

I tr is the moment of inertia of the transformed 

As 
J1 = bd is the reinforcement percentage; 

Es 
n =- is the modular ratio; As is the section area of 

Ec 

tensile reinforcement; h is the section depth. 

3. Comparison of deflections assessed by different 

methods with test results 

This section compares mid-span deflections assessed 

by five methods with test data of 76 simple beams re­

ported by five [10-14] investigators. Main characteristics 

of the beams indicating variations in span, cross-section 

parameters and concrete strength are presented in Ta­

ble 1. Most of the beams had a rectangular, but some an 

inverted T section. All the beams were subjected to a 
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short-term loading of two concentrated forces which di­

vided the beam into three equal pieces. 

Experimental data of Nemen [10], Artiomjev [11] 

and Jokubaitis [12] can be categorised as beams having 

average and high reinforcement ratios. However, experi­

mental data of Figarovskij [13] and Gushcha [14] should 

be dealt separately, since most of the beams had a very 

low reinforcement ratio. Lightly reinforced beams is an 

extreme case of bending analysis, because the stress-strain 

state as well as curvatures and deflections are signifi­

cantly influenced by effects of cracked tensile concrete. 

Since tensile strength is a highly dispersed value, it is 

very difficult to predict deflections accurately at loads just 

above the cracking loads, particularly for lightly reinforced 

members. 

Deflections for beams were calculated at five mo­

ment levels, ie 0.4, 0.55, 0.6, 0.7 and 0.8 of My which is 

the yielding moment. The moments smaller than the 

cracking moment were excluded from the analysis. How­

ever, for most of the Figarovskij beams [13] only one or 

two experimental deflection points corresponding to the 

above-indicated moment levels were available. This was 

due to two reasons: 1) tests of many beams, particularly 

those later on subjected to long-term loading, were termi­

nated prior to moment 0.8 My; 2) for some beams, par­

ticularly those with very small reinforcement ratios, the 

experimental cracking moment, M cr,exp, exceeded 

0.4 My . For these reasons, deflections for the Figarovskij 

beams were calculated at five moment levels equally 

spaced between moments 1.1 M cr ,exp and M max,exp 

where M max,exp is the maximum moment reached in the 

experiment. The lower limit assured comparison of de­

flections for the cracked stage. 

Accuracy of predictions made by each method has 

been assessed using basic statistical parameters such as 

mean value and standard deviation calculated for relative 

deflections fth I fexp . Table 2 contains the statistical 

parameters for the following data: 1) for each of the aut­

hor; 2) data of Nemen, Artiomjev and Jokubaitis, ie be­

ams having average and high reinforcement ratios (Table 

1); 3) data of Figarovskij and Gushcha, ie beams having 

small and average reinforcement ratios, and 4) for total 

data. The following observations can be made from the 

results presented in Table 2. 

For beams with average and high reinforcement ra­

tios (data ofNemen, Artiomjev and Jokubaitis), accurate 



Table 1. Main characteristics of beams 

Author Total number of Span Height Width Reinforcement ratio 100 mmcube 
beams [m] [mm] [mm] [%] strength [MPa] 

Artiomjev 15 3.00 250-264 176- 187 0.801 - 0.909 18.84- 53.40 

Nemen 18 (5*) 1.80 180- 185 100-187 1.336- 2.910 30.00- 45.00 

Jokubaitis 8 1.80 180 100 0.800- 0.950 53.50- 64.80 

Figarovskij 33 (9*) 3.00 248-254 179- 181 0.160-1.260 10.50 - 36.00 

Gushcha 4 3.60 306-312 133 - 162 0.279 - 0.970 30.00- 40.80 

* - a number of beams ofT or I - sections out of the total number of beams 

Table 2. Statistical parameters for relative deflections, fth I fcxp , estimated by different methods 

Author of ACI EC2 
experiment Mean Stand. Mean Stand. 

Artiomjev 0.944 0.074 0.888 0.071 

Nemen 1.046 0.088 0.971 0.080 

Jokubaitis 0.992 0.095 0.963 0.089 

Figarovskij 1.115 0.266 1.230 0.320 

(1.064) (0.219) (1.136) (0.233) 

Gushcha 0.791 0.177 0.866 0.102 

Total (1 +2+3) 0.997 0.120 0.937 0.111 

Total (4+5) 1.079 0.276 1.190 0.324 

(1.027) (0.233) (1.100) (0.238) 

Total 1.037 0.214 1.058 0.270 

(1.010) (0.178) (1.007) (0.195) 

deflection predictions have been made by the present 

analysis, Eurocode, Russian Code, and ACI methods 

yielding 10.7, 11.1, 11.6 and 12.0% of standard devia­

tions for relative deflections, fth I fexp. However, pre­

dictions for lightly reinforced beams (data of Figarovskij 

and Gushcha) have been far less accurate giving standard 

deviation of 16.5, 32.4, 20.2 and 27.6% for the respective 

methods. The shocking value of 32.4% for the EC2 

method can be explained by inaccuracies of the deflection 

estimates made for the Figarovskij beams at loads just 

above the cracking loads. The EC2 method underesti­

mates the cracking moment and often significantly over­

estimates the corresponding deflection in some cases 

yielding an error of over 100%. Elimination of deflection 

points of Figarovskij data corresponding to 1.1 M cr ,exp , 

lead to improved results (particularly for the EC2 

method) given in parentheses in Table 2. 

Although as it is shown in Table 2 some better 

agreement between the calculated and experimental de­

flections in terms of standard deviation for the total data 

Russian Code Present analysis Shimkus method 

Mean Stand. Mean Stand. Mean Stand. 

1.011 0.063 0.975 0.061 0.838 0.140 

1.027 0.115 1.007 0.092 1.048 0.089 

1.012 0.051 0.991 0.069 0.676 0.169 

1.003 0.204 0.957 0.168 1.037 0.295 

(0.998) (0.164) (0.945) (0.145) (1.014) (0.242) 

0.883 0.154 0.890 0.122 0.648 0.213 

1.015 0.116 0.989 0.107 0.913 0.192 

0.990 0.202 0.950 0.165 0.994 0.312 

(0.983) (0.167) (0.938) (0.144) (0.965) (0.269) 

1.003 0.164 0.971 0.139 0.952 0.260 

(1.001) (0.141) (0.967) (0.127) (0.935) (0.230) 

has been achieved for the present technique and the Rus­

sian Code (13.9 and 16.4% respectively), it should be 

kept in mind that experimental data of Figarovskij and 

Artiomjev were used in developing the Russian Code 

method and the experimental data of 9 beams from the 

Figarovskij tests were employed for developing the mate­

rial model of tensile concrete in the present analysis [Eq 

(13)]. Besides, these two methods use similar empirical 

material characteristics for concrete (compressive and 

tensile strength and modulus of elasticity) to those used 

by the experimenters (all from the former USSR). Fur­

thermore, the main concern of the Code methods is a cor­

rect deflection estimate at the service load while deflec­

tions at other loads are of lesser importance. All this indi­

cates that under different conditions of comparison, the 

results might be slightly different from those presented in 

Table 2. 

The Shimkus method, based on regression analysis 

principles, makes 19.2 and 31.2% error for members with 

large and small amounts of reinforcement respectively. As 
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the most simple, this method can be used for cases when 

high deflection estimation accuracy is not required. 

4. Conclusions 

Accuracy of the proposed constitutive relation for 

tensile concrete in flexure has been investigated by means 

of deflection estimation of 76 experimental RC beams. 

Comparison with the experimental deflections at five load 

levels and with estimates of four other methods has been 

performed. 

For beams with average and high reinforcement ra­

tios (data of Nemen, Artiomjev and Jokubaitis), accurate 

deflection predictions have been made by the present 

analysis, Eurocode, Russian Code, and ACI methods 

yielding 10.7, 11.1, 11.6 and 12.0% of standard devia­

tions for relative deflections, fth I fexp. However, as 

expected predictions for lightly reinforced beams (data of 

Figarovskij and Gushcha) have been far less accurate 

giving standard deviation of 16.5, 32.4, 20.2 and 27.6 % 

for the respective methods. These risen inaccuracies are 

related to increased influence of tensile concrete which is 

a highly dispersed value. The EC2 method underestimates 

the cracking moment and often significantly overestimates 

the corresponding deflection in some cases yielding an 

error of over 100%. 

Due to more accurate deflection estimates for lightly 

reinforced members, the best agreement in terms of stan­

dard deviation assessed for the total data has been 

achieved for the present analysis and the Russian Code 

methods (13.9 and 16.4% respectively). 

The Shimkus method which is the most simple 

among the five methods gives reasonable results, par­

ticularly for members with higher reinforcement ratio. 

This method can be used for cases when high deflection 

estimation accuracy is not needed. 
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GELZBETONINIT) SIJV JLINKIV VERTINIMAS 
JV AIRIAIS ME TO DAIS 

G. Kaklauskas, D. Bacinskas, R. Simkus 

Santrauka 

Neseniai buvo pasiillyta supleisejusio tempiamo betono 
itempiQ-deformacijl! priklausomybe [4] lenkiaml!ill gelzbetoni­
niQ element4 deformacijoms apskaiciuoti. Si priklausomybe 
buvo isvesta, taikant novatoriskll_ metodll_ [4-6], kuriuo is ekspe­
rimentiniQ lenkiamll gelzbetoninill sijl! momentl!-kreiviQ ir 
(arba) momentQ-deformacijQ diagraml! nustatoma visa tempia­
mo betono vidutinill itempiQ-deformacijQ diagrama, iskaitant ir 
jos krintancill.ill. dali. Apdorojus ivairiQ autoriQ eksperimentais 
gautas tempiamo betono itempil!-deformacijQ diagramas, buvo 
pasiillyta minetoj i medziagos priklausomybe, aprasyta (I 3) 
priklausomybe. 

Sio darbo tikslas yra patikrinti pasiulytosios priklausomy­
bes tikslumll_. Jll_ taikant dideliam eksperimentiniQ gelzbetoniniQ 
sijQ (isbandytQ kelill tyrinetoj4) skaiciui buvo apskaiciuoti iJin-
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kiai ir palyginti su kittt zinom1.1 analitinitt metodtt apskaiciavimo 
rezultatais. 

Trumpai apibiidinami penki lenkiamt.titt gelzbetoninil! 
element11 ilinkil! skaiciavimo metodai. Pirmieji trys - tai ameri­
kiecil! [1], Euronormtt [2] bei Lietuvoje galiojancil! norm11 [3] 
metodai. Ketvirtasis, vadinamasis sluoksnil! metodas, yra pa­
gristas: 1) klasikinemis medziagl! atsparumo formulemis, 2) 
sluoksnitt metodu, 3) issamil! medziagl! diagramtt taikymu bei 
4) iteraciniu skaiciavimu. i:Hame metode supleisejusio tempiamo 
betono darbo modeliavimui taikoina sio straipsnio pirmojo au­
toriaus pasiiilyta priklausomybe ( 13 ). Penktasis, regresines ana­
lizes metodas [7], yra pasiiilytas sio straipsnio treciojo auto­
riaus. 

Pateikiami svarbiausi 76 gelzbetoninitt sijl!, 5 autoril! is­
bandytl! trumpalaike apkrova, duomenys (1 lent.). Visais mine­
tais metodais kiekvienai sijai penkiuose apkrovos lygiuose buvo 
apskaiciuoti ilinkiai, kurie buvo palyginti su eksperimentl! re­
zultatais. 

Vertinant tikslumll, kiekvienam skaiciavimo metodui buvo 
nustatyti tokie svarbiausi statistiniai dydziai kaip vidurkis bei 
vidutinis kvadratinis nuokrypis. Sie statistiniai parametrai buvo 

gauti santykiniams ilinkiams fth I fexp, kur fth yra apskai-

ciuotas, o fexp - eksperimentinis ilinkis. Skaiciavimo rezulta­

tai parode (2 lent.), kad pirmieji keturi metodai pakankamai 
tiksliai ivertina vidutiniskai ir stipriai armuottt sijl! ilinkius 
(gautas vidutinis kvadratinis nuokrypis yra 1 0-12%). Taciau 
silpnai armuotoms sijoms, kuril! ilinkiams tempiamo betono 
darbas turi didel .. itakll, gauta daug didesne paklaida. Skaiciuo­
jant sluoksnil! metodu bei Lietuvoje galiojancil! norml!, ameri­
kiecil! norm11 ir Euronormtt metodais gautas atitinkamai 16,5, 
20,2, 27,6 ir 32,4% vidutinis kvadratinis nuokrypis. Euronor­
mose didele paklaida daroma skaiciuojant ilinkius, kuriuos atin­
kantys momentai nedaug virsija supleisejimo moment!l. Bendrai 
ivertinant visas sijas, geriausi rezultatai gauti skaiciuojant 
sluoksnil! ir Lietuvoje galiojanCil! norm11 metodais (vidutinis 
kvadratinis nuokrypis atitinkamai 13,9 ir 16,4%). Kartu biitina 
paZymeti, kad Artiomjevo ir Figarovskio eksperimentinil! sijl! 
duomenys (1 lent.) buvo panaudoti, kuriant Lietuvoje galiojan­
cil! nOriDl! metOd!\, 0 pastarojo autoriaus Sijl! duomenys - ir 
isvedant (13) priklausomyb ... Be to, pagal siuos du metodus be­
tono charakteristikorns (stiprumas tempiant ir gniuzdant bei 
tamprumo modulis) nustatyti taikomos panasios empirines for-

mules, kokias taike ir eksperimenttt autoriai (visi is buvusios 
Sovietl! Sajungos). Pagaliau pagal normtt metodus pagrindinis 
demesys skiriamas ilinkiams, atitinkantiems normin .. apkrovll, 
apskaiciuoti, o kitl! ilinkil! vertinimas gali biiti ne toks tikslus. 
Tai gali reiksti, kad, esant kitokioms palyginimo S!llygoms, re­
zultatai galettt biiti kiek kitokie. 

Vertinant stipriai ir silpnai armuottt sijtt i!inkius Simkaus 
pasiiilytu metodu [7], gautas atitinkamai 19,2 ir 31,2% vidutinis 
kvadratinis nuokrypis. Sis metodas, kaip paprasciausias is visl! 
minetl!, gali biiti taikomas tais atvejais, kai tikslus ilinkitt verti­
nimas nera biitinas. 
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