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NON-LINEAR DEFORMATION AND STABILITY OF REINFORCED CONCRETE
COLUMN UNDER THE LONG-TIME LOAD

I. Cypinas

1. Introduction

If concrete stress exceeds 0.30...0.45 of the com-
pressive strength, the stress-strain relation becomes es-
sentially non-linear. That is true for instantaneous de-
formation as well as for sustained deformation of conc-
rete, in the case of creep. Non-linear behaviour of
material is substantially important for creep stability
analysis when the singular point on the deformation
path of a structure must be detected.

Energy criteria of stability, usually adopted for
instantaneous loading, become inapplicable for long-
time deformation. In this case the energy criterion
should be replaced by more general Liapunov’s stabi-
lity concept [1], that is based on the perturbation ana-
lysis of an ideal solution in the whole time period.
However, the point is that the comprehensive creep
analysis of concrete structure is practicable only by
means of numerical procedures. But the numerical so-
lution of a problem is not ideal in itseif because of
inherent approximation and round-off errors. On the
other hand, the strict numerical analysis of perturba-
tions would be the time-consuming and tedious task.
More realistic way of creep stability analysis will be
to choose a number of representative loading histo-
ries, compute the corresponding deformation paths and
check the system stability detecting in each computa-
tional step possible singular points of the numerical
process.

There is a number of analytical investigations of
reinforced concrete creep stability [1], but few works
deal with non-linear creep. The problem is that there
is a lack of comprehensive analytical representation
of non-linear creep in the world literature.

Vast experimental research of concrete creep ha-
ve been carried out in the former Soviet Union [2].
Corresponding theoretical developments are summari-
sed in [3]. Remarkable contribution to the non-linear
creep problem has been marked by the reference [4]

where the problem was treated in connection with the
long-time strength of concrete.

Experimental investigation of creep stability has
been carried out in many research institutions of the
Soviet Union. Experimental results of Soviet resear-
chers are presented in references [5-9], published in
the nineteen sixties and early seventies. Less succes-
sful was analytical representation creep and numerical
implementation of creep deformation and stability ana-
lysis (see [10]). The results of experimental investiga-
tions in the Soviet Union were summarised in referen-
ce [11] where comprehensive analytical representations
of non-linear long-time and instantaneous concrete de-
formations were presented. No later publications have
appeared that amend or supplement the reference [11].

Simplified effective modulus and mean stress met-
hods are used in practical creep calculations. The so-
called age adjusted effective modulus method (AAEM)
developed by Z. P. Bazant [1] is compared in [12]
with these two above-mentioned; AAEM is recom-
mended for deflection calculations. The AAEM met-
hod is applied to creep stability analysis of concrete-
filled steel columns [13]. The tension zone was ne-
glected in this article. Deficiency of all these methods
is that they do not account for real stress history of
concrete and thus the realistic picture of loss of sta-
bility cannot be revealed.

Geometrically and materially non-linear deforma-
tion and stability analysis of reinforced concrete co-
lumn is described in this article. Numerical solution
was obtained on a PC by means of the Newton-Raph-
son procedure implementing the arc-length method.
Non-linear constitutive relations in the integral form
were used for concrete, the smeared crack approach
[14] was used for the tension zone of the cross-sec-
tion. Linear stress-strain relation was used for steel

reinforcement.
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2. Analytical representation of concrete creep and

shrinkage

Many publications deal with the analytical repre-
sentation of concrete creep and shrinkage. CEB FIP
recommendations implemented in Eurocode-2 [15], ACI
design aid [16], and BPKX model [17], proposed by
Z. P. Bazant are among them. In reference [18] the
problems of long-time fracture and non-linear creep
of concrete are linked together. ACI formulae deal
with only linear creep.

The creep strain at the time ¢ due to the constant
stress o applied at the time ¢, is represented in the
form of

F™ (o)
E(10)
where ¢, - modulus of elasticity at the time £,
F™s (6) and z, |,

functions for instantaneous and creep deformation. The

€(0,1) = +0 Cy(t.19)+ F 7 (0) Cy(1,19) (2.1)

A, — predefined non-linear stress

linear C, (¢ t;) and non-linear C, (1, ¢;) creep func-
tions are not identical. In the linear case we simply
have F ™(c5) = 0, F “(c) = 0 and the third member
of the equation (2.1) vanishes.

In non-linear analytical expressions offered by the
Eurocode-2 [15] instantaneous strain is assumed to be
linear and the second term in (2.1) is omitted. All
creep curves irrespective of stress level are similar.
The similarity of creep curves, however, is not sup-
ported by the experimental evidence, it is only the
simplification of a problem (see [3]).

The creep strain due to variable stress is usually
represented by a hereditary integral. The creep for-
mula results in the following integral expression:

e(r) = J'dF To(t")

E) _[CO(t,t’) do(t)

lo

t
e,y dFrioen)

’()

2.2

Here we can see that linear creep law is gene-
ralised by the replacement in the first and third terms
do by the dF™ and JF respectively.

In reference [11] the analytical expressions for
functions in equations (1.1) and (1.2) and the values
of material constants recommended for design pur-
poses are presented. Non-linear stress functions Fins

and FY are taken in the form

F ins =o(l +vknm), Fe =GV(.T]" (23)

where mn=g/f, and

depending on strength of concrete. The quantity f. is

VsV, mn are constants

characteristic cubic strength, "normative" according to
Russian terminology.

The creep compliance function here appears in
the form of

Co(2, ty)=C(o0,28) Q2y) ft—1y) 2.4)

where

Q(ty) =c+d exp(—Ytg)
ft—1y)=1-kexpl-y,(t—ty)]

and C(eo, 28) is the ultimate value of creep deforma-
tion of concrete loaded at the age of 28 days. The
latter quantity depends on the strength class, slump of
the concrete mix, notional size M, = AV (4 - area
of a cross-section, ¥ - volume) of the structural mem-

ber and the relative humidity of the surrounding at-
mosphere. The values of Y,Y,,d depend on the

notional size of a member and constants are ¢ = 0.5,

k = 0.8. The non-linear part of the function is

Cy(r.10) = exp(- f(t=10)) Col(t, 1) (2.5)

Development of concrete strength with time is
described by the formula

f.n ={l+

where j: 2%

23(t-28) P
(55+ frg) (E+11) |7 %8

(2.6)

is the cubic strength class of concrete.
The modulus of elasticity is tabulated in [11] as a
function of £(#).

The shrinkage strain at time ¢ is estimated by the

formula

Eqn(tty) =€gp ooty 1 —exp[—o, (¢ —24)1} (2.7)

where €, (e0,1,) is the uiltimate shrinkage value of
concrete which started to dry at the age ¢, . The
quantity

slump of the concrete mix, notional size of the mem-

€. (,2,) depends on the strength class,

ber and the relative humidity of the surrounding at-
mosphere. The parameter o, depends on the notional

size of a member.

3. Incremental form of constitutive relation

The time period in the integral constitutive rela-
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tion (2.2) can be divided into number of small time
intervals and the equation (2.2) can be represented as
a finite sum and rearranged in the incremental form.
One can denote

Ac,=o(t)-o(t,.)). AC  =C(t;,t,)-C(t;_,, 1)

The strain increment during the time interval

At,‘ =ti —ti—] will be

Ag; =04 A Ci(? o+ A Cil. ot

1 dF™
E,_, do

1 dF’_in.\-
E. do

1

1
—AG,
2

J+

i-1
% Y ART(AC . +AC! )+
k=1l

il
%ZAck(A Py +ACP, )+
k=1

1
- Ao,
2

(
\

or \
e drzy .
G ia+t——C i, ‘

ag )i

where o, =ol(t,), E =E(t;), F =F(o(1,)).

The linear version of such equation was earlier
derived by the author in reference [19].

The total increment of concrete strain may be

written 1n a concise form as

sh
i

i

Asi = ’

+Ag +Ae
El

(3.2)

where As‘i"" =gg4,(t;,t,) - €,(_,1,). The first term
of this equation expresses the creep strain due to stress
increment during the current time interval and com-
prises the last line of the equation (3.1). The second
term accounts for influence of the preceding stress
history and represents the first four lines of the equa-
tion (3.1). The advantage of incremental equation (3.2)
is that it can be simply inverted in regard of variable
Ac;. This equation is used to derive the incremental
stiffness relations of a finite element.

Until the appearance of cracks, the linear creep
law for concrete in tension is adopted. The cracked
tension zone of concrete is modelled using the aver-
aged crack opening [19]. The strain-softening concept
is applied to describe the interaction of cracked con-
crete and tensile reinforcement. The total tensile strain

of concrete is represented as a sum

e=¢g" &+ 3.3)
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where ¢ linear creep strain, ¢ — shrinkage strain,
and & is averaged tensile strain due to cracking of
concrete. The latter is assumed to be independent of
tine and depends on the concrete stress only. Dis-
tinctive feature of the cracking model is that unload-
ing of concrete from the falling branch of a stress-
strain curve is essential. Analytical relations and com-
putational procedures that describe strain-softening of
cracked concrete and unloading are described by the
author in reference [19].

4. Computer implementation of the method.
Solution of the global equations

Let z be the n-dimensional vector of nodal dis-

placements and A is the load-scaling parameter that
represents the imposed load in form of A P where

p 1s constant reference vector. Solution of time-inde-
pendent non-linear problems is based on the load-
scaling concept. The extension of this concept over
the time domain is not a straightforward task.

The natural way is identifying the time ¢ with
the loading parameter and establishing a certain rela-
tion A =A(z). The governing equations of concrete
creep and shrinkage problems then can be written in
the form of

¥(z,A) = P 4.1

where P is the vector of the nodal forces equivalent
to the time-varying external loads and shrinkage of
concrete. The vector P is independent of nodal dis-
placements z. Solving these equations, the deforma-
tion path of a structure can be traced and the limit
point found out in (n+1) - dimensional z-A space.

In a time-independent limit point problem the
falling branch of deformation path appears and de-
crease of the loading parameter A is observed. The
time, however, is an irreversible quantity. In the case
of non-decreasing relation A = (¢) the falling branch
of the deformation path will not exist and limit point
in its usual sense will not appear. In this case, the

loss of stability will be characterised by the infimte
rate of deformation

t, (Fig 1.
The governing equation (4.1) can be soived us-

dz/dt at a certain critical time

ing a step-by-step Newton-type procedure. Each step
comprises the prediction and correction stage. Con-
sider the i-th step of the procedure when the solution

at the previous step, z,_;,A;_; , is already known. In



ter

Fig 1. The critical time of the non-linear system

the prediction stage, the displacement increment will

be obtained from the matrix equation

oY, (a P, 0¥, )
i A 7 = { _ i A x
a7 U a0 (4.2)
¥, =¥(z. %), P =PX;)

The first term of the right-hand side of the equation
represents the direct increase of the nodal load vec-
tor. The second term represents the influence of the
previous concrete stress history.

Equation (4.2) gives a linear approximation Az,
of an exact displacement increment. Updated solution
Zi_y +Az; must be refined in the correction stage.
The correction procedure may be obtained represent-
ing the equation (4.1) in the linearised form. The

J-th update of the solution would be governed by the

equation

R 2 . -

FZF_ 8z, =P’ . i (43)
where

pi "‘P(z" ;\/), pl = P(?u’)

Right-hand side of the above equation represents

Pl = pivt _pit,
This equation corresponds to the time-controlled cor-

the vector of unbalanced forces

rection procedure. More appropriate iterative correc-
tion procedure can be obtained using the so-called
arc-length method proposed by E. Ramm [20]. The
iteration path follows the normal plane to the tangent
increment Az,  obtained from the equation (4.2).

For the solution of the problem, the non-linear
equation solver and a complex computer program,
modelling non-linear behaviour of concrete, both in
compression and tension zones, is elaborated. Incre-

mental constitutive relations (3.1) and (3.2) for non-
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linear creep are implemented in the layer model of
the reinforced concrete cross-section. The distinctive
feature of the program is that the stress histories for
all layers of the structural members are stored in the
computer memory. The updated Lagrangian formula-
tion of geometrically non-linear problem is used.

The program is written in Fortran and comprises
four levels: 1) non-linear modelling of an individual
concrete layer of the reinforced concrete cross-sec-
tion, 2) evaluating the quasi-elastic incremental stiff-
ness parameters and stress resultants of a cross-sec-
tion, 3) computing incremental stiffness matrices and
stress resultants of a finite element, 4) the solution of
global non-linear equations for the whole structure
using the arc-length method.

Three-node beam finite element is used in the
third level of the algorithm. The third node is re-
quired to represent the non-uniformity of axial defor-
mation of the element. The axial deformation depends
on the concrete stress that varies along the member
axis, whiie the stress resultant in both concrete and
reinforcement is constant. The variable stiffness of
the cross-section 1s also accounted for in the finite
element model. The description of the finite element

1s given in full detail in author's article [19].

5. Numerical results

Pinned-end column under the constant long-lasting
eccentrically applied axial force was analysed. The
structural parameters of the column were taken the same
as for the worked example presented in reference [11].
The effective length of the column is assumed I, =
=15.0 m, the cross-section is bxh = 0.4x0.5 m, area of
steel reinforcement is 4 = 12.32 cm? (Fig 2).

F
N “E )
(|
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Fig 2. Eccentrically compressed column
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Fig 3. Displacements at the middle section of the col-

umn as functions of time, days: top curve — F=2.90 MN,
middle — F=2.75 MN, lower — F=240 MN

Material parameters comply with the Soviet de-
sign code [21]. The characteristic yield strength and
modulus of elasticity for steel are correspondingly
fw =390 MPa and £ = 200000 MPa. The cubic

strength of concrete and mean secant modulus of
elasticity for concrete correspondingly f ,, = 40.0 MPa
and E_, = 36000 MPa. The axial load is applied at

the ends of the column with the eccentricity e, =

0
=0.0375 m. The slump of concrete mix is 2 cm, the
relative humidity of surrounding atmmosphere 1s W =
=70 %. The notional size of a column, M, = A/V,
m’! in which 4 — the area of member surface exposed
to drying, and V - the volume of a member, is M, =
=90 m'.

The load was imposed at the concrete age £, = 28
days, the start of concrete drying ¢, = 28. For the
sake of computational stability the load was assumed
to be growing linearly until the time ¢ = 40 days and
then remained constant.

In order to keep numerical efficiency, the time
steps were varied according to a geometrical progres-
sion, while the increments of a step parameter A were
kept constant. The time relating to the i-th step was
assumed ¢ = toq’ , where ¢, is initial time and ¢ is a
time step parameter. Denoting the structure life pe-
riod as a final time moment ¢, = OqN one can obtain

the equality

Ntifto =Ntn /1o

hence,
T'n
t; =tgexpl A; In— (5.1)
ty
where i = 1,., Nand A, =i/N

To identify the buckling phenomenon, several
values of the acting force F were tried. Computed dis-
placements of the middle section of the column are
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plotted in Fig 3 against the time variable. The critical
time ¢, = 1118 days for load value F =275 MN and
t, = 426 days for load value F = 2.90 MN was

obtained. For load F = 2.70 MN and less the loss
of stability had not been reached within the assumed

life span 1, = 10000 days of the structural member.

Fig 4 shows the distribution of concrete stress
over the height of the cross-section. The concrete stress
is growing with time and redistribution of internal
forces between the concrete and steel reinforcement
is observed: the concrete stress is diminishing and
the reinforcement stress is growing. The extreme val-
ues of concrete stress MPa are indicated in the fig-
ure. [t is remarkable that the critical load of the
column computed by approximate formulas of the
reference [11} is F = 2.30 MN. The formula of the
Soviet design code [21] yields more conservative value
of the critical load F = 2.115 MN.

-0.52 | /1 (1.0 1]
o 1.9ﬂ 1
245 | -33.26 |

Fig 4. Distribution of concrete stress MPa over the height
of the middle section when F=2.90 MN: left - at the time
moment ¢ = 41.2 days, right - at the time moment ¢ =
426.4 days

6. Conclusions

1. Incremental constitutive relations for non-lin-
ear creep, based on the code-type recommendations,
are constructed.

2. The finite element that models materially and
geometrically non-linear time-dependent deformation
and cracking of the tension zone of a reinforced
concrete member has been successfully implemented
in the Fortran program.

3. The arc-length algorithm was employed for
the global analysis of a structure. The non-linear
numerical simulation of structural behaviour reveals

the non-linear creep buckling phenomenon.



4. The computer code can be used for interpre-
tation of test results and verification of simplified

methods used in everyday design practice.
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GELZBETONINES KOLONOS NETIESINES
DEFORMACIJOS IR PASTOVUMAS VEIKIANT
ILGALAIKEI APKROVAI

I. Cypinas
Santrauka

Ankstesnéje autoriaus publikacijoje [19] paskelbtas
geometri¥kai netiesinés gelZbetoninés konstrukcijos valks-
numo skai¢iavimo skaitmeninis metodas jvertinant tem-
piamos betono zonos plei§étuma, laikant, kad gniuZdo-
mas betonas nei$eina i¥ tiesinio valkinumo riby. Siame
straipsnyje vertinamas gniuzdomo betono netiesinis valks-
numas. Taikomas sluoksniuotasis skerspjivio modelis.

Panaudotos netiesinio valk§numo pareinamybés, ku-
rios pateiktos Maskvos NIIZB parengtose rekomendaci-
jose betono valkinumui ir susitraukimui apskai&iuoti [11].
Atsisakoma nuo valk$numo kreiviy panaumo hipotezés
nepriklausomai nuo jtempimy lygio. Suplei§éjusio tem-
piamo betono ir armatiiros saveika modeliuojama taikant



i¥sklidusio plysio savoka, kai pagal (3.3) formulg su-
muojamos tarp plysiy esantio betono deformacijos ir su-
vidurkintas ply$io atsiverimo plotis.

Konstrukcijos deformuotasis biivis modeliuojamas ge-
ometriskai ir fiziskai netiesiniais strypiniais baigtiniais
elementais. Sistemos deformacijy lygtys (4.2) sprendZia-
mos diskretiniais laiko prieaugiais, randant deformacijy
trajektorija jungtingje laiko ir poslinkiy erdvéje. Pasto-
vumo klausimas sprendZiamas varijuojant apkrovos dydj
ir nustatant konstrukcijos egzistavimo kritini laiko mo-
menta, kai sistemos kitimo pobidis tampa singuliarus.
Taikomas autoriaus sukurtas netiesinis baigtinis elemen-
tas ir autoriaus sudaryta netiesiniy lyg¢iy sprendimo pro-
grama.
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