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NON-LINEAR DEFORMATION AND STABILITY OF REINFORCED CONCRETE 
COLUMN UNDER THE LONG-TIME LOAD 

I. Cypinas 

1. Introduction 

If concrete stress exceeds 0.30 ... 0.45 of the com­

pressive strength, the stress-strain relation becomes es­

sentially non-linear. That is true for instantaneous de­

formation as well as for sustained deformation of conc­

rete, in the case of creep. Non-linear behaviour of 

material is substantially important for creep stability 

analysis when the singular point on the deformation 

path of a structure must be detected. 

Energy criteria of stability, usually adopted for 

instantaneous loading, become inapplicable for long­

time deformation. In this case the energy criterion 

should be replaced by more general Liapunov's stabi­

lity concept [I], that is based on the perturbation ana­

lysis of an ideal solution in the whole time period. 

However, the point is that the comprehensive creep 

analysis of concrete structure is practicable only by 

means of numerical procedures. But the numerical so­

lution of a problem is not ideal in itseif because of 

inherent approximation and round-off errors. On the 

other hand, the strict numerical analysis of perturba­

tions would be the time-consuming and tedious task. 

More realistic way of creep stability analysis will be 

to choose a number of representative loading histo­

ries, compute the corresponding deformation paths and 

check the system stability detecting in each computa­

tional step possible singular points of the numerical 

process. 

There is a number of analytical investigations of 

reinforced concrete creep stability [1], but few works 

deal with non-linear creep. The problem is that there 

is a lack of comprehensive analytical representation 

of non-linear creep in the world literature. 

Vast experimental research of concrete creep ha­

ve been carried out in the former Soviet Union [2]. 

Corresponding theoretical developments are summari­

sed in [3]. Remarkable contribution to the non-linear 

creep problem has been marked by the reference [ 4] 

where the problem was treated in connection with the 

long-time strength of concrete. 

Experimental investigation of creep stability has 

been carried out in many research institutions of the 

Soviet Union. Experimental results of Soviet resear­

chers are presented in references [5-9], published in 

the nineteen sixties and early seventies. Less succes­

sful was analytical representation creep and numerical 

implementation of creep deformation and stability ana­

lysis (see [I 0]). The results of experimental investiga­

tions in the Soviet Union were summarised in referen­

ce [II] where comprehensive analytical representations 

of non-linear long-time and instantaneous concrete de­

formations were presented. No later publications have 

appeared that amend or supplement the reference [11]. 

Simplified effective modulus and mean stress met­

hods are used in practical creep calculations. The so­

called age adjusted effective modulus method (AAEM) 

developed by Z. P. Bazant [I] is compared in [12] 

with these two above-mentioned; AAEM is recom­

mended for deflection calculations. The AAEM met­

hod is applied to creep stability analysis of concrete­

filled steel columns [13]. The tension zone was ne­

glected in this article. Deficiency of all these methods 

is that they do not account for real stress history of 

concrete and thus the realistic picture of loss of sta­

bility cannot be revealed. 

Geometrically and materially non-linear deforma­

tion and stability analysis of reinforced concrete co­

lumn is described in this article. Numerical solution 

was obtained on a PC by means of the Newton-Raph­

son procedure implementing the arc-length method. 

Non-linear constitutive relations in the integral form 

were used for concrete, the smeared crack approach 

[ 14] was used for the tension zone of the cross-sec­

tion. Linear stress-strain relation was used for steel 

reinforcement. 
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2. Analytical representation of concrete creep and 

shrinkage 

Many publications deal with the analytical repre­

sentation of concrete creep and shrinkage. CEB FIP 

recommendations implemented in Eurocode-2 [15], ACI 

design aid [16], and BPK.X model [17], proposed by 

Z. P. Bazant are among them. In reference [18] the 

problems of long-time fracture and non-linear creep 

of concrete are linked together. ACI formulae deal 

with only linear creep. 

The creep strain at the time t due to the constant 

stress CT applied at the time t0 is represented in the 

fonn of 

F in.,· ( 0") cr 
E{<Y,t) = +cr C0(t,t0)+ F (<Y) c, (t,to) (2.1) 

E(t0 ) 

where tcr - modulus of elasticity at the time t0 , 

pns (cr) and z;.J' A.i-I -- predefined non-linear stress 

functions for instantaneous and creep defonnation. The 

linear C
0 

(t. t
0

) and non-linear C
1 

(f. t0 ) creep func­

tions are not identical. In the linear case we simply 

have F ins(cr) :: cr, F cr(cr) = 0 and the third member 

of the equation (2.1) vanishes. 

In non-linear analytical expressions offered by the 

Eurocode-2 [15] instantaneous strain is assumed to be 

linear and the second term in (2.1) is omitted. All 

creep curves irrespective of stress level are similar. 

The similarity of creep curves, however, is not sup­

ported by the experimental evidence, it is only the 

simplification of a problem (see [3]). 

The creep strain due to variable stress is usually 

represented by a hereditary integral. The creep for­

mula results in the following integral expression: 

1 
dF 111"[cr(t')] 

1 

E(t) = J E(t') + J C0 (t, t') da(t') 
'o 1o 

t 

+ J c, (t, t') dF"'[a(t')] (2.2) 

Here we can see that linear creep law is gene­

ralised by the replacement in the first and third terms 

dcr by the dFim· and dFcr respectively. 

In reference [ 11] the analytical expressions for 

functions in equations ( 1.1) and (1.2) and the values 

of material constants recommended for design pur­

poses are presented. Non-linear stress functions pns 
and per are taken in the form 

(2.3) 
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where ll = aj fc and v k , v, , m, n are constants 

depending on strength of concrete. The quantity fc is 

characteristic cubic strength, "normative" according to 

Russian tenninology. 

The creep compliance function here appears in 

the form of 

where 

Q(t0 ) = c+d exp(-y t0 ) 

f(t-t 0 ) = 1-k exp[-y 1(t-t0 )] 

(2.4} 

and C( oo, 28) is the ultimate value of creep deforma­

tion of concrete loaded at the age of 28 days. The 

latter quantity depends on the strength class, slump of 

the concrete mix, notional size M 0 = AIV (A - area 

of a cross-section, V - volume) of the structural mem­

ber and the relative humidity of the surrounding at­

mosphere. The values of y, y 1 , d depend on the 

notional size of a member and constants are c = 0.5, 

k = 0.8. The non-linear part of the function is 

Development of concrete strength with time is 

described by the fonnula 

[ 
23 ( t - 28) ] ' 

fc(t)= l+ (55+/,.zg)(t+ll) fc28 (2.6) 

where .!,28 is the cubic strength class of concrete. 

The modulus of elasticity is tabulated in [11] as a 

function of fc(t). 

The shrinkage strain at time t is estimated by the 

fonnula 

where E sh ( oo, t J ) is the ultimate shrinkage value of 

concrete which started to dry at the age t d • The 

quantity £ sh ( oo, t J) depends on the strength class, 

slump of the concrete mix, notional size of the mem­

ber and the relative humidity of the surrounding at­

mosphere. The parameter a·' depends on the notional 

size of a member. 

3. Incremental form of constitutive relation 

The time period in the integral constitutive rela-



tion (2.2) can be divided into number of small time 

intervals and the equation (2.2) can be represented as 

a finite sum and reananged in the incremental form. 

One can denote 

The strain increment during the time interval 

~ t; = t; - t;_ 1 will be 

I ( cr \ 
.. Mr. co . + ~lFi-1 cl . I 2 'I I. t-1 I .•.• -1 

\ o(J I 
(3.1) 

where cr 0 =cr(t0 ), E; =E(t;), F; =F(cr(t;)). 

The linear version of such equation was earlier 

derived by the author in reference [ 19]. 

The total increment of concrete strain may be 

written in a concise fonn as 

~(J. I 
~£; = --' +~£~ +~£" E( I 'I (3.2) 

where ~ ·'" E; = £.1-i, (t;, t")- £,11 (ti-l, ttl). The first term 

of this equation expresses the creep strain due to stress 

increment during the cunent time interval and com­

prises the last line of the equation (3.1 ). The second 

term accounts for influence of the preceding stress 

history and represents the first four lines of the equa­

tion (3.1 ). The advantage of incremental equation (3.2) 

is that it can be simply inverted in regard of variable 

~ cr;. This equation is used to derive the incremental 

stiffness relations of a finite element. 

Until the appearance of cracks, the linear creep 

law for concrete in tension is adopted. The cracked 

tension zone of concrete is modelled using the aver­

aged crack opening [ 19]. The strain-softening concept 

is applied to describe the interaction of cracked con­

crete and tensile reinforcement. The total tensile strain 

of concrete is represented as a sum 

(3.3) 
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where £ cr- linear creep strain, E"h - shrinkage strain, 

and ~ is averaged tensile strain due to cracking of 

concrete. The latter is assumed to be independent of 

time and depends on the concrete stress only. Dis­

tinctive feature of the cracking model is that unload­

ing of concrete from the falling branch of a stress­

strain curve is essential. Analytical relations and com­

putational procedures that describe strain-softening of 

cracked concrete and unloading are described by the 

author in reference [19]. 

4. Computer implementation of the method. 

Solution of the global equations 

Let z be the n-dimensional vector of nodal dis­

placements and "- is the load-scaling parameter that 

represents the imposed load in form of /, p where 

p is constant reference vector. Solution of time-inde­

pendent non-linear problems is based on the load­

scaling concept. The extension of this concept over 

the time domain is not a straightforward task. 

The natural way is identifying the time t with 

the loading parameter and establishing a certain rela­

tion /, = /,(t). The governing equations of concrete 

creep and shrinkage problems then can be written in 

the form of 

'P(z, /,) = P(/,) (4.1) 

where P is the vector of the nodal forces equivalent 

to the time-varying external loads and shrinkage of 

concrete. The vector P is independent of nodal dis­

placements z. Solving these equations, the deforma­

tion path of a structure can be traced and the limit 

point found out in (n+ 1) - dimensional z-/, space. 

In a time-independent limit point problem the 

falling branch of deformation path appears and de­

crease of the loading parameter /, is observed. The 

time, however, is an irreversible quantity. In the case 

of non-decreasing relation A = (t) the falling branch 

of the deformation path will not exist and limit point 

in its usual sense will not appear. In this case, the 

loss of stability will be characterised by the infinite 

rate of defonnation a z/Cl t at a certain critical time 

t,,. (Fig 1). 

The governing equation (4.1) can be soived us­

ing a step-by-step Newton-type procedure. Each step 

comprises the prediction and correction stage. Con­

sider the i-th step of the procedure when the solution 

at the previous step, Z;_ 1, "-i-l , is already known. In 



z 

Fig 1. The critical time of the non-linear system 

the prediction stage, the displacement increment will 

be obtained from the matrix equation 

(4.2) 

The first tenn of the right-hand side of the equation 

represents the direct increase of the nodal load vec­

tor. The second term represents the influence of the 

previous concrete stress history. 

Equation ( 4.2) gives a linear approximation A Z; 

of an exact displacement increment. Updated solution 

Z;_ 1 +A Z; must be refined in the correction stage. 

The correction procedure may be obtained represent­

ing the equation ( 4.1) in the linearised form. The 

j-th update of the solution would be govemed by the 

equation 

a \TI j-1 
r· . . I . I ···---- o z' = P'- - 'I'J-a T '(r) z 

where 

(4.3) 

Right-hand side of the above equation represents 

the vector of unbalanced forces r.i-1 = p.i-1 _ 'l'·i-1. 

This equation corresponds to the time-controlled cor­

rection procedure. More appropriate iterative correc­

tion procedure can be obtained using the so-called 

arc-length method proposed by E. Ramm [20]. The 

iteration path follows the normal plane to the tangent 

increment A Z; obtained from the equation (4.2). 

For the solution of the problem. the non-linear 

equation solver and a complex computer program, 

modelling non-linear behaviour of concrete, both in 

compression and tension zones, is elaborated. Incre­

mental constitutive relations (3 .1) and (3 .2) for non-
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linear creep are implemented in the layer model of 

the reinforced concrete cross-section. The distinctive 

feature of the program is that the stress histories for 

all layers of the structural members are stored in the 

computer memory. The updated Lagrangian formula­

tion of geometrically non-linear problem is used. 

The program is written in Fortran and comprises 

four levels: 1) non-linear modelling of an individual 

concrete layer of the reinforced concrete cross-sec­

tion, 2) evaluating the quasi-elastic incremental stiff­

ness parameters and stress resultants of a cross-sec­

tion, 3) computing incremental stiffness matrices and 

stress resultants of a finite element, 4) the solution of 

global non-linear equations for the whole structure 

using the arc-length method. 

Three-node beam finite element is used in the 

third level of the algorithm. The third node is re­

quired to represent the non-uniformity of axial defor­

mation of the element. The axial deformation depends 

on the concrete stress that varies along the member 

axis, while the stress resultant in both concrete and 

reinforcement is constant. The variable stiffuess of 

the cross-section is also accounted for in the finite 

element model. The description of the finite element 

is given in full detail in author's article [19]. 

5. Numerical results 

Pinned-end column under the constant long-lasting 

eccentrically applied axial force was analysed. The 

structural parameters of the colwnn were taken the same 

as for the worked example presented in reference [ 11). 

The effective length of the column is assumed /
0 

= 

=15.0 m, the cross-section is bxh = 0.4x0.5 m, area of 

steel reinforcement is As = 12.32 cm2 (Fig 2). 

Fig 2. Eccentrically compressed column 
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Fig 3. Displacements at the middle section of the col­
umn as functions of time, days: top curve- F=2.90 MN, 
middle - F=2.75 MN, lower - F=2.40 MN 

Material parameters comply with the Soviet de­

sign code [21]. The characteristic yield strength and 

modulus of elasticity for steel are correspondingly 

f"k = 390 MPa and E, = 200000 MPa. The cubic 

strength of concrete and mean secant modulus of 

elasticity for concrete correspondingly J:2x = 40.0 MPa 

and E,
111 

= 36000 MPa. The axial load is applied at 

the ends of the colunm with the eccentricity e0 = 

=0.0375 m. The slump of concrete mix is 2 em, the 

relative humidity of stmounding atmosphere is W = 

==70 %. The notional size of a colunm, M0 = AIV, 

m·l in which A - the area of member surface exposed 

to drying, and V - the volume of a member, is M0 = 
= 9.0 m· 1• 

The load was imposed at the concrete age t0 = 28 

days, the start of concrete drying td = 28. For the 

sake of computational stability the load was assumed 

to be growing linearly until the time t = 40 days and 

then remained constant. 

In order to keep nw_nerical efficiency, the time 

steps were varied according to a geometrical progres­

sion, while the increments of a step parameter A were 

kept constant. The time relating to the i-th step was 

assumed t; = t
0
qi , where t0 is initial time and q is a 

time step parameter. Denoting the structure life pe­

riod as a final time moment t N = t0qN one can obtain 

the equality 

Vt; /t0 = tyjt N /t0 

hence, 

(5.1) 

where i = 1, ... , N and A; = i/ N 

To identify the buckling phenomenon, several 

values of the acting force F were tried. Computed dis­

placements of the middle section of the colunm are 
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plotted in Fig 3 against the time variable. The critical 

tune tcr = 1118 days for load value F = 2.75 MN and 

t,., = 426 days for load value F = 2.90 MN was 

obtained. For load F = 2. 70 MN and less the loss 

of stability had not been reached within the assumed 

life span tN = 10000 days of the structural member. 

Fig 4 shows the distribution of concrete stress 

over the height of the cross-section. The concrete stress 

is growing with time and redistribution of internal 

forces between the concrete and steel reinforcement 

is observed: the concrete stress is diminishing and 

the reinforcement stress is growing. The extreme val­

ues of concrete stress MPa are indicated in the fig­

ure. It is remarkable that the critical load of the 

column computed by approximate formulas of the 

reference [11] is Fer = 2.30 MN. The formula of the 

Soviet design code [21] yields more conservative value 

of the critical load Fa = 2.115 MN. 

Fig 4. Distribution of concrete stress MPa over the height 
or'the middle section when F=2.90 MN: left - at the time 
moment t = 41.2 days, right - at the time moment t = 
426.4 days 

6. Conclusions 

1. Incremental constitutive relations for non-lin­

ear creep, based on the code-type recommendations, 

are constructed. 

2. The finite element that models materially and 

geometrically non-linear time-dependent deformation 

and cracking of the tension zone of a reinforced 

concrete member has been successfully implemented 

in the Fortran program. 

3. The arc-length algorithm was employed for 

the global analysis of a structure. The non-linear 

numerical simulation of structural behaviour reveals 

the non-linear creep buckling phenomenon. 



4. The computer code can be used for interpre­

tation of test results and verification of simplified 

methods used in everyday design practice. 
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GELZBETONINES KOLONOS NETIESINES 

DEFORMACIJOS IR PASTOVUMAS VEIKIANT 

ILGALAIKEI APKROVAI 

I. Cypinas 

Santrauka 

Ankstesneje autoriaus publikacijoje [19] paskelbtas 
geometriSkai netiesines gelzbetonines konstrukcijos valks­
numo skaiciavimo skaitmeninis metodas ivertinant tem­
piamos betono zonos pleisetum'l, laikant, kad gniuzdo­
mas betonas neiseina iS tiesinio valksnumo ribq. Siame 
straipsnyje vertinamas gniuzdomo betono netiesinis valks­
numas. Taikomas sluoksniuotasis skerspjiivio modelis. 

Panaudotos netiesinio valksnumo pareinamybes, ku­
rios pateiktos Maskvos NIIZB parengtose rekomendaci­
jose betono valksnumui ir susitraukimui apskaiciuoti [11]. 
Atsisakoma nuo valksnumo kreiviq pana5umo hipotezes 
nepriklausomai nuo itempimq lygio. SupleiSejusio tem­
piamo betono ir armatiiros sqveika modeliuojama taikant 



iSsklidusio plysio s(\vokq, kai pagal ( 3.3 l formultr su­
muojamos tarp plysiq esancio betono deformacijos ir su­
vidurkintas plysio atsiverimo plotis. 

Konstrukcijos deformuotasis biivis modeliuojamas ge­
ometriskai ir fiziskai netiesiniais strypiniais baigtiniais 
elementais. Sistemos deformacijq lygtys (4.2) sprendzia­
mos diskretiniais laiko prieaugiais, randant deformacijq 
trajektorijll. jungtineje laiko ir poslinkiq erdveje. Pasto~ 

vumo klausimas sprendziamas varijuojant apkrovos dydt 
ir nustatant konstrukcijos egzistavimo kritini laiko mo­
mentq, kai sistemos kitimo pobiidis tampa singuliarus. 
Taikomas autoriaus sukurtas netiesinis baigtinis elemen­
tas ir autoriaus sudaryta netiesini4. lygciq sprendimo pro­
grama. 
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