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FREE VIBRATION ANALYSIS OF REISSNER-MINDLIN PLATES BY A MODIFIED

LINKED INTERPOLATION ELEMENT

R. Bausys

1. Introduction

During the last decade a considerable amount of
the research has gone into implementation of Reiss-
ner-Mindlin theory [1, 2] to plate problems, especially
in the field of the finite elements. The classical Pois-
son-Kirchoff theory of plates requires C’-continuity.
In order to construct multidimensional C' interpola-
tions must be taken of considerable ingenuity and the
resulting schemes have always been extremely compli-
cated in one way or another. Plate elements derived
from Reissner-Mindlin theory possess several ap-
pealing advantages. First, the inclusion of shear de-
formation and rotary inertia has considerable effect
on the higher modes of thin plates and even on lower
modes of thick plates. Secondly, the construction of
the finite element formulation based on this approach
requires only C’-continuity of the solution. Such con-
tinuity is easily achieved, and permits a great deal of
flexibility in the specification of approximation func-
tions over an element. The Reissner-Mindlin theory is
applicable to thin as well as moderately thick plates
that covers the most engineering applications.

In the earliest use of Reissner-Mindlin plate ele-
ments, independent interpolation of transverse dis-
placements of the mid-plane (w) and of the rotations
8=(6,,6,)" was assumed in a "displacement” type
formulation allowing for transverse shear deforma-
tions. Although this bypasses the difficulties caused by
C' requirements of the classical Kirchoff theory, its
direct applications to thin plate situations induce often
"shear locking" behaviour. Due to this, enormous at-
tempts for deriving robust elements for Reissner-
Mindlin plate bending problems have been made. For
instance, the use of reduced or selectively reduced
integration, of assumed transverse strain fields and of
directly introducing independent variables for trans-
verse shear resultants S=(S,,S, )" [3, 4]. In general,
additional fields may be discontinuous from element
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to element so that the corresponding unknowns can
be eliminated on the element level which enables to
reduce order element stiffness matrix.

A finite element formulation is of a mixed type if,
according to [5], governing equations which are of
reducible type are used to derive weak forms, in which
continuous functions are approximated with piecewise
polynomials. The most widely used one is the case
when the transverse displacement, rotations and the
transverse shear resultants are independently inter-
polated; yielding a three field mixed problem. Recent
studies have shown that the performance of such
mixed formulation can significantly be improved if a
linked interpolation is used for the transverse dis-
placements, eg

w=Nw+N,,8 ,08=N,0 and S=N,S,

where W,0 and S are appropriate parameters of
transverse displacements, rotations and shear resul-
tants and, N, N,,, N, and N; are corresponding
interpolation functions. Generally, the functions N
are discontinuous over element boundaries and, thus,
the parameters S can be eliminated at element level
resulting in a simple displacement form of the final
equations.

In [6], the mixed formulation with linked inter-
polation to linear elastodynamic problems have been
applied and reported numerical tests on the four node
quadrilateral element, Q4BL, for free vibration analy-
sis. Numerical experiments given in [6] have shown
good performance of the element Q4BL. However, it
has been found that this element has zero-energy
mode for patch tests with relaxed boundary condi-
tions. An alternative quadrilateral element for Reiss-
ner-Mindlin plates, which extends the mixed formula-
tion using linked interpolation and has no zero-energy
mode, was developed for static problems in [7]. In this
paper, we have extended this formulation to dynamic
problems and perform a parametric study of this ele-



ment for free vibration problems. Several numerical
examples are given to study the performance of the
element Q4BLa when implemented to free vibration
problems. Validity of the present numerical experi-
ments is demonstrated by comparing the finite ele-
ment solutions with the results obtained using closed
form 3-D solutions, closed form Reissner-Mindlin
plate solutions and solutions based on thin plate the-
ory and the results obtained using widely used 3-D
finite elements.

2. Mixed finite element formulation with linked inter-
polation for linear elastodynamics

The basic assumptions used in the Reissner-
Mindlin plate theory are as follows:

(1) Plane sections normal to the mid-plane re-
main plane after deformations;

(2) Stress normal to the mid-plane is negligible, ie
o, =0.

Upon these assumptions, the governing equations
for both thick and thin plates can, with regard to iner-
tia effects, be written as [8]

3 . !
P G " DL +S=0 (1a)
12
S 46-Vw=0 (1b)
BGt
-ptw+V'S+q=0 (1c)

when there are no viscous-damping forces. This equa-
tion system can serve as the foundation on which a
mixed discretization is built. In above, the dots denote
the derivative with respect to time, L is the strain op-
erator and V is the gradient operator defined as

% x 2
- 30 %y 3/ax
%y %

72y
and D is the bending rigidity, eg for isotropic materials

0

L V=

£ 1 v 0
D=-}—2—1—£—-—2— v 1 0
(T=v") o 0 (1-v)/2

Here, E is the Young's modulus, ¢ - the thickness,
v - the Poisson's ratio, p is the mass density, G - the
shear modulus and § - a parameter to account for
non-uniform distribution of the transverse shear stress
across the section, respectively. The governing equa-
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tions for thin plate limits are special cases of (1) with
G > oo,

Using standard Galerkin procedure we weigh the
partial differential equation (1a) by ¥, =N, a, (1b) by
ﬁ=NS—I; and (1c) by &=NWE+NWE, we obtain
after integration by parts the semidiscrete, symmetric
system of equations in the following form (see Zien-

kiewicz & Taylor {5] for detailed derivation in static
cases):

My 0 M, 06|74 B 0](8) (f
0 0 0 |S|+|B" P cl|sl=|o]| 3
M, 0 M, |w| |0 C" o|w] |J,

where the submatrices in the "stiffness" matrix are

A= j (LN, )" D(LN, )dQ
2
B= J'QNg‘ NydQ +J;)(VNW)TNSd.Q

c= j NIV N, dQ
Q

1

_ T
P= L Ni 55, Ned2

and those in the "mass" matrix

'3
M, = LNL, pIN,,dQ + L N %N,,d_q )

Mg, = jQN:o piN,dQ

M, = J' NptN,dQ
2
and the force terms
fo=[Nlpade, 7. = [NlqdQ
o] 02

if the boundary tractions are assumed to be zero. The
second term on the right hand side of (5) corresponds
to the rotary inertia effects, which are of considerable
importance in thick plate situation [5].

The equation (3) are three-field mixed problem.
Since shear forces are assumed to be discontinuous
over element interfaces, it is possible alternatively to
eliminate the parameters S (at element level) yielding
a system of equations in the displacement form
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where

K, =-BP'C

K,=-C"PC

In free vibration analysis, the governing equations

will be of the form
Ko Ky ] [Ma My])(0)_(0
K, K, 0
3. Mixed quadrilateral element Q4BLa

w

M, M,,
where o is the eigenfrequency.

For clarity, a brief description of the element
Q4BLa will be given in this section. Considered ele-
ment has nodal parameters shown in Fig 1.

Jals

S parameters

é parameters

W parameters

Fig 1. Nodal parameters of the mixed element Q4Bla by Xu
et al [7]

Appropriate shape functions and parameters as
approximate the variables of the elements

w=§4:N,';,
i=/

6= }fNQE +
i=]

4
W+ NE (62 -6/ )h,
k=1

Nj 497

Il
iy

]

where i and k denote the corner node number and
side number, respectively, j denotes the internal
nodes. Here, both N, and N, are bilinear shape
functions, N are functions associated with each
vertex of the element
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N§* =(1-E2 1-n? )1+EE )(1+nm),
i=1,2,3,4.

N, are linear shape functions for shear force inter-
polation. In this case, a discontinuous interpolation
over element interfaces for shear forces is still as-
sumed. N%, (k=1,2,34) is a linear-quadratic linking
shape function associated with side k whose length is
h, and 6/ is the rotations in the tangential direc-
tion of side k at its two ends, respectively ( see Fig 2
for side 1-2). For more details, we refer to [6].

¥ (p=--1
X

Fig 2. Linking shape function N, for side 1-2

As discussed in [9], one of the most important
criteria of stability for any element assembly and
boundary conditions is that

n,+n, 2ng,

ng 2n,

where ng, n, and ng are the number of parameters
defining the approximations of 8 , w and S . If this
necessary condition is not satisfied, the equation sys-
tem (6) would be singular. This condition must be
satisfied not only for the whole system but it needs to
be satisfied for separate element patches to avoid lo-
cal instabilities.

For static analysis, the parameters of the internal
rotations and shear resultants can easily be eliminated
at the element level, yielding a four node quadratic
element with 12 degrees of freedom. Numerical ex-
amples given in [7] indicate that this element is effi-
cient and robust under most practical situations for
linear elastostatics. When applying the element to
dynamic problems, we eliminate in this study only the
shear resultants and, thus, keep 20 degrees of freedom
as was successfully done for the free vibration analysis
in [6].

Notice that the submatrix M,, is evaluated
through the integration of a sixth order polynomial,



M,, of a fourth order polynomial and M, of a
second order polynomial. Hence, different integration
rules can be used for different submatrices to improve
computational efficiency. If the nodal quadrature [4]
is used, a "lumped" mass matrix of the following form

ptl

where I is an identity matrix, is obtained with rotary
inertia term on the up-left corner.

4. Numerical examples

Two different types of polygonal plates were cho-
sen to provide example numerical results. Both cases
of thin and thick plates are discussed. Three different
types of boundary conditions are considered:

Simply supported edge (S),

Clamped edge (C),

Free edge (F).

A simple convention is adopted to define the bound-
ary conditions in a particular case. For example, S-C-
S-F implies two opposite edges are simply supported
with clamped and free boundary conditions on other

edges.

In the following, we shall denote finite element
meshes by (n, xn, ), where n; and n, represents the
number of elements in X and Y direction, respec-
tively. We shall also denote different eigenmodes by
(m,,m,) to indicate a mode with m; and m, half
waves in X and Y direction, respectively.

The case of consistent mass formulation is con-
sidered for all numerical experiments.

4. 1. Square plates

A square plate with symmetric boundary condi-
tions S-S-S-S is considered as the first example. We
shall use uniform meshes for our finite element analy-
sis. Eigenfrequencies are presented in non-

. . . p
dimensionalized form, wt,f /G

In Table 1, non-dimensionalized eigenfrequen-
cies for a number of the low modes are given for
plates with thickness ranging from ¢/L=0.001 to
t/L=0.5. For the sake of comparison, some numerical
results obtained in [10] using a 6 node triangular
mixed element with linked interpolation are given in
the table. In addition, closed form solutions for thin
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plates [11] and for thick plates {12] and using 3D elas-
ticity theory [13] are also included. It can been seen
from presented results there is in all thickness-to-span
(¢/L) cases good agreement between the thick plate
theory solutions based on the closed form and present
finite element formulation.

For the sake of illustration, the convergence
studies for square plates with different boundary con-
ditions are presented. In Figs 3-6, convergence for
element Q4BLa of the first and sixth eigenfrequencies
are presented. For both cases thickness-to-span ratio
has been chosen to be 0.1.

1.35
1.34]
) —*—Q4BLa
g 133
g
& 1.321
Q
& 131 .
- 3D elasticity
w
E 13 Thick plate theory
1.29 v T y v
4 6 8 10 12 14
Number of elements

Fig 3. Convergence study on first eigenfrequency of
S-C-S-C square plate

6.2
6.0
5.81
5.67
5.4
5.2

—=— Q4BLa

504 3D elasticity ——

Sixth eigenfrequency

Thick plate theory
8 10 12
Number of elements

14

Fig 4. Convergence study on sixth eigenfrequency of
S-C-S-C square plate

We observe fast convergence to the closed form
solutions based on thick plate and 3-D elasticity theo-
ries. Boundary conditions have no influence on the
performance of the element Q4Bla.



Table 1. Non-dimensionalized eigenfrequencies @ ¢ % for a simply supported (SS2) square plate

YL mode O4BLa Pa¥:;z$Tic€f] & |Thick p[liis theory| 3D elasticity [13] | Thin pl[zitﬁ theory
0.01 1,1 0.9631E-3 0.9628E-3 - - 0.9632E-3
0.01 (1,2) 0.2412E-2 - - - 0.2408E-2
0.01 2,2) 0.3853E-2 - - - 0.3853E-2
0.01 (1,3) 0.4846E-2 0.4831E-2 - - 0.4816E-2
0.01 2,3 0.6276E-2 - - - 0.6261E-2
0.01 (1,4) 0.8299E-2 - - - 0.8187E-2
0.01 (3,3) 0.8680E-2 0.8616E-2 - - 0.8668E-2
0.1 (1,1) 0.09306 - 0.09300 0.09315 0.09632
0.1 (1,2) 0.22643 - 0.22176 0.22260 0.24079
0.1 2,2) 0.34155 - 0.34018 0.34207 0.38527
0.1 (1,3) 0.41935 - 0.41440 0.41714 0.48159
0.1 (2,3) 0.52475 - 0.51974 0.52391 0.62606
0.1 3,3) 0.69007 - 0.68208 0.68893 0.86686
0.1 2.4 0.75904 - 0.74312 0.75111 0.96317
0.1 (1,5) 0.95866 - 0.91520 0.92678 1.2521
0.2 (1,1) 0.34080 - 0.34018 0.34207 0.38527
0.2 (1,2) 0.74811 - 0.74312 0.75111 0.96317
0.2 2,2) 1.0821 - 1.0735 1.0889 1.5411
0.3 (L1 0.68411 - 0.68208 0.68893 0.86686
0.4 1Ly 1.0778 - 1.0735 1.0889 1.5411
0.5 (L1 1.4962 - 1.4890 1.5158 2.4079

4.2. Skew plates

In order to study the performance of the element 0616

Q4BLa with distorted geometry we present the results o —»— Q4BLa

clamped skew plate shown in Fig 7. As the skew angle % 0.6051 3D elasticity

o increases, element distortion becomes quite signifi- f-; —_

cant. The eigenfrequencies are reported in the of non- gﬁ 0.600] '\R\_NF\_'

dimensionalized parameter @ L’ \/—%— , Wwhere g . Thick plate theory

D=EF[12(1-1v})] is the plate flexural rigidity. The i

numerical results are compared with the results of 0.590% T ] - - n

closed form of 3-D solution and with the results of 3- Number of elements

D finite element analyses [14]. The results of 3-D fi-
nite element analysis are obtained by widely used
MSC/NASTRAN CHEXA and COSMIC/NASTRAN
CIHEX1 isoparametric brick elements. For the first
case ratio #/L is set to be 0.2. It should be stated that
three elements through thickness have been used for
CHEXA elements and one element through thickness
for CIHEX1 elements.
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Fig 5. Convergence study on first eigenfrequency of
S-C-S-F square plate

The results of numerical simulation are taken
from (14x14) mesh size. The study how eigenfrequen-
cies vary with the skew angle a increasing from 0° to
45° is presented in Figs 8-9.



4.4 38
2 4.3 B 361 | ——Q4BLa
8 " Q4BlLa € % | CHEXA
= 42 2 —— CIHEX1
g 41 o —— Ritz
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% 9] 3D clasticity — g
V) .

387 Thick plate theory v T}

3.7 r y r T 2 r ,
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Number of elements Skew angle

Fig 6. Convergence study on sixth eigenfrequency of S-C-S-  Fig 9. Sixth eigenfrequency variation with skew angle in-

F square plate creasing for plates (t/L=0.2)
39
N 3.87
7 2 36 —*— CHEXA
N 2 35 —+— Ritz
~ o 3.4
N 5y
R &b 33
N o 32
1 d 8 31
N B 30]
3 L '
J 0 15 30 45
\\, Skew angle
N
D
7 \\‘ Fig 10. First eigenfrequency variation with skew angle in-
J creasing for plates (¢/L=0.5)

Fig 7. A skew cantilever thick plate

48 20
g 44 —e— CHEXA g 18] —=— (Q4BLa
I —a— CIHEX} =2 —<— CHEXA,
% 42] | ——Ritz g 1m ~—a— Ritz
5 40 / =
B 38— D15
7 =
.[E 3.6 :% 144
3 43 F"/‘Z’ 134 N
3.2 Y T 12 T T
15 30 4

0 15 30 45 0 5

Skew angle Skew angle

Fig 8. First eigenfrequency variation with skew angle in-  Fig 11. Sixth eigenfrequency variation with skew angle in-
creasing for plates (1/L.=0.2) creasing for plates (¢/L.=0.5)
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In the case of first eigenfrequency, results of the
element Q4Bla show a good agreement with the re-
sults obtained by Ritz method and 3-D finite element
analysis using the element CHEXA. For the sixth ei-
genfréquency, element Q4Bla has better performance
compared with 3-D CIHEX]1 finite element analysis.

In Figs 10-11 the influence of a skew angle o on
the quality of the eigenfrequencies of skew plates with
thickness-to-span ratio equal 0.5 has been studied. All
numerical results are obtained using (14x14) mesh.

Comparatively speaking, element Q4Bla and 3-D
finite element analysis results show analogous trends
with increasing the skew angle, but they do not show a
good numerical agreement with 3-D Ritz solution es-
pecially for the higher values of the skew angle.

5. Conclusions

This paper has presented the parametric study of
the free vibrations of plates with various thickness-to-
span ratios and different boundary conditions using
Q4BLa element. As it can been seen from the pre-
sented numerical experiments, in all cases a good

agreement between Reissner-Mindlin plate theory -

solutions based on the closed form and results ob-
tained using Q4BLa element. The sensitivity to the
distortion of the elements has been studied using the
numerical simulation of the skew thick plates. The
studied element shows a good performance in com-
parison with 3-D Ritz analysis of the plates with lower
aspect ratio ({/L=0.2).
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REISSNER-MINDLIN PLOKSTELI LAISVUJU
SVYRAVIMU ANALIZE TAIKANT MODIFIKUOTA
MISRIOS FORMULUOTES ELEMENTA,

R. Bausys

Santrauka

Siame darbe atlikta plokteliy laisvyjy svyravimy ana-
lizé, taikant miSrios formuluotés elementa Q4BLa. Taikant
klasiking Kirchoffo ploksteliy teorija, elementy interpo-
liacinés funkcijos turi atitikti C' tolydumo reikalavimus.
Sudaryti tokias interpoliacines funkcijas néra lengvas
uZdavinys, ypa¢ sprendZiant daugiamates problemas. Antra
vertus, gaunamos skaitinés shemos yra pakankamai sudétin-
gos. Elementy, paremty Reissner-Mindlin ploksteliy teorija,
interpoliacinés funkcijos turi atitikti tiktai C° tolydumo rei-
kalavimus. Tai labai palengvina elemento interpoliaciniy
funkcijy sudaryma. Elementai, sukurti $ios teorijos pagrin-
du, tinka tiek plonoms, tiek storoms ploksteléms modeliuoti.
Pirmiesiems §ios klasés elementams buvo taikytos savaran-
kiskos interpoliacinés funkcijos jlinkiy ir posikiy lauky
aproksimacijai. Taiau, taikant $iuos elementus, pastebétas
“Slyties uZsikirtimo” fenomenas. Norint i§vengti §io fe-
nomeno, panaudotos savaranki$kos interpoliacinés funkcijos
Slyties jégy aproksimacijai. Pastaryjy mety tyrinéjimai
parodé, jog taikant interpoliacines funkcijas, susiejancias
ilinkiy ir posiikiy laukus, galima pasiekti daug geresniy
skaitiniy rezultaty. Sis bidas leidZia taikyti aukstesnés eilés
polinomus jlinkiy interpoliacinéms funkcijoms, palyginti su
posiikiy aproksimacija.

Ankstesniame darbe atliktuose skaitiniuose testuose
tajkant miSry susietos interpoliacijos elementa Q4BL,
pastebéta jog Sis elementas turi nulines energetines formas.
Dél Sios prieZasties tam tikrais atvejais, modeliuojant ele-
mentu Q4BL, sprendinys gali biiti nestabilusis. Nauja §io



elemento versija Q4BLa testuota statikos uZdaviniams ir Sie
rezultatai pateikti darbe [7]. Siame darbe pateikiama Sios
naujos elemento versijos formuluoté dinaminiams uzda-
viniams bei testavimo rezultatai laisvyjy svyravimy uZdaviniy
atveju, modelivojant tiek plonas, tiek storas ploksteles.

Antrajame skyriuje pateikiama miSri baigtiniy ele-
menty formuluoté, skirta laisvyjy svyravimy analizei. Si
plokitelés baigtinio elemento formuluoté paremta Reissner-
-Mindlin ploksteliy teorijos prielaidomis. Jlinkiy aproksima-
cijai yra taikomos interpoliacinés funkcijos, susiejancios
jlinkius su posukiais. Posiikiai ir Slyties jégos aproksimuo-
jamos savaranki$komis interpoliacinémis funkcijomis. Tai-
kant standarting Galiorkino procediira, sudarytos pagrin-
dinés baigtiniy elementy matricy iSraiSkos. Kadangi Slyties
jégos aproksimuotos triikiosiomis funkcijomis, jas galima
nesunkiai eliminuoti elemento lygmenyje ir gauti tiktai
“poslinkiy” formuluote. Tuo pat metu sumazinamas ie3ko-
myjy parametry skaiius.

Trediajame skyriuje parodyti pagrindiniai elemento
Q4BLa ieskomieji parametrai (1 pav.). Pateiktos pagrin-
dinés interpoliaciniy funkcijy iSraiSkos. ISdéstyta susiety
interpoliaciniy funkcijy sudarymo metodologija. Sios susie-
tos interpoliacinés funkcijos turi hierarching struktira.
Misraus elemento stabilumo kriterijai rodo, jog nagrinéja-
mas elementas neturés nuliniy energetiniy formy. Atlikus

kondensacija elemento lygmenyje, vienas elementas Q4BLa
turi 20 neZinomyjy parametry. Siekiant padidinti
skai¢iavimo efektyvuma, taikomas skirtingos tikslumo klasés
skaitinis integravimas, nustatant atskiry elemento matricy
nariy reik¥mes.

Ketvirtajame skyriuje aptariami atlikty skaitiniy eks-
perimenty rezultatai. PradZioje pateikiami rezultatai, gauti
modelivojant skirtingo storio laisvai paremtas ploksteles.
Gautas geras visy tyrinéty gauty tikriniy reik§miy taikant
Q4BLa elements atitikimas analitiniams sprendiniams tiek
plony, tiek story ploksteliy atvejais. Elemento jautrumas
geometriniams iSkreipiams tyrinétas jstrizy ploksteliy
pavyzdziuose. Gauti rezultatai rodo, jog galima patikimai
modeliuoti plokiteles, taikant elementus Q4BLa, neturin-
Cius taisyklingos staCiakampio formos.
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