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OPTIMISATION OF GRILLAGE-TYPE FOUNDATIONS 

R. Belevicius, S. Valentinavicius 

Vilnius Gediminas Technical University 

I. Introduction 

All parts of buildings should be designed and built 

optimally and thrifty as much as the conditions of 

safety and comfort allow. In the design of grillage­

type foundations this simply means that, firstly, the 

cross-section of grillage is uniform in all the structu­

re, and secondly, piles supporting the grillage are uni­

form over all structure, but are placed plausible, not 

at equal distances from each other. In order to opti­

mally utilise the steel framework of grillage, the ben­

ding moments should be uniformly distributed over 

the structure or, at worst, maximum positive moments 

should match the minimum ones. Similarly, in order 

to make the concrete work closely with steel frame­

work of piles, all reactions arising in supports should 

be as small as possible and uniform. 

Thus, the design of economical grillage founda­

tions inevitably is related with optimisation of initial 

scheme. 

The paper deals with the aforementioned problems. 

We tried to pose the optimisation problems, to define 

the solution methods, etc, up to the introduction into 

commercial codes. 

2. Statement of problem 

The optimisation problem is stated as follows: 

Minimise (over feasible shapes) maximum P (over 

structure and load cases) 

with P being the parameter to be optimised. 

Two optimisation problems are to be examined: 

when parameter is maximum bending moment at so­

me points of structure. and maximum vertical reactive 

force at supports. The feasible shape of structure is 

defined by the type of certain supports (unmoveable 

support, spring-support, or support with a given dis-

placement), the given number of different cross-sec­

tions and different materials in the structure. During 

optimisation process new unmoveable supports may ap­

pear in the structure, the old supports may merge, 

however the type of existing supports has to be re­

tained. 

The problems should be solved in statics and m 

linear stage. 

Clearly, both problems are highly non-linear. Our 

choice is to use robust and reliable methods: finite 

element method for static analysis and linear mathe­

matical programming for optimisation. Thus, the pro­

blems have to be solved iteratively and are converted 

to a sequence of approximately linear problems of an 

optimal re-design. In each iteration the current shape 

is changed to a better neighbouring shape. The solu­

tion requires three steps: 

• finite element analysis 

• sensitivity analysis with respect to the co-ordi­

nates of supports 

• optimal re-design with linear programming. 

Further, the minimum-maximum problem is con­

verted to a pure minimum problem with constraints 

by treating Pmax as unknown subject to constraints 

that Pmax limits the magnitudes of parameter P eve­

rywhere in the structure and for all load cases when 

design changes /::,ti are performed: 

(I) 

for the total structural space x. The comma here and 

below means the differentiation. 

For computational reasons a length constraint 

L = L is also included: 

(2) 
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Several possibilities exist m the choice of design 

parameters t; on which the structure shape depends. 

Our choice is to use the most evident from the engi­

neering point of view design parameters: nodal co­

ordinates of all (or a chosen set ot) supports. 

3. Optimisation technique 

With reference to [I, 2] let us shortly describe 

the optimisation procedures. 

Two absolute limits sets (maximum and minimum) 

on all design co-ordinates status T are led up accord­

ing to existing design restrictions or other consider­

ations. In any case the design variable cannot exceed 

these limits. For the first solution step, current design 

variables status T = 0. The absolute limits may differ 

from one design variable to other, however the maxi­

mum absolute move limits must be positive, and the 

m1mmum ones negative: 

Tmax ~ 0. 
Tmin :5; 0, (3) 
Tmin :5; T :5; Tmax. 

Further, the move limits on the design variables 

alterations AT per one iteration are led up, again 

maximum and minimum. These move limits may vary 

from one design variable to another and have to be 

adjusted to the extent of non-linearity of problem so 

that Simplex' predictions on the future behaviour of 

the structure do not differ remarkably from finite el­

ement solution. In general, move limits should be 

gradually shrunk as the design approaches the opti­

mum. The accuracy of the approximation is required 

to be higher when we get close to the optimum be­

cause the gains are small and can be swamped by 

approximation errors. The need to reduce move limits 

is indicated when the final design of an iteration 

proves, upon exact analysis, to be inferior to the ini­

tial design of that iteration (which is the final design 

of the previous iteration). Thus, 

ATmin :5; AT :5; ATmax . (4) 

Introducing an intermediate always positive variables 

AT+, 

AT+ ~ 0 . 

AT = T+ + ATmin 
(5) 

Hence 

(6) 

Now let us introduce new intermediate variables 

AT such that 

(7) 

In practical situation when the design variables 

reach their status limits, the current variable alter­

ation has to be restricted additionally: 

if Tmax - T < ATmax 

(8) 

then ATmin Tmin _ T, (9) 

because otherwise the absolute variable changes limits 

will be exceeded. 

After the Simplex' solution the results must be 

deciphered according to relations rendered below. 

1. If resulting design variable i in basis corre­

sponds to a AT+ part of vector of unknowns: 

(10) 

2. If one corresponds to a Sf part: 

AT = tiT 11/(/.\ - AT 
I I I ' (II) 

3. If both unknowns AT+ and .1f. are presented 
I I 

in basis for one design variable i, the AT; has to be 

evaluated according to the first or to the second case. 

4. If resulting variable corresponds to other parts 

of the unknowns, then no information for the shape 

optimisation is obtained, omit this variable. 

Now all necessary conditions to the Simplex pro­

cedure are satisfied. The problem formulation for 

mathematical programming 1s: 

Minimise P111"·' 

with constraints: 

level (){ P eve1:vwhere in the structure :5; P m'" , 

design changes do not exceed move limits. and 

design status does not exceed absolute limits; 

length (){ model is constant. 

Considering only the first derivatives m Taylor's 

expansion, the first constraints at the nodal points of 

structure become 
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P + [PJ.T ~T- P max :::;; 0 • ( 12) 

or avoiding the inequality 

[/] p - 1 Pmax + [PJ. T AT+ = 
- p- [PJ.TATmin. 

( 13) 

The second group of constraints in matrix nota­

tion for all design variables is: 

AT+ + AT = ATmax - ATmin ' 

while the third one is as follows: 

L + ~ [L") AT= L £...J . T 

(14) 

(15) 

where the sum covers only the active elements, 1e 

including the current design variable as a node of 

element. In the first iteration L = L . 

4. Finite element. Matrices for sensitivity analysis 

Finite element matrices 

Simple two-node beam element with 4 d.o.f. 's [3] 

has been implemented m analysis (Fig I). 

ow, e 

X 
o-------------~~ 

j 

Fig I. Finite element 

Nodal d.o.f. 's of element are: 

(16) 

w, and e,' k = i,j being deflection and rotation, 

positive counter-clockwise, accordingly. 

The interpolation functions for all d.o.f.'s in Car­

tesian co-ordinates are as follows: 

[N] 

T 
)r~ ? .3 

/- _-·_ + .=.::.._ 
( L3 

2x:: .r 
r--+­
. L L2 

Jx:: 2x 3 

.r.: x3 
--+­

L L~ 

with L for length of an element. 

(17) 
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Bending moments at nodes, positive when cause 

the "positive" layers of a finite element experience 

tension, compile the element stress vector: 

flexural rigidity relates them to the deflection: 

(19) 

After the nodal displacements are obtained, the 

reactive forces are available according to: 

R; = ~Ku. £....i IJ J 
(20) 

Element loading 

Finite element can be loaded by nodal forces and 

moments, positive counter-clockwise, and by concen­

trated loads, moments, distributed (of triangular shape) 

loadings inside the element. Distributed loading (Fig 2) 

is modified to the statically equivalent loads and 

moments acting at the end-points of loading: 

Ty ~-t, 
~t-~L 

i j X 

Fig 2. Distributed loading on the element 

PJi l 7[, + 3[, 
Pm1 _.!_ I (3ft + ~{,. )/3 . 

Pq = 
PJ; 20 3ft + 7{,. 

Pm,. -1(2f, + 3{,.)/3 

(21) 

Later on these components as well as all other 

internal concentrated loads P f and moments p111 are 

translated to the nodes of finite element according to 

general relations of finite element method: 

p = [N(x!) p 1 + [N(x)) ·.r Pm (22) 

with appropriate co-ordinate x of load application point. 

Relations for sensitivi(v analysis 

As seen from (I), the sensitivity (ie derivatives 

with respect to nodal co-ordinates) of bending mo­

ments and reactive forces is the must for optimisation: 

M '.1, = -E I I( N, . .\.\.1; ll; + Ni'.l.\ 11;-,,, ). (23) 



(24) 

with superscript a standing for ensemble. 

The derivatives of nodal displacements is obtained 

by solution of general sensitivity analysis 

(25) 

with pseudo-load vector 

p'' = p u _ [K] a U u. 
·-'.{ ··'.t. 

(26) 

The procedure for derivative of element stiffness 

matrix from which matrix of ensemble [ K ]" , ,, is 

composed, is as follows: replace L with x,-x1, detect 

whether k is ith or jth node of an element, and ob­

tain [ K] . ,, or [ K] , , 
1

, respectively. Thus, only the 

element possessing node k renders non-zero stiffness 

derivatives. 

Similar procedures are valid for derivatives of 

forces and reactions. 

All matrix expressions are presented m Appendix. 

5. Program 

The finite element computational procedure, sen­

sitivity analysis and optimal re-design via linear pro­

gramming form the programs kernel which is supple­

mented with pre- and post-processing capabilities. 

The initial finite element mesh is prepared auto­

matically, leading up nodes at support places, jumps 

of material and cross-sections properties, etc. Rather 

dense finite element mesh is necessary, primarily due 

to the only evaluation procedure of bending moments 

at mesh nodes. The moment at certain node is calcu­

lated via arithmetic mean of bending moments ob­

tained from neighbouring finite elements, and this 

makes the moments derivatives more sensitive to the 

finite element length than, for instance, derivatives of 

reactive forces. 

The pre-processor allows the "master nodes", ie. 

nodes co-ordinates of which are design variables in 

optimisation procedure, to move over structure freely. 

The met simple nodes are jumped over when master 

node approaches these nodes to a specified by pro­

gram distance. Of course, this causes small numerical 

disturbances in sensitivity analysis. When two or more 

master nodes meet, the following procedures govern: 

• support-support: one of supports is deleted if 

resulting reactive force is less than the given allow­

able reaction. If resulting reaction is not acceptable, 

the supports are fixed at minimum allowed distance 

between, and removed from master nodes. 

• support- spring-support: spring-support 1s re­

moved from master nodes 

• spring-support - spring-support: one of supports 

1s deleted by adding spring stiffnesses of both sup­

ports. 

Resuming, the optimisation is an intellectual pro­

cess. It is impossible to write "one button click" pro­

gram which automatically will render optimal solu­

tion. Linear programming may lead to a local mini­

mum, therefore the problem solution from different 

starting positions is recommended. Similar situation is 

shown in examples below. Also, varying iteration move 

limits may help. 

6. Optimisation of bending moments 

A number of numerical examples demonstrate the 

capabilities of proposed model. The first examples are 

symmetric to be able to compare the obtained results 

with in advance known optimal shapes of beams. From 

the engineering point of view it is important to 

minimise not the maximum, but maximum in abso­

lute value bending moment, therefore special proce­

dures were introduced into codes to incorporate this 

approach. 

Example 1. Beam on 4 fixed supports loaded with 

uniformly distributed loading. Let us start from in 

advance known non-optimal layout of supports (Fig 3). 

Three supports are chosen to be master nodes. 

The move limits of all master nodes during the whole 

optimisation process were ± 0.1; for those magnitudes 

the finite element solutions correspond sufficiently to 

the Simplex predictions. 

All remaining nodes are placed at equal distances. 

The starting magnitudes of bending moments together 

with their locations are (Fig 4 a): 

M = 47.93 at node 15, 
m~x 

M = -72.18 at node 5. 
mm 

Actually, M"''" was minimized. After I 0 iterations 

support 3 reaches support I and is removed from 

master nodes. Optimisation of remaining three-supports 

beam ends after 30 iterations (Fig 4 b) with 

M""" = 17.58 at node 5, 
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a) 

10 00 1000 

1* * i *1 * * J u * i i * i * i * * i I i * L~ i iii* i * * i I i * * * l * * i * i * * il 
• 100 ' 100 ' 800 ' 

1000 

b) 

N1 N2 N3 N4 N5 No N7 NB N9 N10 Nil Nl2 Nl3 Nl4 t,J15 N16 N17 N18 N19 N20 tJ21 

t 0.50} 0.50 t 0.50 ! 050 6 050 ~ 0.50 t 050 ! 050 t 050 ! 050 b 0.50 ~ 050 t 050 ~ 0.50 t 0.50 k0.50 t 050 ~ 0.50 t 0.50 ~ 0.50 b 
0 0 O.:.oO 1 0 1 0 2 0 2 0 3. 0 3. 0 4. 0 4 0 !5 0 5. 0 6. 0 0 0 7 0 7. 8 u 8. 0 Q 0 Q. 0 10 0 

j j j j j j j j j I j j j j j j j j j j j 

0 ® ® ® ® 0 @ ® 0 0 ® G ® ® ® ® ® ® ® 0 ® 

C) 

10 00 10 DO 1* i i i i i i i i i i i i lJ i i i i i i i i i J i i i i i i i i &i i I i l i i i i i i i i il 
' 3 00 ' ~00 ' 3 00 ' 

0. 7. 10 0 

Fig 3. Beam under uniformly distributed loading: (a) initial scheme I, (b) finite element mesh, (c) initial scheme II 

a) 

N1 N2 

"""' 
D-21.80 

-72 18 

·=" 

if -30 98 

-31.25 47.93 

b) /~ 
Nl~ NS NED6 N7 N~~4~~~14 N~15J!16 N17 N18 ~N19jl20N21 _, ...., ...., i i ...., ....,~ """ <o:t::v ...., i l ...., 'V "'"" 

if -18 75 l 'V l ...., li -62 50 ...., l ...., li -18 75 
17.58 17.58 

10.4 

c) 

'()' -35 74 'D'-35 74 v-14 26 
104 10.4 

Fig 4. Optimisation results of beam under uniformly distributed loading: (a) bending moments and support reactions 
distribution for initial scheme I before optimisation, (b) bending moments and support reactions distribution for initial 

scheme I after optimisation, (c) bending moments and support reactions distribution for initial scheme II after optimisation 

Mmm = -31.25 at node II, 

and final co-ordinates of supports 0.0, 5 .0, I 0.0. 

Now, let us take solution from other starting 

positions (Fig 3 c). Final results are achieved in 15 

iterations (Fig 4 c): 

M 
max 

M 
mm 

I 0.4 at nodes 4, 18: 

-10.4 at nodes 8, 14 

by co-ordinates of supports 0.00, 3.48, 6.52, and I 0.00. 

Example 2. Beam with fixed and spring supports, 

and supports with prescribed non-zero displacements 

(Fig 5 a). Finite element mesh is the same as in Fig 3 c 

Master nodes are all support-nodes including the node 

with prescribed translational stiffness plus the first 

node, all with move limits ± 0.1. Initial solution is 

(Fig 5 b): 

M 
max 

M 
mm 

6.62 at node II, 

-8.92 at node 13. 

Due to the high gradients the problem converges 

fast and final results after 14 iterations are: 

M""" = 2.51 at node 6; 
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M = -2.13 at node 4 mm 

by co-ordinates of supports 1.1 0, 3.1 0, 5.93, and 8.80. 

7. Optimisation of vertical support reactions 

Let us solve the same problems but minimising 

vertical support reactions, again maximum in absolute 

value. 

Example 1 (Fig 3 a, b). The problem solution 

with previous move limits leads to a deadlock. Start­

ing with 

Rmax = 95.77 at node 3, 

Rmm = -143.0 at node 5, 

after the 7'h iteration the maximum m absolute value 

magnitude of reaction ( -88.4 at node 6) grows to a -

I 02.7 at node 2. However, even a double-reduction of 

negative move limit for the 3'd master node allows us 

to solve the problem as expected: after the 20'h itera­

tion support (initial node 3) reaches left support and 

is deleted, then after 31 iterations 

Rmax = -18.75 at nodes I, 20; 

R = -62.50 at node I 0 mm 
by co-ordinates of supports 0.0, 5.0, 10.0 (Fig 4). 

The initial scheme II (Fig 3 c) leads exactly to 

the same results. 

Example 2. (Fig 5 a). This problem converges 

per 58 iterations, yielding 3 supports (Fig 5 c), from 

Rmax = 19.6 at node II, 

R = 4.46 at node 17 
mm 

a) 
-10 00 

to a 

Rmax = 9.87 at node 17, 

R = -10.01 at node 7 
mm 

by co-ordinates of supports 0.00, 3.20, 7.90. 

8. Common optimisation of bending moments and 

supports 

The most desirable situation for engineering prac­

tice is to have in a grillage as small as possible vertical 

reactive forces and bending moments together. How­

ever, the solutions in previous chapters indicate clearly, 

that these aims are not compatible. Some engineering 

solutions are needed for joint optimisation of reac­

tions and moments. They are as follows: the program 

starts optimisation of reactions and proceeds with it 

until allowable magnitude of reaction is obtained; then 

shifts to the optimisation of bending moments. Back­

ward shift occurs when improper reaction emerges, etc. 

Example 1 (Fig 3 a, b). Allowable vertical reac­

tion is set to a 100. Move limits and starting magni­

tudes of bending moments and reactions are given in 

previous chapters. The solution begins with optimi­

sation of reactions. After the 6'h iteration (R""" =-93.5 

is achieved) process shifts to a optimisation of mo­

ments. The optimisation finishes in 57 iterations with 

M = 12.00, 
max 

M = -12.00, mm 

R = -13.68, 
max 

R = -37.4 mm 
by co-ordinates of supports 0.00, 3.65, 6.67, 10.00. 

20 00 

N1 N2 N3 N4 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 

·"""' 

6 62 
b) 

N1 N:' N3 N18 N19 N20 N21 
_,;;.;;, -;;,.;,. 

,(}, fr 4.46 

-892 

c) 

from ,(}, -1001 fr 9.87 

Fig 5. Beam with different kind of supports: (a) initial scheme, (b) bending moments distribution after optimisation, 

(c) support reactions distribution after optimisation 
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Example 2. (Fig 5 a). Rallowable = 20, move limits 

are kept the same. Solution shifts from optimisation 

of reactions to an optimisation of reactions after the 

7'11 iteration (R'""'= 13.87). Final solution is obtained 

after 60 iterations: 

M = 3.13, 
max 

M = -7.74, 
m1n 

R = 12.42, 
max 

R = 2.73 mm 

by co-ordinates of supports 0.00, 2.1 0, 5.30, 7.1 0. 

9. Concluding remarks 

The mathematical models for optimisation of gril­

lage-type foundations are presented. Minimising of 

maximum in absolute value vertical reactive force, 

bending moment, and reaction-bending moment to­

gether is sought. Solutions of a number of problems 

demonstrate the validity of proposed algorithms. New 

investigations of merit functions are needed for the 

case of joint optimisation of reactions and moments. 
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Appendix. Matrix relations for sensitivity analysis 

12 6L -12 6L 

E I 4L~ -6L 2L~ 
[K] = 

L3 12 -6L 

sym. 4L~ 

36 12L -36 12L 

E I 4L~ -12L 2L~ 
[KJ.,, 

L4 36 -12L 

sym. 4L~ 

[K], r = - [KJ.., 
. I 

6Pm, 

I -L~ p J; + 4Lp111; 

p.,, 
L~ -6Pm, 

2LPm, 
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-6Pm, 

-2Lp111 
I 

P .. ,, 
6pm

1 

-L2 p !; - 4LPm, 
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PAMATl) SIJYNO OPTIMIZAVIMAS 

R. BeleviCius, S. Valentinavicius 

Santrauka 

Suformuluoti pamatq sijyno optimizavimo uzdavinill ma­

tematiniai modeliai, pasiiilyti jll sprendimo algoritmai. IS­

spr((sti trys uzdaviniai: lenkimo momentq, atraminill reakcijl! 
minimizavimo ir bendras reakcijl! ir lenkimo momentq mini­

mizavimo uzdavinys. Statikos uzdavinys sprendziamas baigti­

nill elementq metodu. Panaudotas paprastas dviejll mazg\l 
lenkiamo strypo elementas su dviem laisvumo laipsniais maz­

ge. Jautrumo atramll postiimiams analize atlikta analitiskai. 

Optimizavimui taikytos tiesinio matematinio programavimo 
procediiros. Kadangi optimizavimo uzdavinys yra aiskiai ne­

tiesinis. programoje idiegtas iteracinis interaktyvus patiksli­

nimo procesas, leidziantis keisti atramll postiimius taip. kad 

optimizavimo procediiros numatymai reikiamu tikslumu ati­

tiktq baigtinill elementq metodo sprendinius. Pirmll.ill dviejll 

tipl! uzdaviniai suformuluoti grieztai, o bendrajam momentq/ 

reakcijll optimizavimo uzdaviniui taikytos tam tikros inzine­

rines prielaidos. Pateikti visll trijll optimizavimo uzdaviniq 

sprendiniai ivairioms pamatq sijoms. 
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