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EXPERIMENTAL AND NUMERICAL ANALYSIS OF THIN-WALLED BARS IN 
COMPRESSION AND BENDING 

A. Biegus 

Wroclaw University of Technology 

1. Introduction 

Corrugated metal sheeting normally used for ro­

ofing decking or side-cladding are subjected to cross­

bending loads and the ones acting in its plane like 

compression. Such combination of loading occurs, for 

instance, in the compound, integral truss girder in 

which the upper flange is designed as a sheeting pro­

file - I, when me rest of me unit is made of bars -

2, 3, 4 (Fig I). 

Fig I. Scheme of the plate-girders 

Theoretical investigations of Easley [I], Hlavacek 

[2] and experiments executed by Bryan [3], [4] Da­

vies [5] and Easley [!], [6] have considered the pure 

in plane shearing without the participation of trans­

versal and compression forces. The main attention was 

paid to the flexibility of sheeting profile under shea­

ring. For the sheeting profile sufficiently fixed to the 

rest of the structure the exhaustion of the load capa­

city can be caused by the interaction of bending and 

compression (for slender elements) or by combined ben­

ding and shear. 

The literature review shows the necessity of a de­

eper analysis of the load-bearing capacity enriched by 

cases mentioned above. In this paper a method for 

estimating the load-bearing capacity based on the in­

teraction curve M-N has been proposed for the thin­

walled monosymmetrical bars under compression and 

bending. The interaction curves have been based on 

the analysis of the stress-displacement distribution and 

the experimental values of the load bearing capacities 

recorded for unaxially compressed corrugated sheets, 

which was additionally supported by the mathematical 

model set up for bars loaded as mentioned. This pa­

per presents the results of tests carried out on 20 mo­

dels full-scale of corrugated sheet compression N in 

the plane of diaphragm. Numerical model of the thin­

walled bar under bending and compression given as a 

differential equation of the fourth order with non-line­

ar coefficients combines the second order bending the­

ory with the Winter's effective width conception [7]. 

The most frequently used symbols: 

a. b. c, h. r - cross-sectional dimensions (Fig 2), 

ae, be, he - effective widths of compression element, 

e - eccentricity of compressing force N, 

t - thickness of thin-walled bar, 

1 - length of a bar, 

q - transversal load, 

r - deflection, 

Yo - eccentricity of compressing force caused 

by the new position of the profile neu­

tral axis, 

£ - modulus of elasticity, 

J. J e - moment of inertia of gross cross-section. 

effective cross-section, 

A, A11 , Ae- area of gross cross-section, net cross­

section, effective cross-section, 

M, N - axial force, bending moment, 

Me(, Mel, M pi - effective, elastic, plastic bending ca­

pacity, 

Npl• Ncr.e· N 11 - plastic, critical capacity and load-

bearing capacity, 
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W, Wpt• We - modulus of gross cross-section, modu­

lus of plastic cross-section in flexure, 

modulus of effective cross-section in 

flexure, 

cr,crc,. - nom1al and critical compressive stresses 

of thin-walled profile, 

fr - yield stress, design value, 

l..),s - slenderness parameter: of a bar in com­

pressiOn, of flanges and webs in com­

pression. 

N -±~ N f· -~r~rf, 
y A-A b 

r ·----+'< . ~ I 
t --·-ir- ~ --~ -c: 

~ c 

Fig 2. Scheme of the corrugated sheet in compression 

2. Tests on eccentrically compressed corrugated sheet 

The tests were carried out on full-scale models 

made from T55xl88 corrugated sheets of 750 mm 

y [mm] 
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Fig 3. Deflections of the sheets y i eccentrically load N \\. 

width, 2000 mm length and 0.75 mm and 1.00 mm 

thickness. The tests were run for two schemes of com­

pressive loads: two forces N,.. applied to the upper 

flange or two forces N 11 applied to the lower one. 5 

models for each thickness for two shims of loading 

(Figs 3 and 4) were tested. 

The models of corrugated sheet were put on a 

test stand and subjected to a monotonically growing 

load. The load was transferred in a way that insured 

articulation and protected against local failure. The 

vertical displacement was measured at I 0 points and 

the strain at 22 points in the middle of the models' 

span length. The deflection and the strain were me­

asured at every 2 kN. 

The mean yield points of the sheets were for: 

• = 0.75 mm - fr.! = 337,8 MPa, 

• = l.OOmm - fr,2 = 342,9 MPa. 

Local buckling of the wider flanges was observed 

already at the initial stage of loading models eccen­

trically compressed by a force applied to the wider 

flange of the corrugated sheet. The amplitudes of the 

waves of two adjacent fields had opposite signs and 

the waves disappeared after unloading. No waves in 

the webs were noticed. 

No local buckling of wider flanges, narrower flan­

ges or webs was observed during the eccentric com-

y [mm] 
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Fig 4. Deflections of the sheets Yi eccentrically load N
11 
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pression of the models by a force applied to the nar­

rower flange. Only in one model of this series, ie the 

one with the 0. 75 mm thick sheet, local buckling of 

the narrower flange was observed under the toad about 

kN below the limit load. 

The deflections of the folds of two series of mo­

dels had the same sign and grew as the load incre­

ased. The coefficients of variability (interclass ones) 

of the folds' deflections decreased as loads increased. 

Non-linear increment in the tested models displace­

ment was observed during the whole process of loa­

ding. 

The failure phenomenon of the eccentrically com­

pressed models consisted in a sudden, random, local 

plastic hinge of one fold: a wider one, when the wi­

der flanges were compressed, and a narrower one, 

when the narrower flanges were compressed. The hin­

ge was located randomly along the fold's length. Both 

the extreme fold and the middle fold failed. The phe­

nomenon was accompanied by a sound effect. The col­

lapse of the wider flange was coupled with the failure 

of the adjacent webs. The plastic hinge was perma­

nent. Other folds still did not fail. The failure of one 

fold was accompanied by a sudden drop in the com­

pressive force (the compressive load had a nonconser­

vative character). An attempt to increase the load on 

the models resulted in the depletion of the load-be­

aring capacity of the consecutive folds, an increase of 

the displacement and a drop in the loading force. The 

mechanism of the models failure consisted in the for­

mation of four plastic hinges of the sheet's folds. 

Figs 3 and 4 show diagrams of the deflections of 

models Y;, of 0.75 and 1.00 mm thick sheets as a 

function of eccentric loads N"' applied to the wider 

flange and loads N 11 applied to the narrower one. 

Deflections )' - the interclass ones were calculated as 

the mean deflection of the folds of a given model (the 

mean from 8 measuring points). 

The interclass diagrams (the mean from 5 models) 

of deflections y 11 • y 11 of the sheets are shown in Fig 5. 

The extensometer studies of the eccentrically com­

pressed corrugated plates have shown that the struc­

tures' load-bearing capacity becomes depleted as a re­

sult of the stiffener plasticisation of the compressed 

thin-walled sections. The stiffener of a section cons­

tituted .. supporting" members for the compressed. wa-

ved flange. The depletion of the stiffener load-bearing 

capacity leads to the fold plastic hinge. 
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Fig 5. Experimental and numerical deflections of sheets 

The collapsed fold drops and the redistribution of 

forces results in the overloading other folds (the ones 

that have not failed yet) leading to a similar mecha­

nism of failure in them. The load-displacement curve 

N(y) of the eccentrically compressed corrugated plates 

are non-linear functions. These curves are characteri­

sed by a lack of the plastic stage in the structure's 

work (in case of compressed thin-walled bars). The 

load-displacement curves of the eccentrically compres­

sed corrugated plates can be described by a non-line­

ar-elastic-brittle model having the following parame­

ters: rigidity EJ(N) and limit load-bearing capacity N 11 • 

3. Mathematical model of thin-walled bars under 

bending and compression 

The thin-walled bar subjected to compression 

axially N is shown in Fig 2 (e = 0, q(x) = 0). The 

equilibrium state in the elastic range for me thin-wal­

led bar for his gross section ( cr <O'er) can be expres­

sed as: 

(I) 

The stress distribution becomes non-linear [7] after 

local buckling of flanges or webs cr >O'er . According 

the Winter's theory of the effective width, the dimen­

sions are changed as follows: a~ a,(N). b ~ b,(N). 
h ~ h,(N) as a function of the load N. Thus, the 

flexural rigidity becomes: 

249 



J(a,b,c,h,t,r)CJ<CJcr > le(N)= 

J e [ae (N ),be (N ),c. he (N ),t ,r 1>crc,. (2) 

and the bar loaded axially for cr < crcr ( y0 = 0) is 

compressed eccentrically for cr > acr. The eccentricity 

of a load y
0 

depends on the load as well: 

(3) 

Unaxial compression causes nonuniform stress dis­

tribution so, that the equation (I) written for cr < cr cr 

changes its shape to the differential equation with 

nonlinearly changing coefficients for combined bend­

ing and compression ( cr > crcr ). 

Of course, the solution of the equation ( 4) does 

not lead to me value of the mathematical critical load 

although the initial load acted axially. Instead of this 

displacements, bending moments and shear forces can 

be determined as a function of the load N, according 

to the second order theory. For a bisymmetrical cross­

section the problem is reduced to the changing of the 

flexural rigidity only, EJe = EJ( N) and we are still 

facing the pure overall buckling. In case, when the 

monosymmetrical bar (Fig 2), initial rigidity 

EJ( cr < crcr) is loaded unaxially by the load N, and 

additionally by the transversal load q(x) the equilib­

rium equation for cr > crcr is: 

As before, we are getting fourth order differential 

equation with non-linearly changing coefficients, ie ri­

gidity EJ(N, q. x) and eccentricity y
0
(N, q, x). The 

load-displacement relationship for mis bar in N - y 

co-ordina-tes is non-linear due to the flexural rigidity 

reduction and the growing eccentricity y
0
(N. q, x). De­

pending on the geometry of the thin-walled cross-sec­

tion, the length /, and the eccentricity, we can have 

three forms of the load capacity exhaustion: the plas­

tic hinge of a fold (Fig 6 c), the plasticisation of the 

!ensiled portion of me cross-section (Fig 6 b) or the 

classic lost of the stability for e = 0 and cr < crcr for 

monosymmetrical bars or for e = 0, when the bar has 

a bisymmetrical cross-section (Fig 6 a) [8]. 

In the thin-walled elements under bending, the 

relationship loading-deflection remains linear for 

cr < O"cr. After local buckling of the compressed flan­

ges the redistribution of stresses changes the position 

of the neutral axis, the relationship loading-deflection 

becomes non-linear. The position of the monosymmet­

rical beam neutral axis does not cause any additional 

stresses in the contrary of combined bending and com­

pression. 

a N 

b N N 
~~~~~-----------~ 

c 

-- . . .... . ·-:- -· --if:._ 
N fy N fy 
~------ - ---·~ O"c<fy 

-·- ·-~- -- tCjZ 

1{--~-2- o,<fy 

1A s 
Fig 6. Model of the corrugated sheet collapse 

The bars with variable rigidity have been consi­

dered by many authors, among them by A. Kacner 

[9] and S. P. Timoshenko [10]. In paper [II] the 

equation (5) for bars with changing rigidity is solved 

by means of trigonometric series applying the finite 

Fourier transformation. 

It is proposed to calculate the load-bearing capa­

city and the relationship load-displacement using the 

incremental method step by step since characteristics 

A(N, q. x), W(N. q, x), J(N, q, x), and eccentricity 

y
0
(N, q. x), are dependent on compressive load N. For 

this purpose a special program NSEC has been deve­

loped [II], which allows to analyse the behaviour of 

the axially and unaxially compressed thin-walled bars 

having a monosymmetrical hat cross-section (Fig 2). 

The program NSEC gives in me output the values: 

ae. be. he. J e. A, .. y0 . y, extreme fibre stresses starting 

from initial loading N0 incrementally (ll.N) up to the 

load-bearing capacity or up to the critical load. 

4. Interaction functions M-N for thin-walled bars 

under compression and bending 

The proposed mathematical model, its solution 

[II] and the developed program [8] give basis for 

load-bearing estimation of the bars under combined 

bending and compression. The shape of the interac-
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tion curves M-N has been analysed for corrugated she­

ets T55xl88 with thickness 0.5; 0.75; 1.0 and 1.25 mm. 

For bars under tension, the load-bearing capacity 

is: 

(6) 

For thin-walled bar in bending there are two ca­

ses to be considered. First, when normal stress cr; is 

less than crcr.i for all walls of the cross-section no 

reduction is reasonable and the load-bearing capacity 

is calculated from the formula: 

M pi =Wp!fr. (7) 

For corrugated sheets this case ts rather theoreti­

cal. More likely is the other case when local buckling 

occurs in compressed flanges cr; > cr cr.i , hen the lo­

ad-bearing capacity of the bar under bending ts: 

(8) 

The load-bearing capacity in the elastic range for 

the thin-walled bar has been taken theoretically as: 

Rigidity characteristics for tested thin-walled bars 

be he ae Ae \' 
I Way of .g 

mm loading 
mm mm mm em' em 

I 2 3 4 5 6 7 

Bnom 114.0 43.(Ml 32.00 1,364 1.'130 

Bw 23.36 43.(Ml 32.00 0,'106 2,X'I5 
0.50 

Bo 22.36 20,63 1'1.67 0.620 2.6'11 

Bn 114.0 43.(Ml 1'1,67 1.302 1,763 

Bnom 114.0 43.00 32.00 2,050 1.'136 

B,,. 32.75 43,00 32,00 1.441 2.73'1 

0,75 Bo 32.75 2X,X6 26,72 1.1 X 'I 2.647 

Bn 114.0 43.00 26,72 2.(110 LX67 

s: .. 32.'13 43,00 32.(Ml 1.422 2.736 

Bnom 114.0 43.(Ml 32.(Kl 2.740 1.'142 

B,,. 42.62 43.(Ml 32,tMl 2.()27 2.60X 

1.m Bo 42.62 35,71 32,00 LXXI 2.5'1X 

Bn 114.0 43.m 32.00 2,740 1.'142 

s: .. 45.0X 43.m 32.00 2.051 2.57X 

Bnom 114.0 43.(Kl 32.(Kl 3.432 1.'147 

B,,. 53,'17 43,(Kl 32.tKl 2.656 2.447 

1.25 Bo 51.'17 41.17 32JKl 2,610 2.443 

Bn 114.0 43.(Kl 32JKl 3.432 1.'147 

s: .. 57.42 43.(Kl 32JKl 2.724 2.436 
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(9) 

To achieve such a state ( N 11 =Ncr ) is technical­

ly difficult owing to random imperfections. Theoreti­

cally it is possible by loading at the eccentricity equal 

to the displacement of the neutral axis ( e = y0 ) in the 

limit state. Actually a bar is loaded at eccentricity e 

caused by the displacement of the neutral axis due to 

changing effective widths, therefore the load capacity 

can be calculated by formula: 

(10) 

in which 

(II) 

where y 0 is displacement of the neutral axis in the 

limit state stress cr; > cr cr.i. ~ is corrective coefficient 

with respect to the diagram of bending moments along 

the bar. 

Je well' well wP, we(\\',11) Ncr 

em' em' em' em' wP, Npl 

X 'I 10 II 12 13 

6,75'1 3.502 LX'13 2.567 0.737 

4,162 1.437 1.5'17 0,560 

3,725 L3X4 1.326 0,40X 

5,'164 3,3X3 1,5'16 0,622 

10.07 5.204 2.X27 3,X72 0.730 

6,X32 2.4'14 2,473 

6,514 2.461 2.2X3 0.475 

'I.SX3 5,133 2.63X 0,6XI 

6.X40 2.500 2.475 0.650 

13.37 6.XX6 3,75X 5.202 0,722 

'1.7'14 3.755 3.3X6 

'1.7'11 3.76'1 3.374 0.534 

13.37 6.XX6 3,75X ().722 

IO,OX 3,'110 3.44'1 0.633 

16.65 X.551 4,6X6 6.52'1 0.717 

12.'15 5.1X7 4.313 

12.'15 5.144 4.307 0.564 

16.65 X.551 4.6X6 0.717 

13.4X 5.537 4.402 0.674 



The interaction curves M-N shown in Fig 7 have 

been used for determining the load-bearing capacity 

of the bar T55xl88, of length I = 2000 mm, of slen­

derness A= 90, where the stresses have been calcula­

ted with respect to the bending moment calculated 

according to the first order theory. The diagrams M­

N (Fig 7) are plotted on the basis of calculation exe­

cuted according to the program NSEC [8], for hat 

cross-sections with thickness 0.5; 0.75; 1.0; 1.25 mm 

and fr = 340 MPa. 

Rigidity characteristics of the considered thin­

walled bars (corrugated sheet T55xl88, thickness 0.5; 

0.75; 1.0; 1.25 mm) are presented in Table: in the lines 

B110111 the nominal characteristics (when cri < crcr.i ), in 

the lines B"., characteristics for a cross-section with 

compressive stresses acting in the wider flange, in the 

lines B0 , characteristics for a cross-section axially com­

pressed ( e =Yo) and cr = fr in flanges and webs, in 

the line B11 characteristicss for cr = fr in the narrower 

flange under compression in lines B~,. characteristics 

for crwide < fr (compression) in the wider flange and 

crnarrow = fr (tension) in the narrower flange. 

For a given eccentricity e, the compressive load­

-bearing capacity has been calculated by the program 

NSEC, afterwards the bending moment M according 

to the first order theory and finally the co-ordinates 

of the interaction curve M I M pi, N IN pi . 

When stresses in the compressed flanges are big­

ger than critical stresses of a local budding the fle­

xural rigidity has to be reduced, the maximal bending 

moment for an effective cross-section for N = 0 can 

be calculated from the relation (8), so that: 

(12) 

( M ei is elastic bending moment of the gross cross­

section). 

The elastic modulus of me gross cross-section to 

plastic section modulus ratio is given in Table, col. 

12, line B11 • The elastic modulus of the effective cross­

section (reduced width in flanges) to plastic section 

modulus ratio We I Wpi is given in Table, col.l2 li­

nes B". and B11 or B~, .. It has to be mentioned that 

the ratio We I W
11

i is different for the compression of 

the narrower flange from that in the wider flange and 

depends on the stress grade and is lesser than 

WIWpi· 

The load-bearing capacity of the cross-section m 

bending (N = 0) or for very small compressive stres­

ses due to N 11 . depends on the tensile zone capacity 

(characteristics from line B~,. ). This case occurs (Fig 

6 b) for the bars with thickness t = 0. 75; 1.0 and 

1.25 mm. 

The maximal ratio M I M pi may not appear on 

the vertical axis - for t = 1.25 mm and N IN pi = 0.04 

(Fig 7) we are getting a local extremum. 

The maximal compressive force for M = 0 is: 

(13) 

and occurs for bars with small slenderness, loaded at 

an eccentricity e = y 0 in limit stress state ( cri > crcr.i ). 

The load N pi.e can be carried out by bars with 

very small slenderness: bisymmetrical, loaded axially 

or monosymmetrical, loaded unaxially when e = y0 . 

With the growing slenderness, the compressive load­

bearing capacity is getting smaller. The critical load 

(9) of the bars with A = 90 and fr = 340 MPa with 

effective width to plastic load ratio Ncr.e IN pi is pre­

sented in Table, col. 13. Also, in this case N pi.e IN pi 

and Ncr.e IN pi is getting smaller when both the stres­

ses and slenderness of webs and flanges are growing. 

0.717 
6.631 

0.622 

0.5 

0.4 

0.3 

0.2 

0.1 

-0.1 

-0.2 

-0.3 

0.4 

0 

·1f~·:2o~~---=::+-t·t~" 

0.9 

N 
Npi 

Fig 7. Interaction curves M-N of the bars A = 90 
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In the upper part of Fig 7 (t = 1.0 and 1.25 

mm), a case is shown when compressive stresses in 

the narrower flange fulfill the condition cri < crcr.i. 

Then the interaction curves are not dependent on the 

slenderness of the compressed flanges up to 0.30 N pi . 

The interaction curves of combined bending and 

compression are shown on the upper and bottom part 

of Fig 7, for t = 0.5 and t = 0.75 mm when the 

condition cr i > cr cr.i is valid and the reduction of the 

cross-section area is recommended. 

For four thicknesses of considered bars with A= 90 

we have got four concave curves. The interaction cur­

ves M-N for cri > crcr.i apart from overall slender­

ness are also the function of slenderness of the flan­

ges As under compression and cross-sectional stres­

ses. Both the cross-sectional area reduction and the 

effect of displacement y
0 

on the cross-sectional stres­

ses cause the concave shape of the curves. The ana­

lysed case of combined bending and compression of a 

thin-walled bar locally buckled is described by the ex­

presswn: 

N N pl.e M q + N(e+ Yo)< . 
+ll ( )-fr• 

AeNcr.c We 1- N I Ncr . 
(14) 

where 

M q is bending moment with respect to transver­

sal loading. Substituting expressions (8), (13) and (14) 

we get: 

M q + N(e+ Yo) [ N ]2 _.:.___ ____ ll ~ 1---
Me Ncr,c 

(15) 

5. Conclusions and final remarks 

The depletion of load-bearing capacity of the ec­

centrically compressed corrugated sheet consisted in 

formation of plastic hinges in the compressed flanges 

of thin-walled sections. The N(y) curves for the com­

pressed corrugated plates are characterised by a high 

coefficient of deflection variation. 

A mathematical model of the thin-walled bars un­

der combined compression and bending is described 

by equation (5). This is a fourth-order differential equ­

ation with non-linearly variable coefficients: flexural 

rigidity EJ(N, q, x) and variable eccentricity of com­

pressive loads y
0
(N, q, x) caused be the change of 

neutral axis position under growing load. Theoretical 

analysis supported by experimental investigations shows 

that monosymmetrical, thin-walled bars are usually 

unaxially compressed which is described by non-linear 

load-displacement curves y(N). The maximal compres­

sive load in a monosymmetrical thin-walled bar can 

be gained by loading applied at the eccentricity equal 

to the neutral axis displacement in the limit stress 

state ( cr i > cr cr.i ) in relation to the initial position in 

an unloaded. 

Interaction curves M-N of monosymmetrical, thin­

walled bars under compression and bending depends 

on many parameters of slenderness: overall A and lo­

cal of compressed flanges As , state of stresses cr ( ef­

fective width depends on cr). The interaction M-N is 

depicted by concave curves which can have local ex­

tremities and are not symmetric with respect to the 

axis N I Npl· 

A comparison (Fig 5) between the experimental 

values Yw ·Yn and the theoretical Yw ·Yn ones (deter­

mined by the NSEC program) for the load-bearing 

capacity of the eccentrically compressed plates N 11 • N 11 

shows that the maximum differences are in the inter­

val from - 7,0% to + 5,5%. 
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GNIUZDOMIJ IR LENKIAMIJ PLOI'iASIENI\) 
STRYP\) EKSPERIMENTINE IR SKAITMENINE 
Al'iALIZE 

A. Biegus 

Santrauka 

Plieno strypiniq konstrukcijq ir pramones paviljonq stogq 

ir sienq strypiniai rysiai vis dainiau pakeiciami profiliniq 

lakstq pertvarinemis sienomis. Profiliniai lakstai, atlikdami 

atitvarin~ funkcij&. ir biidami lenkiamaisiais elemetais, tokiuose 

konstrukciniuose sprendimuose dirba kaip gniu:i:domosios 

pertvaros. 

Siame straipsnyje pateikti rezultatai bandymq, atliktq 

su 20 natiiraliq matmenq modeliq, padarytq is T55xl88x750 

profiliniq lakstq, kuriq storis buvo 0, 75 ir I ,00 mm. Profiliniq 

lakstq elementai buvo gniu:i:domi jega N is profiliniq lakstq, 

padarytq petvarq plokstumoje. 
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Bandymai leido nustatyti apkrovq ilinkiq kreives, mmo 

mechanizm&. ir eksperimentines s&_veikos sandar&_ is karto 

veikiant gniu:i:dymui ir lenkimui. 

Straipsnyje pateiktos viensimctriq gniu:i:domq ir lenkiamq 

plonasieniq strypq s&_veikos kreives. Matematinis modelis 

derina Winterio (Winter) pokritinio laikomumo teorij&. ir 

antrosios eiles lenkimo teorij&.. 

Aptartas s&_veikos kreiviq sudarymo metodas. Pasiiilytas 

biidas. kaip ivertinti monosimetriniq, plonasieniq, tuo pat metu 

ir gniu:i:domq strypq laikomum&_. Rezultatai yra iliustruojami 

strypq, kuriq ilgis 2000 mm ir skerspjiivis T55xJ88, kai jo 

storis 0.5, 0,75, 1,0 ir 1,25 mm, pavyzd:i:iais. 
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