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NON-LINEAR RESPONSE FUNCTIONS FOR TRANSVERSELY ISOTROPIC 
ELASTIC MEMBRANES 

R. Kazakevicifite-Makovska 

Vilnius Gediminas Technical University 

1. Introduction 

The non-linear theory of flexible membranes has 

long been used to model diverse phenomena ranging 

from pneumatic and tension structures in civil engineer­

ing to biomembranes in medical sciences (see [1, 2] 

and references cited therein). One of the main difficul­

ties in applying the general theory of membranes to 

reasonable physical situations for which it is intended, 

is the need for explicit representations of the constitu­

tive response functions. 

The general constitutive equation of an elastic 

membrane relates the tangential surface stress tensor 

(of the second Piola-Kirchhoff type) S( x ,t) to the tan­

gential surface deformation gradient F(x.t). Here 

x E M denotes a place occupied by a typical mem­

brane particle in the chosen reference configuration, 

which is a smooth geometric surface M in the physi­

cal space [3, 4] as the notation and basic definitions 

are concerned). Any constitutive equation is further re­

stricted by the principle of material frame-indifference 

and possible material symmetries. The frame-indiffer­

ent constitutive equations takes the form S = S(C) 

where the tangential surface defonnation tensor (right 

~auchy-Green type) C(x,t) is defined by C = FTF and 

S is a given tensor function defining mechanical re­

sponse of an elastic membrane [3, 5]. Further simpli­

fications of such a constitutive relation are possible if 

a membrane exhibits certain symmetries in its response. 

In particular, if the membrane response is an isotropic 

relative to the undistorted reference configuration, then 

the representation theorems for isotropic functions in 

two dimensions applied to S(C) yields the following 

constitutive equation [5] 

S = •oUI ,i2 )1o + ., (i, ,iz )C, 

i1 = trC, i2 = detC, (1) 

where the response material functions 

(2) 

are scalar functions of the principal invariants i1 and 

i2 of the defom1ation tensor C . Physically, the con­

stitutive relation ( 1) says that the stress in an isotropic 

elastic membrane does not depend on an arbitrary ro­

tation of a local natural state. In this special case, the 

problem of the constitutive equations is reduced to the 

determination of two-scalar functions (2), which com­

pletely specify the mechanical properties of the mem­

brane. 

If a membrane is considered as a three-dimensional, 

thin shell-like body and if a constitutive equation for a 

material of such a body is known, then the two-dimen­

sional constitutive equation ( 1) can be derived with the 

use of certain simplifying assumptions. Such an ap­

proach has long been used to derive the explicit form 

of the response functions (2) for membranes made of 

isotropic hyperelastic materials ( eg [ 1, 6, 7]). 

In this paper the explicit form of the response 

functions is derived for membranes made of transversely 

isotropic elastic materials under the assumption that fibre 

directions (preferred direction of anisotropy) coincide 

with normal to the reference configuration M of the 

membrane. In particular, it is shown that the two-di­

mensional response of the membrane is isotropic in this 

case. It is obvious, however, that the response func­

tions (2) are different from their forms for isotropic 

materials. 

2. Membranes made of transversely isotropic elastic 

materials 

The mechanical response of a hyperelastic mate­

rial is completely determined by the strain energy func­

tion W = W(F), where F denotes the defom1ation gra-
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dient relative to the chosen reference configuration B 

of the body [8, 9]. In general, the possible forms of 

W(F) are restricted by the frame-indifference principle 

and possible material symmetries. The principle of 

frame-indifference may be satisfied identically if the 

strain energy function is written as a given function 

W = W(C) of the right Cauchy-Green defonnation ten­

sor C = F T F . Then, the particular material symmetry 

is defined by the following condition [8, 9] 

(3) 

for all tensors H E G . Here G denotes the material 

symmetry group, the subgroup of the special linear 

group SL(E) (often called unimodular group). In par­

ticular, a transversely isotropic hyperelastic material is 

defined by the condition (3) for all orthogonal tensors 

H(x)E O(E) such that He0 = e0 . Here e0(x) is a unit 

vector defining the axis of transverse isotropy of the 

material [8, 9]. This requirement implies that W(C) 

may be written as a function of the right Cauchy-Green 

deformation tensor C and of the unit vector e0 , 

W = W(C,e0 ). Moreover, the assumption that the di­

rection of e0 has no mechanical significance implies 

that W(C,e0 ) is an even function of e0 . This condi­

tion is satisfied if the strain energy is written in the 

form W=W(C,A0 ), where A 0 =e0 ®e0 is often 

called the fabric tensor. Then, the invariance require­

ment (3) implies that W(C,Ao) is an isotropic func­

tion in both arguments. By the representation theorem 

for isotropic scalar-valued functions of two tensor argu­

ments, the strain energy function takes the fonn [8, 9] 

(4) 

where !A , A = 1, 2, 3, 4, 5, are joint invariants of C 

and A0 defined by 

11 = trC, 12 =..!..{trC)2 -trC2 }, ! 3 =detC, 
2 

/4=e0 •Ce0 , 15 =e0 •C2e
0

. 
(5) 

Then, the general fom1 of three-dimensional con­

stitutive equations may be derived from ( 4) with the 

use of known fonnulae for the derivatives of the In­

variant (5) with respect to the defom1ation tensor C 

[8, 9]. 

In this paper we shall be concemed with flexible 

membranes considered as a three-dimensional, thin shell­

like bodies. The reference configuration of such a body 

may be described in the standard way [1, 6, 7]. Let 

M c B be the mid-surface in the reference configura­

tion of a smooth membrane. Then the position vector 

of any point x E B may be expressed in the form 

x(x,~) = x(x)+9to(x), 

~E[-h0 12,+h0 !2]. 
(6) 

Here x( X) denotes the position vector of the corre­

sponding point xE M at the mid-surface and n0 (x) 

is the unit normal vector to M at the same point. 

Moreover, h0 (x) > 0 denotes the initial (not necessar­

ily unifonn) thickness of the membrane. 

In the same manner, the position vector of any 

point y E B(t) in the current configuration B(t) may 

be expressed in the form [8] 

y(y,l;,t) = y(y,t)+l;n(y,t), 

SE [-h(y,t)/2, +h(y,t)/2], 
(7) 

Deformation of a thin membrane 
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where y(y,t) denotes the position vector of the corre­

sponding point y E M ( t) at the mid-surface M (t) c B(t) . 

Moreover, n(y,t) is the unit normal vector to M(t) 

and h(y,t) > 0 denotes the current thickness of the 

membrane. 

This description involves the assumption accord­

ing to which the three-dimensional deformation is such 

that the mid-surface in the reference configuration de­

forms into the mid-surface in the current configuration 

of the membrane. This is a consistent assumption within 

the theory of thin-membranes [1, 8] according to which 

f << 1, where the small parameter £ > 0 is defined as 

the maximum of the ratio h0 I R0 . Here R0 denotes 

the smallest of the principal radii of curvature of M . 

Moreover, within the same error the normal coordinate 

~ in the current configuration of the membrane may 

be assumed in the form [ 1, 3, 7]. 

~(y,~,t) =A,~ (y,t)~' (8) 

where through-the-thickness stretch A,~ ( x, t) determines 

the ratio of the current and initial thickness of the mem­

brane, h = A.~ho . Then, the position vector (7) may be 

rewritten in the form 

y(y, ~' t) = y(y,t) +A,~ (y, t)/;n(y' t), 

~E [-h0!2, +h012]. 
(9) 

The assumption (8) implies that the transverse normal 

deformation is constant through-the-thickness of the 

membrane. This assumption has a number of important 

implications. 

If the membrane IS made up of a hyperelastic 

material whose mechanical response is determined by 

the 3D strain energy function W = W(C), then the two­

dimensional strain energy function l/J (measured per 

unit area of the mid-surface M ) may formally be de­

fined as the integral of W(C) through the thickness of 

the membrane: 

t ho!L-;; 10 ( ~ ) 
rf> = hoI 2 w (C)!-ta'.., = ho W(C)f.l ' 

o= c:~(·)d~. (I 0) 

Here ~ = ~I ho is the normalized coordinate in thick­

ness direction and f.l = 1- 2HC, + K~ 2 , where H and 

K denotes the mean and Gaussian curvature of the 

mid-surface M . For thin membranes it may be assumed 

!l:;:;l. 

3. Three-dimensional deformation of the membranes 

In continuum mechanics, the defom1ation gradient 

F = Vy and associated tensors are the fundamental 

quantities for the analysis of the local properties of the 

deformation. The most important implication of the as­

sumptions underlying the theory of thin membranes is 

that F is constant through-the-thickness, ie F = F(x,t). 

Moreover, taking into account the relation between the 

gradient operator V in three-dimensional Euclidean 

space and the surface gradient operator V [3], it fol­

lows from (9) that 

F(x, t) = F (x ,t)P0 (x) +A,~ (x,t)n(x,t) ®no (x) .(11) 

Here P0 (x) denotes the canonical projection operator 

in the reference configuration of the membrane and 

F ( x, t) = ~( x, t) denotes the surface deformation gra­

dient, the linear map of the tangent space T,M into 

the three-dimensional Euclidean vector space E :;:; T,£ 

(see [3, 4]). Actually. the codomain of F(x,t) is the 

tangent space TvM(t) and hence it may be expressed 

in the form 

F(x,t) = ~(x,t) = I(y,t)F(x,t) (12) 

where F( x, t) denotes the tangential defonnation gradi­

ent, ie the linear map of T,M into TvM(t). In view 

of (12 ), the 3D deformation gradient (11) may be 

written in the form 

F = IFP0 +A.~n ®n0 . (13) 

It then follows that the tangential defom1ation gradient 

F(x, t) and through-the-thickness stretch A,~ (x,t) com­

pletely described the local deformation of the mem­

brane as a thin 3D body. There are a number of im­

portant implications of this fact. 

Local deformation of a three-dimensional body can 

be decomposed into pure strains followed by the rigid 

rotation [8, 9]. This decomposition follows from the 

polar decomposition of the deformation gradient 

F = RU , where U is a symmetric, positive definite 

tensor (called the right stretch tensor) and R is a pro­

per orthogonal tensor (called the rotation tensor). Simi­

larly, the polar decomposition theorem applied to the 

tangential deformation gradient F yields F = RU , were 

U(x,t): T,M--:) T,M are two-dimensional symmetric, 

positive definite tensors and R(x,t): T,M--:) T,.M(t) is 

a proper orthogonal tensor. In view of ( 13) we thus 
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obtain 

F = RU = IRUPo + "Ac,n ®no . ( 14) 

It then follows that 3D stretch tensor U and the 3D 

rotation tensor R are given by 

U=I0UP0 +"Ac,n0 ®n0 , R=IRP0 +n®n0 . (15) 

There are immediate and important implications of (15). 

In particular, the 3D Cauchy-Green defom1ation tensor 

is obtained in the form 

? 
C = I 0CP0 +"A~n0 ®n0 , (16) 

where the in-surface defonnation tensors are defined 

by 

(17) 

This may be show by direct calculation. In fact, with 

the use of (14) we have 

FTF =(10FT +"Ac,no ®n)(FP0 +"Ac,n®no) = 

T ~ T =10F FP0 +""'c,(I0F )(n®n0 )+ 
( 18) 

+ "Ac, (no ®n)FP0 + "Al (n0 ®n)(n ®n0 ). 

Moreover, from the basic properties of the inclusion 

and projection operators it follows that 

(10FT )(n ®n0 ) =I 0F T n ®n0 = 0, 

(n0 ®n)FP0 = n0 ®10FT n = 0, 

(n0 ®n)(n ®no)= n0 ®n0 , 

where the following identity has been used 

T F T FT I 0F n=l0 (1) n=Io Pn=O. 

(19) 

(20) 

From ( 19) and ( 18) the formula ( 16) follows. More­

over, exactly the same calculations make it possible to 

derive many other relations between the 3D deforma­

tion tensors and their 2D counterparts for membranes. 

In fact the relation ( 16) is a special case of the gen­

eral formulae 

(21) 

for every integer m = 0,±1,±2, .... Moreover, one may 

use (15) to show that 

(22) 

for every integer m = 0,±1,±2, .... 

4. General form of 2D constitutive equations for 

membranes 

By virtue of (16), the 3D strain energy function 

W(C) depends on the 3D Cauchy-Green deformation 

tensor C through the tangential deformation tensor C 

and through-the-thickness stretch "Ac, only, 

W(C) = W(C,A.c,). Hence, the 2D strain energy func­

tion r:]J defined by (1 0) may be rewritten as 

(23) 

It is seen now that the problem of detennining the elastic 

response of the membrane reduces to the problem of 

expressing through-the-thickness stretch "Ac, as a func-

tion of the defonnation tensor C . This may be achieved 

in at least two ways. For the time being let us assume 

that such a function has been found so we may write 

A.c, (x,t) = A(C(x,t)) (24) 

m which case the 2D strain energy function (23) be­

comes a function of the tangential deformation tensor 

C only: 

rp = (i;(C) = h0 ( W (C, A(C)) . (25) 

Standard argument may next be used to show that 

the constitutive equation of a membrane is detennined 

by the relation [ l, 5] 

(26) 

where S(x.t) denotes the tangential surface stress ten­

sor of the second Piola-Kirchhoff type. 

Let us consider now the membrane made of a trans­

versely isotropic material whose axis of isotropy coin­

cides with the unit normal vector n0 . Thus, that the 

3D strain energy function satisfies the condition (3) for 

every orthogonal tensor HE 0{£) such that Hn0 = n0 . 

With the use of (16) we have 

T C T ~2 HCH = HI0 P0H +""'c,(Hn0 ®Hn0 ), (27) 

where the following tensor identity has been used 

H(n0 ®n0 )HT =Hn0 ®Hn0 . (28) 

Moreover, the tensor H( x) defined by H = P0HI 0 is 

necessarily orthogonal on the tangent space T,M and 

smce Hn0 = n0 , from (27) we have 
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It is seen now that if the 3D strain energy function 

satisfies the condition ( 3) for every orthogonal tensor 

HE 0(£), then the 2D strain energy function defined 

by (25) obey the following condition 

(30) 

for all orthogonal tensors H(x)E O(TtM) provided that 

A(C) = A(HCHr) . (31) 

The physical sense of this result is actually self­

evident. The conditions (3) de tines a transversely iso­

tropic material while the condition (30) is the defini­

tion of an isotropic response of the membrane [5]. Thus 

we have shown that if a membrane is made up of a 

transversely isotropic material whose fiber direction in 

the reference configuration coincide with the unit nor­

mal vector n 0 (x), then the 2D mechanical response 

of the membrane is isotropic if and only if the condi­

tion (31) holds. 

With the use of (16) the first three 3D invariants 

in the list (5) are obtained in the form 

I 1 =trC+t-l, I 2 =A~trC+detC, 

I 3 = A~detC. 
(32) 

Moreover, for a membrane made of a transversely 

isotropic material whose fiber direction in the refer­

ence configuration coincide with the unit normal vec­

tor, ie e0 (x)=n0 (x) for all points xEM, then from 

(21) we have 

n0C 111 
n0 = n0 • I 0C 111 P0n0 + At71 n0 • (no ® n0 )n0 ,(33) 

for every integer m = ±1,±2, .... With the use of the 

obvious relations and noting that P0n0 = 0 , we see 

that 

•Cm -~2m -+1±2 n0 n0 - ~~.~ , m - _ , , .... (34) 

Denoting the principal invariants of the tangential de­

formation tensor C( x, t) by 

(35) 

it follows from (32) and (34) that the 3D principal 

invariants (5) and the 2D principal invariants (35) are 

related by 

I . ~2 I . ~2 . I . ~2 
]=1]+11.~, 2=1]11.~+ 12, 3= 1211.~, 

I 4 =A~, 15 =At. 
(36) 

Thus they are uniquely determined by the in-surface 

principal invariants (27) and the through-the-thickness 

stretch A~ (x,t). Noting that C(x,t) is a positive-defi­

nite tensor, it is seen i1 and i2 satisfies the condition 

(37) 

which together with A~ ~ 0 define the natural domain 

of the response material functions. 

If a membrane is made up of a transversely 

hyperelastic isotropic material whose fiber direction 

coincide with the unit nonnal vector in the reference 

configuration, then the relations (36) show that 

W(/1 , ... ,! 5 ) may be considered as a function of 

(i~o i2, A~). It is seen now that if A~ can be uniquely 

detem1ined by the in-surface principal invariants i1 and 

i2 . As a result, whenever 3D strain energy is known 

for any transversely isotropic material, then 

ct>(i1 ,i2 ) = h0 (W(I 1 ,I2 ,I3 ,I4 ,I5 )). (38) 

where the principal invariants I 1 , ... ,! 5 are uniquely de­

tennined in tenns of i1 and i2 . 

In the case of hyperelastic isotropic membrane, the 

strain energy function cJ> = ct>(C) depends on C only 

through the principal invariants i1 and i2 , ie 

cJ> = cJ>(i1 ,i2) . If this function is differentiable with 

respect to its arguments, then 

where cJ> A, A= 1,2, are defined by 

<JJ1 ( i 1 , i 2 ) '= d ij cJ>( i 1 , i 2 ) , 

<P2 (il ,i2) = d i2 <JJ(il ,i2). 

Keeping in mind that 

dcf1 =10 , dcf2 =i110 -C, 

(39) 

(40) 

(41) 

the constitutive equation of an isotropic hyperelastic 

membrane takes the form 

(42) 

Comparison of ( 1) and ( 42) yields the response 

functions (2) in terms of derivatives ( 40) of the strain 

energy function through the following relations 

'to (i1, i2) = 2{ct>I Ci1, i2) + i1<P2 Ci1, i2) }, 

't] (il 'i2) = -2ct>2 (i], i2). 
(43) 

In this case the determination of the response 

functions '! r ' r = 0, 1, reduces to the determination 

of cJ> A = (i1, i2) , A= 1, 2 . If a material is homogenous 

349 



in the nonnal direction to the mid-surface, then from 

(38) we may derive the following general formulae 

5 K 
cfJ A = h0 L, W KIA . W K = a WI dh . 

K=l 

If[ = di K I di A . 

(44) 

Substituting next (44) into (43) we finally obtain 

5 
A · A 'to= 2ho L(ll +11I2 )WA, 

A=1 
5 

't1 =-2h0 'L,I1WA. 
(45) 

A=1 

There remain only to detem1ine the relation (24 ). 

5. Constrained transversely isotropic materials 

A single material constraint is a restriction on 

defonnation of the three-dimensional body of the form 

f(F) = 0, where r is a given function [8, 9]. In gen­

eral, r is subjected to the objectivity requirements and 

hence a single material constrain takes the form 
~ T 2 f(C) = 0, where C = F F = U . For thin membranes, 

the use of (16) this yields 

rcq = i\c,t.~) = o. (46) 

Thus, (46) provides the equation for the detem1ination 

of through-the-thickness stretch A.~ in terms of the tan­

gential deformation tensor C . If this equation may be 

solved for A.~ to yield A.~ = A(C), then the constitu­

tive relations for the membrane may be derived as de­

scribed in the previous chapter. 

There are four types of material constraints most 

often considered in continuum mechanics [8, 9]: 

f(C) = detC -1 = 0 -incompressibility constrain, 

f(C) = trJC -3 = 0- Bell constrain, 

f(C) = trC-3 = 0 -Ericksen constrain, (47) 

f(C) = e0 • Ce0 -1 = 0 -inextensibility constrain, 

where e0 denotes the unit vector in the direction of 

inextensibility (not to be confused with the unit vector 

in the fibre direction of a transversely isotropic mate­

rial). With the use of the results of chapter 3, each of 

these constraints with e0 taken to be the unit normal 

vector n0 to the undeformed mid-surface M , makes 

it possible to detennine through-the-thickness stretch by 

the relation A.~ =A( C) . Moreover, it is easily seen that 

A(C) so detennined is an isotropic function of C and 

hence it depends on C only through the principal 

invariants (35). 

For the incompressibility constrain, the use of (14) 

and (35) yields 

A.~= (detF)-1 = (detU)-1 = i2112 . (48) 

Substituting (48) into (36) we have 

In view of (22) and (35) for Bell constraint we have 

~ 3 ( U)-1 3 .-1 I 2 ~~,~ = - tr = -12 . 

Substituting (50) in to (36) yields 

I . 9 6"-112 .-1 
1 =I] + - 12 + 12 ' 

I2 =i2(1+i1(9-6i2112 +i21)), 

I . (9 6"-112 .-1) 3 = 12 - 12 + 12 , 

I 9 6
.-1/2 .-] 

4 = - 12 + 12 , 

I -(9 6.-1/2+.-1)2 1- - 12 12 . 

The Ericksen constrain yields the equation 

A.~ =3-trC=3-i2. 

Hence from (36) we then have 

II =i1 +3i2
1

' I2 =3i1 +i2, 

I 3 = 3, I 4 = 3i21 , I 5 = 9i22 . 

(50) 

(51) 

(52) 

(53) 

A material that is inextensible in the direction of unit 

normal vector n 0 ( x) is characterised by the constraint 

n0 • Cn0 -1 =A.~ -1 = 0. 

Thus A.~ = 1 and .., 

I 1 = i1 + 1, I 2 = i2 (1+ i1), I 3 = i2 , 

I 4 =1, I 5 =1. 

(54) 

(55) 

The above result show that each of the constraints ( 4 7) 

uniquely determines the 3D invarinats I A, 

A = 1, 2, 3, 4, 5, in tenns of two-dimensional invarianat 

i1 and i2 . Then, the two-dimensional response func­

tions 'to (ilo i2 ) and 't1 (i1 ,i2) for each type of these 

constraints are easily derived from the general formu­

lae (45). 
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6. Closing remarks 

The results of this work show that the two-dimen­

sional constitutive equations for flexible elastic mem­

branes may be derived from the constitutive equations 

of non-linear elasticity whenever any of the material 

constraints (47) is physically justified for the particular 

class of materials. Moreover, if a material is a trans­

versely isotropic with the axis of the isotropy normal 

to the undeformed mid-surface of the membrane, then 

the two-dimensional response of the membrane is an 

isotropic. 
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NETIESINES MEDZIAGOS DARBJ\ APIBUDINANCIOS 
FUNKCIJOS SKERSAI JZOTROPJNEI TAMPRIAI 
MEMBRANAl 

R. Kazakeviciiite-Makovska 

Santrauka 

Membranai, pagamintai is medziagos, kurios fizines savy­

bes aprasomos deformacijos energijos funkcija W ti.irio viene­

tui, deformacijos energijos funkcija fP membranos vidurinio 

pavirsiaus ploto vienetui gaunama integruojant funkcij<t W 
pagal membranos stori. (Nagrinejama deformacijos energijos 

funkcija W neturi nustatytl.! apribojimq ir yra leidziamos bet 

kokio dydZio deformacijos.) Funkcijos fP tiksli israiska yra 
isvesta skersai izotropinei medziagai, kai izotropijos asis 

sutampa su membranos nedeformuoto vidurinio pavirsiaus 

normale. Parodoma, kad skersai izotropinei medziagai gauta 

dvimate membranos darb<t apibiidinanti funkcija yra izotropine 
ir issamiai istirta gautl.! fiziniq priklausomybiq struktiira. Tokios 

fizines priklausomybes yra isvestos keturiems kontinuumo 

mechanikoje daznai nagrinejamq medziagq tipams. 
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