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Vilnius Gediminas Technical University 

1. Introduction 

A non-linear theory of flexible membranes with 

vacuous pores or voids [I] may be considered as a 

two-dimensional analogue of the theory of elastic ma

terials with voids first developed by Nunziato & Co

win [2] and subsequently extensively studied in the li

terature (see [2, 3] and references cited therein). While 

the approach adopted in [I] was commonly called the 

direct approach in the shell literature ( cf. [ 4-6] ), ie 

being essentially independent on any three-dimensional 

theory, the mechanical balance laws postulated in [I] 

was largely motivated by the physical arguments un

derlying the three-dimensional theory [2, 3]. However, 

the theory of membranes differs in many ways from 

the three-dimensional theory. One source of differences 

lies in the definition and structure of material symmet

ry groups. These differences have been exploited in 

detail by Cohen & Wang [4] and Murdoch & Cohen 

[5] within the classical theory of elastic membranes, ie 

membranes without voids to which the more general 

theory of [I] reduces under certain assumptions. 

This paper is concerned with the constitutive equ

ations for elastic membranes with voids. The general fom1 

of such constitutive equations and restrictions due to the 

frame-indifference principle, the energy imbalance prin

ciple and possible material symmetries are considered. 

Special attention is devoted to the particular case of isot

ropic membranes. The general structure of constitutive 

equations in this special case is examined in details. 

The coordinate-free (absolute) tensor notation for 

surface vector and tensor fields introduced in [5, 6] is 

used consistently throughout the paper. This makes the 

considerations not only simpler and more transparent 

but also entirely suppresses the need to examine the 

invariance of the constitutive equations under the coor

dinate transformations. 
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2. Equations of motion and constitutive relations 

A theory of membranes with vacuous pores or 

voids may be considered the simplest generalisation of 

the classical theory (see eg [4-6]). Moreover, as in the 

classical theory, a membrane is mathematically model

led as a two-dimensional continuum consisting of point

like particles. which at each time instant t are smoot

hly distributed over a smooth geometric surface M (f) 

in the physical space. A theory of membranes with voids 

is richer than the classical theory in this that every 

spatial configuration M (t) of the membrane is additio

nally characterised by a single scalar function 

<p=<p(y,t ). Here yE M(t) denotes the spatial place cur

rently occupied by a typical membrane particle. Physi

cal interpretation of <p may slightly vary dependently 

on the intended application of the theory. In general, it 

is assumed that the surface mass density m(y,t) me

asured per unit area of M(t) may be written in the 

form 

m(y.t) = y(y,t)<p(y,t), (I) 

where y(y,t) is interpreted as the matrix mass density 

(cf. the three-dimensional theory [7]). Thus <p(y,t) may 

be called the area fraction function. Moreover, this phy

sical interpretation requires that 

m(y,t) > 0, 0 <y(y,t) ~ m(y,t), 0 < <p(y,t) ~ 1. 

In this theory, <p(y,t) is regarded as the independent 

kinematics variable so that the classical laws of me

chanics must be suitably reformulated in order to ob

tain the complete set of governing field equations [I]. 

In the analysis of special problems, it is often 

convenient to fonnulate the field equations and consti

tutive relations expressed entirely in terms of referen

tial field variables. Accordingly, in the subsequent 



considerations it will be assumed that the membrane 

has been assigned a particular, time-independent confi

guration M . This configuration serves to identify 

membrane particles and the motion of the membrane 

is described by a time-dependent mapping X which 

carries each membrane particle whose reference place 

was x E M into its spatial place y = x( x, t) at pre

sent time t. Then <p(y,t) may be regarded as a func

tion of x and t so we write <p(y,t) for <p(x(x,t),t). 

Assuming that the deformation mapping y = x(x,t) is 

differentiable in respect of both arguments, the veloci

ty of the membrane and the surface deformation gra

dient are defined by 

v(x,t) = ,l(x,t), F(x,t) =Vx(x,t). (2) 

Throughout this paper V = V s and Div = Div s denote 

the surface gradient and divergence operators on M 

(see [5, 6]). 

In the referential description, the initial surface 

mass density m0 (x) is time independent and the law 

of mass conservation is satisfied identically. The re

maining three laws of balance, the balance of linear 

and angular momentum and the balance of equilibrated 

forces yield the following field equations [ 1] 

DivT+ I =moil, TFT -FTT =0 (3) 

and 

Divh + g + f = mo(K(¢+ K:<jl) . (4) 

The equations (3) are classical (cf. [5, 6]), where 

T ( x ,t) denotes the surface stress tensor (of the first 

Piola-Kirchhoff type) and l(x,t) is the surface body 

force. 

The mechanical variables appearing in the equa

tions (4), which represents the balance law of equili

brated forces, are named as follows (the terminology 

adopted from the three-dimensional theory [2, 3]): 

h(x,t) - the equilibrated surface force vector, g(x,t) -

the intrinsic equilibrated force, l(x,t) - the extrinsic 

equilibrated force, K(x,t) - the equilibrated inertia. 

Moreover, in consistency with ( 1 ), the initial mass 

density is written as mo(x) = Yo(x)q>o(x). Thus Yo(x) 

and <p0 (x) are the initial matrix mass density and the 

initial area fraction function. 

The general constitutive equations for elastic mem

brane with voids relate surface stress tensor T , the 
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equilibrated surface stress vector h and the intrinsic 

equilibrated surface force g to the surface deforma

tion gradient F , the area fraction function <p , the sur

face gradient V<p of <p and the rate of change <jl of 

<p . Such constitutive equations must also be consistent 

with the laws of thermodynamics and the principle of 

frame-indifference described in detail in [1, 8]. In the 

purely mechanical theory of elastic membranes with 

voids considered in this paper, the balance law of 

energy and the principle of irreversibility may be com

bined into the energy imbalance principle, which im

plies the following local dissipation inequality 

cP-T•F -h•V<jl+(g-2_K:<jl)<jl~O. (5) 
2 

Here c])(x,t) denotes an elastic potential, which may 

be identified with the internal energy for adiabatic pro

cesses or with the free energy under isothermal condi

tions. 

The constitutive equations that are consistent with 

the principle of frame-indifference can be most simply 

expressed through the change of both independent and 

dependent variables. As it is know from the classical 

theory of membranes, the surface deformation gradient 

F(x,t) may be written in the form F =IF, where 

F ( x, t) is the tangential deformation gradient and 

I(y,t) denotes the inclusion operator in the current 

configuration of the membrane [4, 5]. Then, introduc

ing the tangential surface stress tensor (of the second 

Piola-Kirchhoff type) S(x,t), which is defined by 

T = FS, the equations (3) may be expressed in the 

equivalent form 

Div(FS) +I =moil, s =sT. (6) 

By virtue of the principle of frame-indifference the 

constitutive equations depend on the surface defonna

tion gradient only through the surface deformation ten

sors C(x,t) being defined by 

(7) 

Then, the frame-indifferent constitutive equations 

for an elastic membrane with voids are 

cp = «P(e,<jl), S = S(e,<jl), h = h(e,<jl), g = g(e,<jl). (8) 

Here for simplicity of writing e is short notation 

for 



e = (<p0 ,C,<p,V<p). 

The constitutive equations must (8) satisfy the dissipa

tion inequality (5) which may by rewritten in the form 

ci>- 2S•C-h•V<i>+(g-!.. i:<i>)<i>::;; o. 
2 

(9) 

Assuming that the response function cP(e,<j>) is differ

entiable in respect of all its arguments and making use 

of (8) the inequality (9) reads 

(10) 

It then follows that the response function c/J and, by 

implication, the response functions S and h may not 

depend on the rate of change <P of the area fraction 

function. Thus the consistency with the laws of ther

modynamics requires that the constitutive relations (8) 

must assume the following fonns 

c!J=cP(e;x), S=S(e;x), 

h = h(e; x ), g = g(e,<j>; x ). 
(II) 

Moreover, the response functions S and h are deter

mined by an elastic potential by the relations 

The intrinsic equilibrated force g(x,t) is not derivable 

from the elastic potential and therefore requires indi

vidual treatment. In particular, the dependence of the 

response functions g on <P is excluded by the dissi

pation inequality (9). 

The constitutive equations (II) supplemented by 

the constitutive equation for the equilibrated inertia 

(13) 

provide the complete set of relations, which detem1ines 

the elastic response of membranes with voids. In view 

of (12) and (13) the inequality (10) reduces to the fonn 

i'( e ,<j>; x J<P ::;; 0 , (14) 

where 

(15) 

may be called the dissipation function. It is seen from 
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( 14) that F( e ,<j>) must be opposite in sign to <P and 

must vanish whenever <P = 0 , that is 

F(e,O; X)= a!jl(i)(e; X)- g(e,O; X)= 0. (16) 

Moreover, 

oq,F(e,O; X)= -dq,g(e;O; X)::; 0. (17) 

Within purely mechanical theory the constitutive equa

tions (II) and (13) together with the equations of 

motion (6) and (4) provide the complete set of field 

equations goveming the motion and defom1ation of an 

elastic membrane with voids. 

3. Material symmetry groups and representation of 

response functions 

The constitutive equations (II) determine a me

chanical response of a membrane with voids relative to 

a particular reference configuration M . The same con

stitutive relations may be formulated equally well rela

tive to any other reference configuration M'. If 

y=;x(x,t) and <p=<p(x,t) describe the motion of the 

membrane with voids relative to the reference configu

ration M , then the same motion relative to another 

reference configuration M' may be described by 

y=;x'(x',t) and <p=<p'(x',t). Let further l:M ~M' 

be a deformation of a membrane from M to M'. 

Then, the two mappings x' and X are related by 

x'=lo;x so that x'=l(x) and <p(x,t)=<p'(l(x),t). 

Moreover, by the chain rule we have the following 

transfonnation rules 

( 18) 

Here H(x) =Vl(x)-1 and Vl(x): ~¥M ~ TlM' is the 

tangential surface gradient of the deformation from M 

to M'. Moreover, with the use of ( 18) we have 

In general, when the reference configuration is changed 

from M to M', the response functions will also 

change. Denoting by a prime all variables and response 

functions defined relative to M', the fonn of corre

sponding constitutive equations equivalent to ( 11) may 

formally be obtained by replacing unprimed quantity 

by primed quantity. Thus, if the response of a 



membrane particle in respect of one reference con

figuration is known, then with the use of (18) and 

( 19) it can be determined in respect of any other 

reference configuration. 

It may happen that the mechanical response of a 

membrane is indistinguishable for two different refer

ence configurations. If this a case, the symmetry group 

of a membrane may be described as that set of linear 

transformations of local reference configuration which 

leave unaltered the response of the membrane to all 

deformations. Let M' and M' denote two configura

tions of the membrane such that given a membrane 

particle share the same place x and the same tangent 

spaces T_,M = T_,M'. Then, the relative deformation 

gradient H(x) is a linear map of T,M into itself. Let 

H(x)E GL(TxM) be such that 

~ ~ T T 
cP( <J>o, C, q>, Vq>) = C/J( <J>o, H CH, q>, H Vq> ), 
~ ~ T T T 
S(q>0 ,C,q>,Vq>) =HS(q>0 ,H CH,q>,H Vq>)H , 
~ T~ T T 
h(q>0 ,C,q>,Vq>)=H h(q>0 ,H CH,q>,H Vq>), (20) 

g( <J>o, C, q>, Vq>, <j>) = g(<J>o ,Hr CH,q>,HrV<p, <j>), 

for all tangential deformation tensors 

C(x,t): TxM ~ TxM and all Vq>(x,t)E T,M. The set 

of all authomorphisms H(x)E GL(T,M) satisfying (20) 

forms a subgroup of the general linear group 

GL(T,M) . This subgroup, denoted by rj, is called 

the symmetry group of an elastic membrane with voids. 

It is important to notice that the symmetry group 

C) depends on the reference configuration. Since the 

symmetry group will change with the reference state, 

it is important to fix the reference configuration rela

tive to which the material symmetry holds. It seems 

natural, therefore, that the undistorted state of vanish-

ing defom1ation for which ldet HI = I should be chosen 

as the reference state that identifies the inherent sym

metries of material. 

The conditions (20) appear to be the definition of 

the symmetry group ;§ In application, however, the 

response functions are rarely given explicitly, while the 

group (jJ can often be assumed. As a result, (20) be

comes a condition upon the unspecified response func

tions. In other words, an assignment of the symmetry 

group narrows the class of response functions. 
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4. Isotropic elastic membranes 

An isotropic membrane is one whose mechanical 

properties are identical in all directions tangent to the 

surface M . This may be the case if the matrix mate

rial is isotropic and the initial void distribution is uni

form in the reference configuration. Fonnally, an isot

ropy conditions require that the material symmetry group 

?I) contain the orthogonal group O(T,M) . However, 

the condition O(T_,M) c ;§ is not invariant under 

change of local reference configurations (cf. [4, 5]). 

Local reference configurations for which this condition 

is satisfied are called undistorted reference configura

tions. Relative to such a reference configuration the 

reduced forms of the constitutive equations for isotro

pic elastic membranes with voids may be obtained from 

the representation theorems of isotropic functions in 

two-dimension [7]. 

The requirement that the response functions in the 

constitutive equations (II) are isotropic functions of 

their arguments implies that they depend on C and 

Vq> only through their joint invariants. The complete 

set of independent principal invariants consists of 

(21) 

The first two invariants, it and i2 , are the same 

as in the classical theory of membranes without voids. 

These are the principal invariants of the surface defor

mation tensor C defined by [5] 

. c . d c .J It =tr , 12 = et =J-, (22) 

where j = ldetFI. The two additional invariants kt and 

k, are 

That there are only four functionally independent 

invariants of C and Vq> is obvious if we note that at 

any point x E M , the tensor C may be expressed in 

the spectral form so that its off-diagonal component is 

zero. Thus the joint invariants of C and Vq> can be 

expressed in terms of two components of C and two 

components of Vq> . It may be noted further that the 

assumption det F > 0 implies that C is a positive-defi

nite tensor. Thus, the invariants (22) and (23) satisfy 

the conditions 



if-4i2 2::0, k1 2::0, k2 2::0, (24) 

which define the natural domain of the response func

tions for isotropic membranes with voids. 

Now the reduced form of the response functions 

may be obtained from the representation theorems of 

tensor functions [7, 8]. By the general theorem on 

scalar-valued isotropic tensor functions, the response 

function «P(<p0 ,<p,C,Hp;x) is an isotropic function if 

and only if it depends on C and V<p only through the 

joint invariants (21 ). Hence the constitutive equation 

for the elastic potential takes the form 

(25) 

The relevant theorems on tensor-valued and vec

tor-value tensor functions in two-dimensions imply that 

the response function for the surface stress tensor must 

be of the form 

S(<p0 , C,<p,V<p) =To 10 + r 1C + T 2V<p®V<p+ 

+ 't3 (C V<p ®V<p+ V<p ® C V<p), 
(26) 

while the response function for the equilibrated stress 

vector takes the form 

(27) 

Here the response coefficients 't r , 1 = 0, I, 2, 3, and 

<X A , A = 0, I, are isotropic functions of the invariants 

(21 ): 

Tr =tr(<p0 ,<p,i1,i2 ,k1,k2 ), 

<X,1 =aA(<Jlo,<Jl,il,i2,khk2). 
(28) 

The constitutive equation for the intrinsic equilibrated 

force, like constitutive equation for the elastic poten

tial, is of the form 

(29) 

Further restrictions on the fonn of the response 

functions (26) and (27) may be derived from the con

sistency conditions (12). In particular, it is not difficult 

to see that the response coefficients 't r and a ,1 are 

determined by the derivatives of the elastic potential in 

respect of the invarinats (21 ). To this end we note that 

the derivatives of the invariants (22) and (23) in re

spect of C to V<p tand are given by the following 

formulae 
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Clci1 =10 , Clci2 =i110 -C, Clck1=0, 

ockz =V<p®V<p, Clv<pil =ovqh =0, 

ovcpkl = 2V<p, ovcpkz = 2C V<p . 
(30) 

This can be shown by direct calculation. The differen

tiation of (25) in respect of C to V<p together with 

the use of (30) yields 

where 

Clc«P = (1'/JI + i11'/J2 )1o- I'/J2C+I'/J2 (V<p ®V<p), 

Clvcp«P = 2(1'/JI1o +I'/J2C)V<p, 

cpa = o«P!oia, 1'/J~ = a«Pioka. 

(31) 

The comparison of (31) with (26) and (27) together 

with the use of general relations (12) shows that 

As a result of the above considerations we have 

S='t0 10 +T1C+r2V<p®V<p, 

h = (a010 +a1C)V<p, (33) 

which together with the constitutive equation (29) for 

the intrinsic equilibrated force and the constitutive 

equation (13) for the equilibrated inertia characterise 

completely an isotropic elastic membrane with voids. 

5. Closing remarks 

The derived representations of the response func

tions for elastic membranes with voids provide the most 

general form of the constitutive equations, which are 

consistent with the basic laws of mechanics and ther

modynamics, the principle of material frame-indiffer

ence and the assumed material symmetry group. The 

derived representations provide valuable theoretical 

guidance for the formulation of specific constitutive 

equations for the particular classes of membranes. 

It is not difficult to see that under the assumption 

<p = I , the considered theory reduces to the classical 

theory of membranes without voids, in which case the 

constitutive equation for the tangential stress tensor 

coincide with the result obtained in [4]. This may be 

regarded as a partial verification of the correctness of 

the results derived in this paper. 
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IZOTROPINHJ TAMPRIV MEMBRANV SU 
TUSTUMOMIS FIZINIV PRIKLAUSOMYBIV 
STRUKTURA 

R. Kazakeviciiite-Makovska 

Santrauka 

Straipsnis skirtas tampriq membranq su tustumomis fizi
nems priklausomybems sudaryti. Nagrinejama tokiq priklauso
mybiq bendroji forma, apribojimai, kuriuos lemia atskaitos 
sistemos indiferentiskumas, energijos disbalanso principai ir 
galima medziagos simetrija. Gautos tamprios membranos su 
tustumomis buvi aprasancios funkcijos pateikia fiziniq pri
klausomybiq bendriausillill form1;!, i kuril! ieina pagrindiniai 
mechanikos, termomechanikos desniai, atskaitos sistemos in
diferentiskumo principas ir pasirinkta medziagos simetrijos gru
pe. Sios funkcijos israiskos duoda vertingas teorines nuorodas 
formuluojant specifines fizines priklausomybes ivairioms 
membranq klasems. Straipsnyje daugiausia demesio skiriama 
izotropinems membranoms, issamiai istirta jq fiziniq priklau

somybiq bendroji struktiira. Laikant, kad funkcija <p = I , ne

sunku pastebeti, kad pateiktl! teorijll galima traktuoti kaip kla
sikin~ membranq (be tustumq) teorij1;!. 
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