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Abstract. Three-layer structures made of concrete-type materials usually have an internal layer of a less strength, which 
serves as thermal insulation and makes the structure more light. Therefore cracks may appear in the internal layer of a 
bended structure earlier than in the external tensile layer. This paper deals with an influence of cracks in the internal 
layer and its deformational properties on the calculation of layered structures made of concrete-type material. A model 
is presented for calculating flexural three-layer members for crack resistance taking into account the internal layer 
cracking. Analytical procedures are described for calculating the depth of the tensile zone and cracking of the internal 
layer. The paper also presents an analysis of the influence of defonnational properties of the material (concrete) on the 
stress-strain relationship in the layers. 
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1. Introduction 

Three-layer slabs made of concrete-type materials 
are used for the roof, ceiling and other parts of build­
ings. The internal layer of such structures usually serves 
as thermal insulation. Also this layer increases the stiff­
ness of the structure. Usually the materials used for in­
ternal layers are of a less strength compared with mate­
rials used for external layers. Therefore the cracks may 
appear in the internal layer [1]. The external layer cracks 
in most cases are inadmissible because they may influ­
ence the thermal insulation properties of the internal layer 
(due to the soak of moisture) [2, 3]. Cracks in the inter­
nal layer change the stress-strain state and in this way 
they change the behaviour of the external tensile layers 
under loading [2, 4, 5]. However, the analysis of litera­
ture sources shows that the calculation of structures with 
cracked internal layer has not been investigated enough. 
For the first time this question was discussed in [2], al­
though only conditions of possible cracking of the inter­
nal layer were given. The calculation for crack resistance 
of layered structures made of concrete-type materials in 
general has not been investigated in detail. 

It is important to determine the deformational prop­
erties of tensile concrete as accurately as possible when 
analyzing the stress-strain relationship under ultimate load 
conditions. Plastic deformations of concrete members can 
be estimated via Poisson's ratio v c = f.c,et I f.c , where 
f.c,et is the elastic strain of the concrete and f.c is the 
full deformation of the concrete [2, 4, 6-8]. For the ideal 

elastic material the Poisson's ratio v = I and for the ideal 
plastic material v = 0 . The deformational properties of 
concrete depend upon many factors [9-11]. Although the 
actual influence of deformational properties on the re­
sults of calculating layered structures neither has been 
investigated sufficiently. That's why the main purpose of 
this article is to determine the influence of internal layer 
cracking and its deformational properties on crack resis­
tance of the external tensile layer. 

2. Defining a suitable model for numerical calcula­
tions 

For more than 60 years the layered structures of 
stiff layers have been calculated using the so-called 
'method of transformed cross-sections' [3, 4. 1 0]. How­
ever, this method cannot estimate all the deformational 
properties of reinforced concrete. Therefore scientists in 
different countries, including Lithuania, have proposed 
various methods for estimating the actual strain distribu­
tion within the section depth [3, 10, 12]. The actual stress­
strain relationship o-f. of the concrete is not linear 
(Fig 1, b). However the precise description of o-f. re­
lationship does not exist or the calculations are very com­
plicated. Consequently, a simpler method for evaluating 
deformational properties of concrete in layered structures 
is required. 

In our research on flexural layered structures we, as 
other researchers [3, 5, 12, 13], follow several widely 
known assumptions: I) validity of the hypothesis of plane 
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sections, ie strain distribution within the section depth is 
linear; 2) compressive concrete is working in the elastic 
stage; 3) stress distribution curves in the layers may take 
different shapes; 4) plastic deformations appear in the 
tensile concrete; 5) influence of shrinkage is ignored. 

a) r-b1 

fdi-
1 

r'c.J-i 

r I 
• c3 I 

~'cc X I 

I 
--------------- -----------1-

1 

Fig 1. The model for numerical calculations of three-layer 
beam when the material of the internal layer is of a less 
strength than that of the external layer: a) basic geometry 
of the cross-section; b) real shape of stress distribution 
within the section depth; c) simplified stress distribution 
within the section depth; d) strain distribution within the 
section depth 

Following these classical assumptions a simple 
model can be created for calculating layered structures 
when their internal layer is cracked and their external 
layer is not cracked (Fig I, b, c). 

It is not difficult to prove that a simplified model 
of stress distribution is very close to the real shape and 
corresponds to the theoretical shape of stress-strain dis­
tribution within the depth of the section of layered struc­
tures made of concrete-type materials with internal layer 
of less strength. 

In order to simplify the calculation model it' is as­
sumed that the stress in the most tensile fibre of the ex­
ternal layer reaches the ultimate tensile strength, ie 
<Jct,l = fct,l and Ect.l = Ect,u.l . Meanwhile, the stress 
distribution within the depth of section in the tensile zone 
of the internal layer could take one of the three simpli­
fied shapes: triangular (when the external tensile layer 
reaches its ultimate tensile strength earlier than the inter­
nal one), rectangular (when the external tensile layer and 
the internal layer reach their ultimate tensile strength at 
the same time), and cracked rectangular (when the cracks 
in the internal layer appear before the external tensile 
layer reaches its ultimate tensile strength). The shape of 
stress distribution within the section depth mostly de­
pends on the constitutive deformational properties of the 
internal layer material (the ratio between the deforma­
tion modulus Ec.2 and the tension strength fct,2 of the 
internal layer) [2, 10, 14]. 

In order to verify the correspondence of the selected 
model to the constitutive deformational properties and 
the geometrical characteristics of the flexural composite 
beam it is necessary to check these conditions (Fig I): 

(I) 

(2) 

{3) 

(4) 

(5) 

where Ect.i is the concrete tensile strain at the i point in 
the section; Ect.u.i is the ultimate tensile strain of the 
concrete. 

If the depth of the tensile zone of the cross-section 
y could be known, it is possible to determine what shape 
of stress distribution within the depth of section the in­
ternal layer (its tensile zone) will take: 

a) if the condition in Eq 1 is valid, the external 
tensile layer reaches its ultimate tensile strength earlier 
than the internal one; 

b) if the condition in Eq 2 is valid, the external 
tensile layer and the internal one reach their ultimate 
tensile strength at the same time; 

c) if the condition in Eq 3 is valid, the cracks in 
the internal layer appear before the external tensile layer 
reaches its ultimate tensile strength, ie the model shown 
in Fig 1 is valid. According to our research the validity 
of the condition in Eq 3 could be possible when the ra-

tio Ec.'llfct,'l;;::lxl0
5 and the ratio fct.l/fct,2:2:3,5. 

As long as the depth of the tensile zone of cross-section 
is unknown, it is not possible to verify the selected model 
completely in this stage of calculations. Consequently, 
two interdependent quantities - the depth of the tensile 
zone of the cross-section y and the depth of the crack 
in the internal layer dcr.2 - should be determined. 

3. Calculation of the tensile zone depth and the crack 
depth in the internal layer 

During the calculation of the depth of cross-section 
tensile zone and the depth of the crack in the internal 
layer the taken assumptions and the model shown in Fig 1 
are followed. According to the assumptions that the beam 
compressive zone is working in the elastic stage and the 
plastic deformations appear in the tensile concrete, the 
equilibriums for the stresses have the following expres­
sions: 

(6) 

(7) 

Since the stress distribution within the section depth 
is linear (Fig 1, c), it is enough to determine the stresses 
acting in every side of each layer and the reinforcing 
steel: 



G. Marciukaitis, L. Juknevii'ius I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT-- 2002, Vol VJII, No 3, 153~158 155 

' ' 
0c,3 = Ec,3f.c.3 

0 c,3 = Ec,3f.c.3 
' ' 

<Jc,2 = Ec,2f.c.2 

<Jct,2 = uct.2Ec.2f.cr.2 = fct.2 
' ' 

Ocr.l = Ucr.lEc.lf.cr.l 

Ocr,l = Ucr.lEc,lf.ct.l = fct,l 

<Js =Esf.s 

(8) 

The stress in the tensile zone of the internal layer 
Ocr,2 acting above the crack equals fcr,2. The stress in 
the cracked zone equals zero. 

It is noted that the calculation of stress distribution 
according to the calculated strains is used in Eurocode 
[15] and in most research proceedings of various authors 
[1, 2, 3, 9, 10, 11, 13]. 

By the hypothesis of plane sections and using the 
known f.ct.u.I quantity (Eq 4}, it is possible to calculate 
the relative linear strains of the concrete in every section 
point (Fig 1, d): 

_ Yi 
f.ct,i - f.ct,u,l ' 

y 
(9) 

where Yi differs in tensile and compressive zones: in 
the tensile zone Yi means the distance between f.u,u,l 

and Ecr,i, and in the compressive zone it means the dis­
tance between f.c,i and neutral axis (Fig I, d). 

When Ecr.u,l is a known quantity (Eq 4), linear 
strains on the every side of each layer and in the rein­
forcing steel will be as follows: 

(l 0) 

In order to calculate the tensile zone depth and the 
crack depth in the internal layer, the equilibrium equa­
tion of the forces acting around the neutral axis 

f aidA= 0 is constructed: 
A 

o.s(ac.3 +o~.3~3b3 
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( 11) 

The strain expressions in Eq 10 put into the stress 
equations in Eq 8, and the obtained expressions put into 
the equilibrium Eq 11, the following is obtained after 
some mathematical rearrangements: 

[Ec.2d2 (1- 2v ct,2 )lv 2 

- Ec.3d3b3 

+ 2 -Ec.2b2 y 
(
dl +d2 -2Ycr.2d1 -l 
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? 
- 2v ct.2d,--

+ + Ec.2b2 = 0. 
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-2vu,2dcr.2 

+ Ec.1d?b1 V ct,l + 2AsE1a 

(12) 

There are two unknown quantities in Eq 12: y and 

dcr,2 · 
The equation for calculating the crack depth in the 

internal layer dcr.'2 is obtained following the hypothesis 
of plane sections and Fig 1, d: 

d 
- . d f.ct,u,2(y-d,) (13) 

cr.2- Y- I- · 
f.ct,2 

Consequently, two equations (Eqs 12, 13) with two 
unknown interdependent quantities ( y and dcr. 2 ) are 
obtained. We suggest using the iteration method for cal­
culating these unknown quantities. For the first iteration 
the zero value may be used for the crack depth in the 

internal layer dcr.2. 

When the tensile zone initial depth y is being cal­
culated (with d cr. 2 = 0 ), the validity of the model shown 
in Fig 1 must be verified by given conditions (Eqs 1, 2 
and 3 ). If the selected model is valid, ie Eq 3 is satis­
fied, the depth of the crack in the internal layer dcr.'2 

with obtained initial y quantity could be calculated by 
Eq 13. 
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Fig 2. The relationship between fcr,2 quantities and the 
ratio y I h , following the three iterations of calculation 
( ~ first iteration - crack depth equals zero; -
second iteration - with the crack depth obtained in first 
iteration; - third iteration - with the crack depth ob­
tained in second iteration) 
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When the second iteration of the calculations is fol­
lowed, ie Y value is calculated using Eq 12 with ob­
tained dcr.2 value. Then the model validity in Fig 1 must 
be verified again and the next iteration could be followed 
if required. 
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Fig 3. The relationship between fcr.2 quantities and the 
ratio d cr,2 I( y- d 1) , following three iterations of calcu­
lation ( -+- first iteration - y calculated without crack; 
- second iteration - y calculated with the crack depth 
obtained in first iteration; - third iteration - y cal­
culated with the crack depth obtained in second iteration) 

The analysis concerning the influence of the num­
ber of followed iterations on the accuracy of calcula­
tions in general is made. The calculations are done with 
various tensile strength characteristics ( fcr,2) of the 
material (concrete) of the internal layer. By the results 
obtained (Figs 2, 3) it is determined that there is no sense 
of following more than two iterations because both d cr .2 
and y values become stable after the second iteration. 

When the correct dcr,2 and y values are obtained, 
the final model for further calculating the cracking mo­
ment of the flexural composite structure could be com­
piled. 

4. Determination of the cracking moment of the ten­
sile external layer and its dependence upon the inter­
nal layer properties 

The cracking moment M cr,l of the flexural three­
layer structures made of concrete-type material consists 
of bending moments carried by the tensile zone layers, 
including the reinforcing steel: 

Mcr.t5oLMcr,i+Ms · (14) 

These moments may be calculated according to the 
resultant axial forces, acting in concrete layers and rein­
forcing steel, and their positions (Fig 4): 

Mcr,i:Ncr,~(z+z,,;)}· (15) 
M

5
-N5 (...+y-a) 

Resultant axial forces and their positions may be 
calculated using the calculation model shown in Fig 4, b: 
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Fig 4. A model for calculation of the cracking moment: 
a) basic geometry of the cross-section; b) resultant axial 
forces and their positions 

(16) 

(17) 

Here factor c depends upon the structure and 
deformational properties of concrete [I 0]. In this article 
factor c=l/vcr.t =110,5=2. 

When flexural layered members are calculated, the 
relationship between defonnational properties of concrete 
is very similar compared with the calculations of solid 
(one-layer) structures [1, 3, 11, 13]. The main difference 
is in the possibility for different layers to reach their 
tensile strength at a different time [2]. Therefore it is 
necessary to determine the stresses acting in different 
layers as accurately as possible. Then the precise 
Poisson's ratio for each layer must be calculated. 
Deformational properties of concrete are widely re­
searched by many authors [2, 3, 8, II, 12]. Simple semi­
empirical formulae for calculating the actual Poisson's 
ratio v cr.i have been suggested in [2]: 
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(18) 

k =(1- A:c~c.i} (19) 

where A is the factor dependent upon the type and struc­
ture of the material (concrete): A = 48 xI 03 for the heavy 
concrete, A = 18 x 10 3 for the light concrete and 
A = J6x 103 for the hollow concrete. 
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Fig 5. The influence of the intensity of tensile stress (ra­
tio crct.21 fct.2) on the Poisson's ratio of the internal 
layer V ct.2 

The analysis of the relationship between Poisson's 
ratio V ct ,i and the intensity of tensile stress cr ct.i I fct.i 

is made (Fig 5). It is determined that the Poisson's ratio 
in the internal tensile layer could be v ct.2 = 0,2, because 
according to the model (Fig 4) the ratio crct.i I fct.i =I 
in· the tensile zone of the internal layer. The external 
layer is non-cracked, thus its Poisson's ratio may be taken 
according to the recommendations of design codes, ie 
Vct,l =0,5. 

::: r~1-1~£~~-~-~ +~~rj 
] ; I ; i ; i ; 

0,40 +---· ; --+---- -~--------{---+------;. ----~ 
i I ••• . I : i i ! 
~ ' ·~ : i I f I 

0,20 ..__ -----1-----T~ .. ~~----.------·-i--- .. ---+---l 
t I ' .. ,.. ....... _ I 1 : i ! I ----;-..-----;. __ ..._ ... + 

' • ' I 
1 

' I 
0,00 ., - ---'------T----,---·-·--t--·--;..----1-----

0,97 1 ,00 1,03 1,06 1,09 1 '12 1 '15 

Mcr,t with various Vc1,2/ Mcr,t 

with Vct,2=0.5=const 

Fig 6. The influence of Poisson's ratio of the internal layer 
V ct.2 on the ratio between the cracking moment of the 
external tensile layer M cr,l calculated with constant 
V c/,2 and the same cracking moment M cr,l calculated 
with different V ct,2 

When the cracking moment of flexural layered struc­
tures is calculated, the Poisson's ratio of the internal layer 
v ct .2 may have a significant influence on the results 
obtained. It is detennined that when the Poisson's ratio 
Vet.?. vary from 0,1 to 0,9, the cracking moment Mcr,l 

may vary up to 20% compared to the same cracking 
moment which is calculated with constant value of the 
Poisson's ratio v ct. 2 = 0.5 (Fig 6). Accordingly before 
calculating the cracking moment it is suggested deter­
mining the correct value of the Poisson's ratio for each 
layer according to the crct.i I fct.i ratio and the constitu­
tive defonnational characteristics of the material by us­
ing Eqs 18 and 19. The Poisson's ratio should be calcu­
lated by a corresponding calculation model. 

5. Concluding remarks 

l. While producing and using the layered structures 
with the internal layer of less strength, eg thermal insu­
lation, cracks in the internal layer may appear earlier than 
in the external tensile layers. 

2. The suggested method evaluates the stress-strain 
state and determines the acting stresses in each layer of 
such structures. 

3. It is proved that when the influence of the tensile 
part of the internal layer is evaluated, the Poisson's ratio 
v ct ,2 of its material (concrete) may be taken equal to 
0,2. 

4. The method for calculating the crack resistance 
of three-layer flexural structures, determining the tensile 
zone depth and the crack resistance of the internal layer 
is suggested. 
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