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Abstract. The problems of shape, material, sizing and topology optimization are formulated and solved for thin orthotropic 
laminated bending plate structures subjected to the in-plane as well as out-of-plane loading. A simple laminated com­
bined finite clement that comprises known clements CST for membrane part and DKT for bending part was fommlated 
in the present study. A special numerical-analytical method for structural matrices of the element and analytical sensitiv­
ity analysis is used to cope with huge required computer resources for topology optimization. The uniform distribution 
of deformation energy density over the area of structure is employed as the optimality criterion in all optimization 
problems. The original algorithms, which may be attributed to the ESO family of algorithms, are suggested for optimi­
zation of laminae thicknesses and topology optimization. A number of numerical examples are provided. 
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1. Introduction 

The use of laminated structures is recetvmg even 
wider attention and use in commercial applications. Due 
to superior mechanical properties and low weight lami­
nated composite materials are finding a wide range of 
applications in automotive industry, aviation, etc. Almost 
all practical composite material structures are orthotropic 
and thin in the thickness direction because their superior 
properties permit the use of thin-walled structures. Due 
to the inherent tailoring of properties of these materials, 
a number of unique design features can be utilized in­
cluding such potential aspects as reduced weight, perfor­
mance, increased service life and reduced system main­
tenance. Tailoring of a laminated composite structure that 
efficiently meets the requirements of certain applications 
can be achieved by varying a large group of parameters, 
such as thicknesses of structural members, orientations 
of orthotropy axes in plies, the number and stacking se­
quence of plies, the shape of structural members, and, 
finally, the topology of whole (or of certain part of) struc­
ture. 

The present paper deals with aforementioned opti­
mization problems of laminated orthotropic plate struc­
tures. The optimization problems of two-dimensional 
plane stress or plane strain structures deserved a wide 
attention of investigators in recent years, therefore we 
concentrate ourselves on shape, material, and topology 
optimization of thin bending laminated plate structures 
subjected to in-plane as well as out-of-plane loads, and 
composed of an arbitrary number of orthotropic plies. 

Only a few scientific publications are available on this 
subject [1]. The problems of shape, material and topol­
ogy optimization are formulated in the paper. In the 
material optimization, the orthotropy orientation angles 
of plies, plies stacking sequence, and thicknesses of plies 
can be varied. It is hardly conceivable that the last prob­
lem will find practical applications, because it results in 
step-wise shape cross-section of plate. However, that 
fonnulation is used in topology optimization algorithms. 
In all problems the deformation energy density is used 
as a criterion function, seeking for its uniform distribu­
tion over all structure. 

Original algorithms were employed for shape, cross­
section and topology optimization. The last algorithm is 
based on Optimality Criterion (OC) [2] and Evolutionary 
Structural Optimization (ESO) [3] methods. Numerical 
examples illustrate the suggested algorithms in action. 

2. Methods of structural optimization 

Structural optimization can be categorized into four 
basic types (Fig I): 

1) Sizing optimization 
2) Material optimization 
3) Shape optimization 
4) Topology optimization 
The differences between optimization categories mainly 

consist in the definition of design variables, ie parameters 
that are changed during the optimization process seeking 
for optimal value of a chosen optimum criterion. 
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Sizing optimization. In the sizing optimization, the 
layout of the structure is prescribed. The structure is 
characterised by a sequence of dimensions that comprises 
the design parameters set. Aim of optimization is the 
combination of dimensions by which the optimum crite­
rion exposes the lowest possible magnitude [4]. 

Fig 1. Categories of structural optimization [4] 

Material optimization. The material and cross-sec­
tion layout characteristics are the design parameters for 
this problem. The orthotropy orientation angles in par­
ticular layers, thicknesses of layers, layers' stacking se­
quence, etc [4] may be chosen as the design parameters 
for laminated structures. 

Shape optimization. With shape optimization the 
topology of the structure is known and unchanged dur­
ing optimization process. The object of optimization is 
to find the best shape that will have the best optimum 
criterion outcome. Only the parameters on which the 
shape of structure depends ( eg coordinates of contour in 
simplest case) are chosen as the design parameters. There 
are several techniques for solving the problem: mathema­
tical programming, evolutionary structural optimization, 
and simulated biological growth [5-9]. 

Solutions obtained by sizing, material and shape 
optimization methods maintain the same topology as the 
initial design, and may be far from optimal because other 
competing topologies cannot be explored. Topology op­
timization exists where the actual fonn of the structure 
is unknown in advance, and the fundamental scheme of 
structure determined by a whole of structural members, 
joints of members, boundary conditions is sought. For 
these reasons, topology optimization is becoming an in­
creasingly important tool in engineering design. There 
are currently three major topology optimization meth­
ods, all using strategies that fully discretize an entire 
design domain with dense finite element mesh, and then 
degrade stiffness from its maximum to an acceptable 
level by gradually removing elements or material: 

I) Evolutionary Structural Optimization method (ESO) 
[3] and its variants. Starting from a dense initial 
mesh, particular elements are removed from the 
mesh through a lengthy solution procedure. A fun­
damental drawback of the method is the strong de­
pendence of the solution on the initial mesh from 

which it is evolved. In the sequence of elements 
removal the situation may occur, when the removed 
element should be reintroduced into the structure. 
The capability to reinstitute elements has been added 
to the Bidirectional Evolutionary Structural Optimi­
zation (BESO) [10-12], however this addition is still 
restricted to previous element positions. 

2) Homogenization methods [13-15]. These methods 
introduce composites with perforated microstructures 
of continuously varying density and orientation (con­
trolled by two or more local parameters) as admis­
sible materials for the structural design. For each 
element these parameters become the design vari­
ables. The mathematical programming methods are 
used to determine the optimal material distribution. 
The resulting highly perforated structures, which 
have various sizes of microholes in various orienta­
tions or various densities, have to be geometrically 
and structurally interpreted to give a meaningful 
layout. 

3) Genetic Algorithms (GA) [ 16-17] are based on the 
theory of natural selection. The structural topology 
optimization can be achieved by successive ranking 
of populations of elements and elimination of the 
weakest. From the selected group more populations 
are generated and again ranked. Also, at each elimi­
nation some poorly ranked elements are "mutated" 
with highly ranked elements to avoid "in-breeding". 
So the optimum emerges. 
In the present work optimization problems of all 

aforementioned categories are formulated and solved for 
thin laminated orthotropic bending plates. The finite el­
ement, combined from elements DKT and CST [18] and 
comprising all essential membrane-bending interactions, 
is formulated and used for the solutions. 

3. Integrated element DKT and CST 

Triangular integrated element DKT and CST pos­
sess 3 nodes with 6 degrees of freedom each: 3 displace­
ments, 2 rotations about in-plane axes and I fictitious 
rotation about out-of-plane axis. Finite element is for­
mulated analytically in closed form. 

3.1. Structural matrices of element 

Stiffness matrix consists of membrane, bending and 
membrane-bending interaction parts: 

(I) 

i,j=l,2,3. 

Membrane stiffness submatrix for element with ar­
bitrary oriented orthotropic layers is as follows: 
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b1 (d~1 bi +d{{ci )+ 
+cAdt:bi +d:f_~ci) 

c 1(dff bi +dfici )+ 
+bJ(dt:bi +d:f.~ci) 

c 1(dfici +dfibi )+• 
+bAdf~c; +d{ibi) 

i,j=1,2,3, (2) 

here A is for element area, d 1'1 is for accumulative elas­
ticity matrix, and b,., c,. are geometrical coefficients of 
element CST, indeed differences of nodal coordinates. 

The !/-th element of bending stiffness submatrix can 
be expressed through interpolation functions N of sec­
ond-order membrane finite element LST [19]: 

Kj = \ I I I I [( Xi.iibiii(dfiX J,JJbJJJ + 
4A ii=IJJ=l iii=! JJJ=l 

df2Y1,11c JJJ + df., (x J,JJc JJJ + Y1,11h JJJ ))+ 
( b h 

Yi.iiciii \d21 X J,JJb JJJ +d22 Y1.11c JJJ + 

dR,(x · ··c···+Y· ··h···))+ -·' j,jj }}} }.jj }}} 

(x i.iiciii + Yi,iibiii )( dfi X J,JJb JJJ + 

d~2 r1.11c JJJ + df3 (x J,JJc JJJ + YJ,Ji JJJ )) Jx 
J aNuiJN Jjz dr:], 
A aLiiiaL JJJ 

i, j = 1, 2, ... , 9, 

(3) 

where [X] and [Y] arise after excluding in the interpola­
tion functions of element DKT (formulated in area-coor­
dinates L) the parts depending on the integral over ele­
ment volume. Indices iiz and jjz here and below are fig­
ured up accordingly to the rules of integer division. 

The stiffness elements for membrane-bending inter­
action are: 

(4.1) 

(4.2) 

i = 1, 2, 3, j = I, 2, ... , 9. 

The integrals in (3) and (4) have to be calculated 
beforehand by means of computer algebra. 

The suggested method [ I9] of finite element formu­
lation, when all structural matrices are obtained avoid­
ing the procedure of numerical integration over element 
volume, is considerably more economical in regard of 
computing resources and therefore is chosen for all opti­
mization problems. 

4. Shape, material and cross-section optimization of 
laminated bending plate 

4.1. Sensitivity analysis 

The calculation of the sensitivity of structural re­
sponses to changes in design variables is the major com­
putational cost of the optimization process. Therefore the 
efficient numerical algorithms for all necessary deriva­
tives is the must. The mostly chosen technique is the 
finite-difference approximation. In the present work an­
other method was used. Analytical expressions were ob­
tained for all necessary derivatives. This allows for high 
accuracy of calculations, which is especially imperative 
in shape and cross-section optimization of purely plate 
bending problems. In this case, when the plate is loaded 
only by out-of-plane loads, all necessary infonnation for 
the shape and cross-section changes is given only by 
membrane-bending interaction stiffness that is signifi­
cantly lower than other stiffnesses. 

The sensitivity analysis yields the influence of de­
sign parameters to the optimum criterion. For that the 
derivatives of finite element stiffness matrix, of element 
area, of stress vector, and of density of deformation en­
ergy were obtained with regard to all design parameters: 
nodal coordinates of contour, orthotropy angles of lami­
nae, and thickness coefficients of laminae. 

The general sensitivity equation for whole structure is: 

m = I, 2, ... , n, 

[K] ao = P, 
a r111 

(5) 

with t for the design parameter, n for the number of 
design parameters and o for the vector of nodal displace­
ments. The so-called pseudo-load vector is determined by: 

P= ap _a[K] 0 _ 
a t111 a t111 

(6) 

The (5) and (6) yield the displacement derivatives 
that are present in all remaining expressions of sensitiv­
ity analysis. 

4.2. Finite element derivatives 

Derivatives of membrane part of stiffness matrix. 
In-plane behaviour of plate is modelled by well­

known Constant Strain Triangle (CST) element. The stiff­
ness coefficients of element are indeed the differences 
of nodal coordinates, therefore the derivatives can be 
easily obtained and are not shown here. The same holds 
to the element area. 
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Derivatives of bending part of stiffi1ess matrix. 
Out-of-plane behaviour of plate is modelled by Dis­

crete Kirchhoff theory (DKT) element. General expres­
sions of derivatives with regard to coordinates x and y 
of design nodes are as follows: 

1> I ( *b b ) K.. = K · -2K A I} ,1m 2A I} .lm I} ,lm , (7) 

Hence, the derivative with regard to coordinate x is: 

*h 3 3 3 3 [ ( ( Ku r = L L L L ciii.x d22cJJJyi.iiyj,JJ + 
.. Ill ii=ljj=l iii=l jjj=l Ill 

d 12b111 ri.iix J.JJ +d33c 111 xi.iix 1.11 +d33b111 x;J;YJ.JJ + 
c.. (d? 2c .. y .. y .. +d12b ... x .. .y .. + Jll,x

111 
- Ill 1.11 J.JJ 111 1,11 J.JJ 

d33c;;;X;J;X J.JJ + d33b;;;Y;,iix J.JJ )+ 
Xi.ii.xm (d 11biiibJJJX J,JJ +di2biiicJJJYJ,JJ + 

d,c .. ·C .. X· .. +dooc-··b ... y . .. )+ 
·'"' Ill }}} j.jj ·'·' Ill }}} j,jj 

X·.. (d 11 b .. ·b ·X· .. +d12c- .. b··Y· .. + J.jj ,Xm Ill }}} 1.11 Ill jjj 1.11 

dooc- ·C ... x · .. + d,,b ·C ... y. .. )+ ·'·' Ill }}} 1,11 ·'·' Ill }}} 1.11 

y ... (d2,c .. -c ... y ... +d12c .. -b ... x . .. + 
/,11 ,Xm - Ill }}} j,jj Ill Jjj j,jj 

d 33b;;;c jjj X j,JJ + d 33biiib jjj Yj,jj )+ 
Y · .. (d22c .. ·c ... y ... +dpb .. -c ... x · .. + J.JJ .Xm til JJJ 1.11 - Ill JJJ 1,11 

) )f a N;;zo N;;z l 
d 33ciiib111 xw +d33biiibJJJYi.ii - dt . 

A oL;;;oL 111 

i.j= I, 2, ... , 9. (8) 

The adequate derivatives with regard to y may be 
obtained exchanging in (8) derivatives [X) . by [Y] .. ,.\ ,J 

Derivatives of membrane-bending interaction 
st([(nesses. 

Analogously, we obtain 

K*plh I I [ fc· (d31c- ·X· .. +d33b .. .y .. )+ (2i-i)J,x,,, ~ I,Xm . }}} j.jj .. }}} j.jj 
jj=ljjj=l 

c ··· (d 12b.Y .. +d13c·X · .. )+ JJJ ,Xm I j.jj . . I j.jj 

X ·.. (d 11 b·b ... + d3',c-c ... )+ j.jj ,Xm I }}} . I JJJ 

( )\faN JJz l YJ,JJ. d 12b;c111 +d33c;bJJJ ~ -- d't, 
,Xm A a Ljjj 

(9. 1) 

K*plh = I I [ 1c- (d12 b ... x · .. +d,2c ... y . .. )+ 
(2i)J,x,,, ~ l,xm JJJ J,JJ - JJJ J.JJ 

jj=l jjj=l 

c... (d33b·X · .. +d2,c.Y. .. )+ }}} ,Xm I j.jj - 1 j,jj 

X·.. (d12c·b ... +d33b·c ... )+ j,JJ .Xm 1 }}} • • 1 JJJ 

( )~~ aN 11_ J 
y... d22C·C .. ·+d33b·b... '-d't, 

J,JJ,xm I JJJ .. 1 JJJ a L ... 
A JJJ 

i=I, 2; j=l, 2, ... , 9. (9.2) 

Derivatives of loading. 
"Lumped" distribution of uniformly distributed and 

perpendicular to the element plane loading to the ele­
ment nodes was used at present: 

P; =q{O 0 A/3 0 0 O}T, (10) 

i=J, 2, 3. 

Hence the derivatives of nodal loading are: 

p. _q A 
1.1111-3 .1111. (11) 

Derivatives of deformation energy density. 
Those derivatives at arbitrary points of finite ele­

ment mesh are determined by stress level at the same 
points: 

e f pi pi) 
u .1m =al.tm \<Jlcll +<J2c21 + 

{ pi pi) pi 
0 2.1m \0 1C12 +<J2C22 +<J3,1

111
<J3C33 + 

a4.1m (a4c(JI +asc~l )+ (12) 

{ " h ) h a5.t
111 

\a4c12 + <Jsc22 + a6,1m a6c33• 

where cii are for the elements of inverse elasticity ma­
trix. 

The stress derivatives, needed for (12), can be ex­
pressed through the element stress matrices [ ae] and the 
displacements of element nodes { ()e}: 

Ge,lm =[sel,mo+[Se] o.lm' (13) 

where the derivatives of stress matrix are to be obtained in 
a manner similar to the used for expressions (8) and (9). 

Derivatives for material and cross-section optimi­
zation. 

Sensitivity analysis for this kind of. problems re­
quires: derivatives of all aforementioned characteristic 
quantities with regard to the orthotropy angles for the 
problem of orthotropy axes orientation; derivatives with 
regard to the laminae surface coordinates z - for plies­
stacking sequence problem, and derivatives with regard 
to the thickness coefficients - for the problem of lami­
nae thickness optimization. All those derivatives render 
relatively simply expressions, because they are governed 
by the elements. of elasticity matrices that are the only 
terms depending on design parameters. 

Now all necessary derivatives for the general sensi­
tivity equation (5) are ready. 

4.3. Optimization technique 

The "move limit" technique [6) is chosen for the 
relation of design parameters to the mathematical pro­
gramming methods. Two limit sets (absolute and one­
iteration) on all design variables status are imposed. The 
first set of constraint limits the final shape of problem, 
while the second allows for linearization of problems in 
one iteration. 



D. Rusakevic'ius, R. Belevii'ius I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT - 2002, Vol Vfll. No 3. 143-152 14 7 

4.4. Formulations of problems 

Shape optimization problem. 
The coordinates of design nodes were chosen for 

the design parameters of the problem. Only the nodes 
on the plate contour comprise the design nodes vector, 
on which positions of all remaining mesh points depend. 
The aim of optimization is to minimize maximum defor­
mation energy density umax by gradually changing shape 
of the plate under the constraints: 

I) defom1ation energy density everywhere in the 
structure does not exceed umax' 

2) design changes do not exceed absolute and one-
iteration move limits; 

3) area of model is constant. 

Problem of orthotropy angles orientation. 
Design parameters for the problem are angles (in 

global coordinate system) of orthotropy axes of plate 
laminae. Formulation of problem is identical to previous 
model except for the third constraint. 

Problem of cross-section layout optimization. 
The optimal positions of certain layer (layers) are 

sought in the overall plies-stacking sequence of layers. 
Here the laminae coordinates z play the role of design 
parameters. This MIN-MAX problem is fonnulated in 
the same way as the shape optimization problem apart 
from distinct third constraint: 

h; + ... + hNopt =canst, (14) 

when 

j:s;Nopt :s;N/, 

with h for thicknesses of laminae to be optimized, N opt 
for the number of optimized layers, and N1 for overall 
number of layers. 

Problem of laminae thicknesses optimization. 
The thickness coefficients of separate finite element 

comprise the design parameters for the problem; ie, plate 
of step-wise thickness is modelled in optimization pro­
cess. This kind of formulation, evidently, can not yield 
practical results, however it will be used later on in the 
topology optimization. The problem is restraint by the 
same first two constraints and the third constraint on the 
constant plate volume. 

Merit function and constraints are put in the matrix 
form required by Simplex procedure [19]. Evidently, all 
problems are non-linear and are solved iteratively. 

4.5. Algorithm for shape and cross-section layout 
optimization 

1) Begin. 
2) Pre-processing (input, finite element meshing, move 

limits setup). 
3) Optimization loop: 

DO WHILE optimum criterion does not converge: 
3.1) Statics (formulation of stmctural matrices, im­

posing boundary conditions, solution of equa­
tions for nodal displacements, stresses and en­
ergy density). 

3.2) Sensitivity analysis loop: 
DO i= I, number of design parameters 
(Sensitivity analysis; obtaining derivatives of 
nodal displacements and energy density with 
regard to the design parameters). 

3.3) END DO of sensitivity analysis loop. 
3.4) SIMPLEX procedure (formation of matrices, 

solution, deciphering results). 
3.5) Post-processing (appropriate changes of shape/ 

cross-section layout, regeneration of finite ele­
ment mesh). 

4) END DO of optimization loop. 
5) Post-processing of results. 
6) END. 

5. Topology optimization of laminated bending plate 

The saltatory changes of plate topology distinguish 
those problems from the shape optimization. The two­
level iterative algorithm is suggested: in each iteration, 
at first, the plate thickness optimization is performed 
according to algorithm 4.5., at second, the diminishing 
finite elements are eliminated. If there are several finite 
elements of the same diminishing thickness, the element 
exposing lowest defonnation energy density should be 
eliminated. In the topology optimization the design area 
has to be defined in each iteration due to computational 
reasons. 

5.1. Algorithm for topology optimization 

I) Begin. 
2) Pre-processing (input, finite element meshing). 
3) Topology optimization loop 

DO WHILE maximum energy density in the itera­
tion does not converge: 

3.1) Loop for optimization of elements thicknesses: 
DO i= I, given number of iterations 
3 .I. I) Statics 
3.1.2) Calculation of stresses and energy den­

sities. 
3 .1.3) Sensitivity analysis loop: 

DO i= I, number of design parameters 
(Sensitivity analysis; obtaining derivatives 
with regard to the design parameters) 

3.1.4) END DO of sensitivity analysis loop. 
3.1.5) SIMPLEX procedure. 
3.1.6) Deciphering results. Alterations of de­
sign parameters 

3.2) END DO of thicknesses optimization loop. 
3.3) Distinguishing elements of minimum thickness 

H; =ke Hmin: 
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3.4) Check for influence of element to be elimi­
nated on maximum energy density: 
3.4.1) Eliminating element. 
3.4.2) Regenerating of finite element mesh. 
3.4.3) Calculation of stresses and energy den-

sities. 
3.4.4) IF (after elimination of element the en­

ergy density does not increase) 
THEN eliminate element, equalize thick­
ness of all plate compensating volume of 
eliminated element. 
ELSE regenerate data status before ele­
ment elimination, increase of coefficient 
k", GO TO 3.1. 
END IF. 

4) END DO of topology optimization loop. 
5) Post-processing of results. 
6) END. 

6. Numerical examples 

Here we provide numerical examples illustrating all 
four aforementioned categories of optimization problems. 
The dimensionless units are used in all solutions. 

6.1. Examples of shape optimization 

Test 1. Optimization of cantilever plate under in­
plane loading. 

Laminated plate (Fig 2) made of three orthotropic 
graphite/epoxy layers is optimized. For the sake of trans­
parency of expected results, all layers at initial stage are 
oriented by the same orthotropy angles. The move limits 
for alterations of design parameters in one iteration are 
adjusted to the extent of non-linearity so that the predic­
tions of Simplex procedure on the future behaviour of 
structure do not differ remarkably from finite element 
solution. 

y 

b 

F 
X 

a 

Fig 2. Computational scheme 

Data: 
a=b=JO, Fx=JOO, number of layers 3, laminae materials 
(1)/(1)/(1); 
material properties: 

1) E11 =0,181E+l2, E22=0,103E+ll, G12=0,717E+IO, 
v12=0,28; 

thicknesses of layers: 0,05/0,0 I /0,0 I; 
angles of orthotropy axes: 90°/90°/90°; 

all coordinates of nodes on the contour of plate (except 
for the node under concentrated load) are chosen to be 
the design parameters. 

Fig 3. History of shape optimization (iterations 500, 1000, 
1500, 2000), test I 

u~~~ = 0,159259-10-5 , 

u~~~9 iter =0,708378·10-6. 

The maximum deformation energy decreases by 55% 
in optimization process (Fig 3, 4). The solution is stopped 
when the design parameters reach the absolute move limits. 

1.75E-Cl5 

. ' ' . 
1.50E-Cl5 • • • -'· ••••• I.... .I.. ••••• ~ •••••• l ••••• •'• ••.•• I •.•••• 1.. ••••• ~ •••••• ' ' . ' . ' . 

' ' ' ' . ' . ' ' . ' ' ' ' ' . ' . ' ' ' . ' . ' ' . . : : : : : : : ----- .,. -----.. -- -~-- --- ~---- -- ~---.- ·:·-.---!----- -~- ... -;.----. 1 .25E·06 . . . . 
' . ' 
' ' ' ' . ' . 

' ' ' ' . . . ' ' 
1,00E-Cl5 . -----:------ t----- -:----- -~- --- ~---.- -:------ i·- --. -~-.-.- '1-----. 

' ' ' . ' ' ' . ' 
' ' ' ' ' 

7,50E-07 --- --------· ·-- --- -~-

' . 

5,00E-07 +--+-+--+-+--+-+--+-+--+~ 
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 

iterations 

Fig 4. History of energy density alteration, test I 

Test 2. Optimization of cantilever plate under out­
of-plane loading. 

The standard test for this kind of optimization prob­
lems is a quadratic plate with a hole in the centre; the 
shape of the hole to be optimized (Fig 5). Again, the 
plies-stacking sequence and material properties are the 
same as in test I. Angles of orthotropy axes are 0°/0°/ 
0°. Dimensions of plate are: side length 1=20, radius of 
hole r=5. 

The plate is clamped along contour and loaded by 
uniformly distributed loading. Design parameters are the 
coordinates of all nodes on the contour of hole. Abso­
lute move limits on status of design nodes are chosen so 
that the final shape of hole does not distort remarkably 
the initial finite element mesh. In case of those moderate 



D. RusakeviCius, R. BeleviCius I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2002, Vol VJJI, No 3, 143-152 149 

limits the regeneration of finite element mesh in the op­
timization process can be avoided. Only one quarter of 
the plate is modelled applying appropriate symmetry 
conditions to the sections. 

J 

10 

9 

r--- r--.. 
f"\ 

1\ 

' 
0.00 1.00 2.00 3,00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

Fig 5. Computational scheme for shape optimization un­
der bending loading, test 2 
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6,00E-04 
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Fig 6. History of energy density alteration, test 2 

u~~e; = 0,93637 ·I o-5
, 

u;;a~iter = 0,78281·10-5 . 

The maximum deformation energy density decreases 
by 16,4% in optimization process (Fig 6, 7). 

r-- f'... 
["\ 

4 
-r- t-.... 

["\ 
1\ 1\ 

' ' 
0.00 1,00 2,00 3,00 4,00 5.00 6,00 0,00 1,00 2.00 3,00 4,00 5,00 6.00 

r--
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f'. ""' 1\ 1\ 

' ' 
0.0 1.0 2.0 3.0 4.0 5,0 6,0 0,0 1,0 2,0 3,0 4.0 5,0 6,0 

Fig 7. Alteration of hole shape (iterations 100, !50, 200, 
250), test 2 

6.2. Examples of material optimization 

Test 3. Optimization of orthotropy angles in layers 
of cantilever plate under in-plane loading. 

The cantilever plate made of four different layers 
(glass exopy/hypothetical material) is optimized. All 
materials expose indistinct orthotropy properties. Opti­
mization of orientation angles of orthotropy axes is car­
ried out in two stages: first, quasioptimal solution is found 
by the trial variations of orthotropy angles -45°-0° -45° 
-90°; second, sensitivity analysis is executed. This 
scheme assures the avoidance of local solutions. 

Note, for this particular test the angles 0°/0°/0°/0° 
are obtained. This result is in good agreement with '"en­
gineering suspicion": the orthotropy axis corresponding 
to the better material properties is oriented lengthwise 
the concentrated load direction. 

Data: 
a=b= I 0, F,= I 00, number of layers 4, laminae materials 
( 1 )/(2 )/(2)/( 1 ); 
material properties: 

1) EI1=0,538E+ll, E22=0,179E+Il, GI2=0,896E+IO, 
v12=0,25; 

2) E11 =0,538E+l0, E22=0,179E+IO, G12=0,896E+09, 
v 12=0,25; 

thicknesses of layers: 0,01/0,02/0,03/0,04; 
angles of orthotropy axes: 0°/0°/0°/0°; 
design parameters: orientation angles of orthotropy angles 
of all layers. 

u~~;_'· = 0,20778 ·I o-5 , 

u~:iter =0,19758·10-5 · 

The final orthotropy angles are as follows: 
-7,214°/-14,178°/-14,178°/-2,126°. 
The maximum deformation energy density decreases 

by 4,91% (Fig 8) in comparison with quasioptimal solu­
tion 0°/0°/0°/0°. 

i 
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2.06E-06 . . ' ' ' ----- -----;-----------1----------·r··--------;-----------i·----------. 
2.04E-06 ···----·-·-:- -··--····:·········-·t··--·--···:····-·-····:······-····; 
2.02E·ffi 

2.00E·ffi 

1,98E·06 
r:· r::r 

1 ,96E-06 
0 50 100 150 200 250 300 

iterations 

Fig 8. History of energy density alteration, test 3 

Test 4. Optimization of plies-stacking sequence of 
cantilever plate under out-of-plane loading. 

Cantilever plate (Fig 2) made of five different lay­
ers is optimized. The materials are the same as in test 3. 
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Design parameters are the 2 vertical coordinates of the 
internal surfaces of layers. The absolute move limits are 
determined by vertical coordinates of external cross-sec­
tion surfaces. In this particular test the condition on con­
stant summary thickness of layers 2 and 4 are led in. In 
essence, the optimal position of those layers in the cross­
section is sought. 

e 
;J 

Data: 
a=b=IO, F,=IOO, number of layers 5, laminae materials 
(2 )/( 1 )/(2)/(1 )/(2); 

material properties: see test 3; 
thicknesses of layers: 0,005/0,0110,110,02/0,0 15; 
angles of orthotropy axes 0°/0°/0°/0°. 
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Fig 9. History of energy density alteration, test 4 

u~~e; = 0,33322 ·I o-2
, 

202 iter = 0 23181· 10-2 . 
Umax ' • 

After 200 iterations the cross-sectional nomencla­
ture becomes: 

0,0/0,015/0,12/0,015/0,0. 
The maximum deformation energy density decreases 

by 30,4% (Fig 9). 

6.3. Examples of topology optimization 

Huge computer resources are required for this kind 
of optimization of laminated plates, therefore in this pa­
per we restrict ourselves with rather coarse finite ele­
ment meshes. However, the tests are sufficient to illus­
trate the principal ideas and actions of optimization al­
gorithms. 

Test 5. Topology optimization of laminated cantile­
ver plate under in-plane loading. 

Cantilever plate (Fig 2) made of three different lay­
ers is optimized. The outer layers are made of graphite/ 
epoxy, while the middle layer is isotropic. 

In the first step of topology optimization the con­
straint on the design area is imposed: only the inner area 
is to be optimized. Then in the second step the design 
area involves whole plate. Seven thickness iterations are 
performed in each topology iteration. 

Data: 
a=b=S, Fr=IOO, number of layers 3, laminae materials 
(1 )/(2)/(1 ); 
material properties: 

l) E 11 =0,207E+l2, E22=0,517E+IO, G 12=0,259E+IO, 
v 12=0,25; 

2) E 11 =0,100E+IO, E22=0,100E+IO, G12=0,385E+IO, 
v 12=0,3; 

thicknesses of layers: 0,0 I /0, I /0,0 I; 
angles of orthotropy axes: 90°/0°/90°. 

The result of topology alteration is presented in 
Fig 10, where by white colour the eliminated elements 
are indicated, while by black colour the elements to be 
retained. 

Fig 10. Final topology of plate, test 7 

Results of optimization are: 

u~~e; = 0,91425 -10-s , 

u~~~er = 0,68804·10-5 . 

Maximum deformation energy density decreases by 
24,7% in overall 70 iterations (14 topology alterations 
among them). 

Testas 6. Optimization of laminated slab under in­
plane loading. 

This is well-known Michell problem [20), for which 
the optimal solution is a discrete structure as shown in 
Fig 11. 

Fig 11. Optimal topology of Michell structure made of 
isotropic material 

Here the similar problem will be solved for the struc­
ture made of orthotropic laminated material with better 
properties in longitudinal direction. 
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Data: 

Lx=2, L,.=0,5; F
1
.= 100, number of layers 3; laminae ma­

terials (I )/(2)/(1 ); 
material properties: 

1) E 11 =0,207E+I2, E22=0,517E+IO, G 12=0,259E+IO, 
v 12=0,25; 

2) E 11 =0,100E+IO, E22=0,100E+IO, G 12=0,385E+IO, 
v 12=0,3; 

thicknesses of layers: 0,05/0, 1/0,05; 
angles of orthotropy axes: 0°/0°/0°; 
design area: all structure except for supported nodes. 

The resulting topology is similar to the Michell 
structure and is shown in Fig 12. As expected, the slab's 
height decreases due to prevailing longitudinal material 
properties. 

Fig 12. Final topology of slab (after 28 topology itera­
tions), test 6 

u~~e;· = 0,4618 ·1 o-3 , 

u~~~er =0,1976·10-3 · 

The maximum energy density decreases by 57,2% 

in optimization process. 

Test 7. Optimization of quadratic laminated plate 
under out-ofplate concentrated load at the centre. 

The plate is clamped along the whole contour. The 
material of structure is non-symmetrical composite 
(Fig 13). The central node of structure (at which the load 
is applied) is fixed in the optimization process; the de­
sign area is all remaining surface of plate. 

Fig 13. Computational scheme, test 7 

Data: 
L,= 8, L"= 8; Fz= I 00, numbers of layers 3; materials 
(1)/(2)1(1); 
materials properties: 

I) E 11 =0,207E+ 12, E22=0,517E+ I 0, G 12=0,259E+ I 0, 
v 12=0,25; 

2) E 11 =0,100E+IO, E
22

=0,IOOE+l0, G 12=0,385E+IO, 
v

12
=0,3; 

thicknesses of layers: 0,025/0, I /0,05; 
angles of orthotropy axes: 0°/0°/90°. 
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Fig 14. History of energy density alteration, test 7 

Results of solution are provided by Fig 14-17. 

Fig 15. Optimized surface of plate before the 1st topol­
ogy alteration, test 7 

Fig 16. History of topology optimization (5, I 0, 15 topol­
ogy iterations), test 7 

Fig 17. Final topology of plate, test 7 
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u:r:~';{ = 0,65287 ·10-3 , 

u)J};er = 0,05321·10-3 · 

Thicknesses of laminae after optimization: 0,0695/ 
0,486/0,139. 

Maximum energy density decreases by 91,8% in 
optimization process. 

As seen from Fig 14, after each topology alteration 
a distinct decrease of energy density is obtained. The 
final topology of plate is in good agreement with engi­
neering expectations. The algorithm has been verified by 
solution of anti-symmetric problem (orthotropy angles 
90°/90° /0°). As expected, solution yields exactly anti­
symmetric topology. 

7. Conclusions 

The all different feasible optimization problems of 
thin orthotropic l~minated bending plate are formulated 
and solved in a unified manner: shape optimization, 
material optimization (ie, optimization of orthotropy 
angles is laminae, optimization of laminae stacking se­
quence in cross-section), sizing (plate thickness) optimi­
zation, and topology optimization. The plate is modelled 
by combined finite element comprising layered Discrete 
Kirchhoff theory element (DKT) as a bending part, and 
Constant Strain Triangle (CST) as a membrane part. The 
uniform distribution of deformation energy density is 
chosen as an optimum criterion for all problems. Semi­
analytical sensitivity analysis is performed for all design 
parameters: closed-form derivatives are obtained for stiff­
ness, strain, stress, energy, and loading matrices. Origi­
nal algorithms are suggested for optimization, where the 
thickness optimization plays the role of geometrical fil­
ter on the intennediate results of topology optimization. 

The presented optimization results illustrate the ac­
curacy and workability of formulated element and algo­
rithms. The suggested simple finite element and its nu­
merically effective formulation is especially attractive for 
topology optimization, where the required computer re­
sources limit the size and complexity of problems. 

References 

I. Rozvany G. I. N. Aims, scope, methods, history and uni­
fied terminology of computer-aided topology optimization 
in structural mechanics. Struct. Multidisc. Optimization, 
Vol 21, 200 I, Springer-Verlag, p 90-108. 

2. Rozvany G. I. N., OlhoffN., Cheng K.-T., Taylor J. E. On 
the Solid Plate Paradox in Structural Optimization. Struc­
tural Optimization, Vol I 0, 1982, p 1-32. 

3. Xie Y. M., Steven G. P. A simple evolutionary procedure 
for structural optimization. Comput.& Struct .• 1993, p 885-
896. 

4. Sigmund 0. Topology optimization: a tool for the tailor­
ing of structures and materials. Phil. Trans. Royal Society, 
Vol 358, London, 2000, p I 031-1048. 

5. Francavilla A., Ramakrishnan C.V., Zienkiewicz O.C. Op­
timization of shape to minimise stress concentration. J. of 
Strain Ana(vsis, Vol 10, 1975, p. 63-70. 

6. Pedersen P. Design for Minimum Stress Concentration -
Some Practical Aspects. Stmctural Optimization. Kluwer 
Academic, 1988, p 225-232. 

7. Pedersen P. Concurrent Engineering Design of and with 
Advanced Materials. DCAMM Report. The Technical 
University of Denmark, 1991. 56 p. 

8. Belevicius R. Shape Optimization of Laminated Orthotropic 
Plate Structures. Mech. of Composite Mater., Vol 29, 1993, 
p 537-546. 

9. Liang Q. Q., Xie Y. M., Steven G. P. A performance in­
dex for topology and shape optimization of plate bending 
problems with displacement constraints. Struct. Multidisc. 
Optimization, Vol 21, 2001, Springer-Verlag, p 393-399. 

10. Querin 0. M., Xie Y. M., Steven G. P. Evolutionary Struc­
tural Optimisation using a Bidirectional Algorithm. Engi­
neering Computations, Vol 15, 1998, p 1031-1048. 

II. Liu J. S., Parks G. T., Clarkson P. J. Metamorphic devel­
opment: a new topology optimization method for continuum 
structures. Struct. Multidisc. Optimization, Vol 20, 2000, 
Springer-Verlag, p 288-300. 

12. Zhou M., Rozvany G. I. N. On the validity of ESO type 
methods in topology optimization. Struct. Multidisc. Opti­
mization, Vol 21, Springer-Verlag, 2001, p 80-83. 

13. Bendsoe M. P. Optimization of structural topology, shape 
and material. Berlin: Springer, 1995. 271 p. 

14. Bendsoe M. P., Kikuchi N. Generating optimal topologies 
in optimal design using a homogenization method. Com­
putational Methods in Applied Mechanics and Engineer­
ing, Vol 71, 1988, p 197-224. 

15. Bendsoe M.P., Sigmund 0. Material interpolation schemes 
in topology optimization. Archive of Applied Mechanics, 
Vol 69, 1999, Springer-Verlag, p 635-654. 

16. Goldberg D. E. Genetic algorithms in search, optimization 
and machine learning. Addison-Wesley Pub Co, 1989. 
412 p. 

17. Autio M. Determining the real lay-up of a laminate corre­
sponding to optimal lamination parameters by genetic 
search. Stntct. Multidisc. Optimization, Vol 20, Springer­
Verlag, 2000, p 301-310. 

18. Belevicius R., Michnevic E., Rusakevicius D. Layered 
Orthotropic Plate Bending Element of Discrete Kirchhof 
Theory. In: XXXVII Sympozium "Modeling in Mechan­
ics", Gliwice, Poland, 1998, p 29-37. 

19. Belevicius R. Computer Algebra in Finite Element Method. 
Vilnius: Technika, 1994. 184 p. 

20. Michell A. G. M. The limit economy of material in frame 
structures. Phil. Mag., Vol 8, 1904, p 589-597. 




