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Abstract. Limit states of simple, spatial, non-linear models of structures with two degrees of freedom are considered. 
Geometric and material imperfections are taken in the form of random variables. The simulation of these random 
variables and the Monte Carlo technique are employed. Two possibilities in the assessment of the reliability of struc
tures are presented: I) Simulation of random imperfections and the Monte Carlo operation give as a result a histogram 
of the limit loads. Assuming that the probability distribution of the applied load is known, the structural reliability can 
be obtained according to the exact formula. 2) In order to obtain the histogram of the limit state of the structure, the 
values of the applied load are also simulated at every Monte Carlo step. The factor which amplifies the load responsible 
for the structure failure is derived. The set of all these factors leads to the model reliability calculation. 
The estimation of the limit state of an imperfect structures can be described as a transformation of random input data 
into random output results. In the transformation operation the non-linear operator of the model under considerations is 
of the greatest significance. The effects of stable and unstable operators are discussed. 
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1. Introduction 

Assessment of stability, reliability and safety of geo
metric and material imperfect structures belongs to the 
most complex problems in applied mechanics. 

Stability of one-, and two-dimensional imperfect 
structure models has been the major concern of research
ers [1-4]. These models deal mainly with elastic stabil
ity and deterministic imperfections. 

The theory of probability is frequently used as a 
theoretical background for the analysis of random im
perfections and for the reliability theory [5-7]. A similar 
concept forms also the basis for standard specifications 
[8]. In these works linear or stochastically non-linear 
models of structures are usually considered. It is also 
assumed that the limit state of the structure is known as 
a function of a number of random variables. 

Stochastic finite elements are frequently used to 
describe the safety of structures and the sensitivity prob
lems [3, 9]. Non-linear models are also discussed [10]. 

In recent years there have appeared publications 
presenting an interesting concept of structure designing. 
The concept is based on simulation of random variables 
(describing loads and material properties) and on the 
Monte Carlo method (Marek, Gustar and Anagnos [11]). 
The simulation-based approach and the Monte Carlo tech
nique are not new (see, for example, [12] and [13]), but 
the concept of applying these methods to practical de
sign procedures deserves attention. 

In this paper the simulation-based approach is ap
plied to analyse non-linear models of structures. Only 
preliminary solutions are presented. Limit states of simple 
models with two degrees of freedom are considered. 
Geometric and material imperfections are taken in the 
form of random variables. The simulation of these ran
dom variables (the input data) and the Monte Carlo tech
nique are employed. The output results lead to the as
sessment of the reliability of structures. 

Using theses simple models, two general problems 
are studied. 

Problem I. The calculation of the limit state of an 
imperfect non-linear model of structures is, from the 
mathematical point of view, a transformation of random 
input data (imperfections) into random output results. A 
statistical analysis of the output results leads to determi
nation of limit loads or limit state histograms. In the trans
formation procedure the non-linear operator of the model 
under consideration plays the most important role. The 
effects of stable and unstable operators are discussed. 

Problem 2. Two possibilities for the reliability as
sessment of imperfect structures are presented. The first 
well-known concept takes into consideration the histo
gram of the structure limit loads N". To obtain this his
togram, simulation of random imperfections and the 
Monte Carlo operation are applied. Assuming that the 
probability distribution of the applied load P is known, 
the structural reliability can be calculated according to 
the exact formula (level 3 method): 



84 E. Bielewic:::, J Gorski I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2002, Vol V!I!, No 2, 83-87 

where F1• (x) is the cumulative distribution function of 
load P and JN ( x) is the probability density function 
of the critical load N,, . 

In the alternative approach not only the structure 
imperfections, but also the values of the applied load 
are simulated at every Monte Carlo step. Then, the fac
tor which amplifies the simulated load responsible for 
the structure failure is calculated. The set of all factors 
obtained in this way defines the histogram of the limit 
state. One of the characteristics of this histogram is the 
reliability. 

To analyse these problems, a static response of spa
tial non-linear models of rigid bars supported by elastic 
and elastic-plastic springs is considered. Stable and un
stable cases are discussed. The angles of the initial bar 
inclinations are described using random variables. In the 
stable case of the bar model the angle related to the strain 
yield value of the spring material is taken as random. 
On the basis of the simulated results the histograms of 
the critical load and the model reliabilities are derived. 

The work presents the power of the random sam
pling method when stochastic non-linear models are con
sidered. The method can easily be used for analysis of 
realistic models of masts with elastic-plastic guys ran
domly loaded (for example, by wind). The results can 
contribute to engineering design. Some primary results 
of analysis of similar problems are presented in [14]. 

2. Case 1: elastic solutions 

As the first example a model of a rigid bar of length 
l, hinged at the bottom and supported at the top by two 
linear springs of stiffness kl and k2 (Fig 1) is exam
ined. The bar is loaded by a vertical conservative force 
P. The bar position is defined by the rotation angles 
qJ and lfl. The angles of initial inclinations qJ0 and lf/0 

of the vertical axis are assumed. 

XI 

Fig 1. Model of a rigid bar supported by elastic springs 
(case I) 

The potential energy of the model is 

where 

( ) 
I , I , 

V qJ.lfl =-k1 u1-+-k,u~-Pu 1 2 2 - - ' 

u1 ( qJ, lfl) = l (sin qJ sin If!- sin qJ0 sin lf/0 ) 

uc ( qJ, lfl) = l (-sin qJ cos lfl +sin qJ0 cos lf/0 ) 

u, ( qJ, lfl) = l (cos qJ0 -cos qJ). 

From the elementary equations 

where 

ov = 0 0(/J • 

(2) 

(3) 

(4) 

oV . . 
oqJ =k1U 1 (cosqJsmlfl)+k,u, (-cosqJcoslfi)-PsmqJ (5) 

~~ = k1U 1 (cosqJcOslfl)+k2u2 (sinqJsinlfl) (6) 

the equilibrium parameters, angles qJ and lfl , and load 
related to them can be calculated. 

It is easy to notice that the problem can be described 
as an unstable case (case I). Thus, the known energy 
considerations (the second variation of potential energy 
is positively defined) lead to the conclusion that the stable 
and unstable regions are separated by the following sur
face 

(7) 

For example, for the fixed lflo values (lf/0 =Sn/8) 
and the spring stiffness relations k2 = O.lxkl and 
k2 = 0.9xkl, the value of force P versus angle qJ is 
calculated. It should be pointed out that the equilibrium 
paths represent complicated spatial curves. The results 
presented in Fig 2 are only their plain representations. 

The next step in the analysis concerns the random 
problem. 

The inclination angles qJ0 and lflo are defined as 
random variables. The uniform distributions in the fol
lowing intervals are assumed (Fig 1 ): 
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Fig 2. Case I: equilibrium paths for the unstable model 
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(/)0 E ( 0.0, 0.05), ljl0 = \lf I 2, 1f . (8) 

When the random inclination variables are defined, 
it is possible to obtain the probability distribution of the 
critical load N,. The non-linearity of the problem (lack 
of a one-to-one solution) creates some difficulties when 
analytical formulas are used. A computer calculation pro
vides in this case real advantages. 

As many as 2000 initial inclinations of the bar have 
been simulated ( NR = 2000 ). For each random angle pair 
cp0 and IJ!o the critical value of load N, is calculated. 
The critical load probability distribution for the identical 
springs stiffness ( k2 = kl) is presented in Fig 3. Addi
tionally, the expected values of the critical load mN and 
its standard deviations DN are calculated (Fig 3). 

Assuming that the probability distribution of the 
applied load P is stochastically independent and um
formly distributed in the interval 

p!f E ;0.61,0.8), (9) 

the structure reliability R can be calculated. The exact 
formula of 3-level method is applied (Eq I): 

R = Pr (Ncr > P) = 0. 9994 . (I 0) 

Similar calculations are performed for different val
ues of the spring stiffness: k2 = 0.95xkl. Appropriate 
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Fig 3. Case I a: histogram of the critical load Ncr and the 
probability distribution of load P 
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Fig 4. Case lb: histogram of the critical load N,,. and the 
probability distribution of load P 

critical load probability distribution is presented in Fig 4. 
The reliability for this case is calculated according 

to formula (I): 

R = Pr(N" > P) =0.9782. (II) 

Next, an alternative concept which describes more 
precisely the behaviour of the model is presented. 

To this end, 2000 random values of the indepen
dent, unif01mly distributed random load P together with 
random imperfections cp0 and lflo are generated. At ev
ery Monte Carlo step i ( i =I, 2, ... , NR) the amplifica
tion factor Cl.; is calculated: 

(12) 

A set of all factors obtained in this way defines the 
histogram of the limit state (Figs 5 and 6). 

One of the characteristics of these histograms is the 
reliability. In these simple cases the following reliabilities 
are obtained 

case Ia: R = 0.9995, 

case I b: R = 0.9790. (13) 

The values are close to those calculated according 
to formulae (I) - see Eqs (I 0) and (II). 

3. Case 2: elastic-plastic solutions 

As the second example, a model of a rigid bar sup
ported by two springs of stiffuess kl and k2 (Fig 7) is 
analysed. As in the first example the bar is loaded by a 
vertical conservative force P. The angles of initial in
clinations cp0 and lflo of the vertical axis are assumed to 
be random, uniformly distributed values according to the 
formula (8). 
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R =0.9995 

c 5 0.06 

[ 0.04 
4-< 

0.02 

0 -+---.--,--,r-t-'-'-'-t-'-'""t-'-'-'-P"'-'-t-LLL.f-'-'-'-, Ncr I J 

0.6 0.8 1 1.2 1.4 1.6 

Fig 5. Case I a: histogram of the limit state 
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Fig 6. Case I b: histogram of the limit state 
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In this case the potential energy of the model is 

where 

sin a 1 ( cp, lJf) =sin cp sin lJf- sin qJ11 sin 1Jf11 

sin a 2 ( cp, lJf) =-sin cp cos lJf +sin qJ11 cos 1Jf11 

u 3 ( cp, lJf) = I (cos cp11 -cos cp) . 

From the following equations 

av k coscpsinvr [. -1(. . ) = 
1 

· · - · Sin Sin qJ Sin lJf -
()cp ~1- (sin cp sin lJf )

2 

. -I ( . . )] k cos cp cos lJf -sm SinqJ11 SinlJf0 + 1 l ... · ; 
v 1- (sin cp sin lJf r 

[sin -I (sin cp cos lJf)- sin -I (sin qJ11 cos 1Jf11 ) J
-Plsincp=O. 

EJ=OO 
EA=OO 

p 

p 

(14) 

(15) 

(16) 

Fig 7. Model of a rigid bar supported by elastic-plastic 
springs (case 2) 
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Fig 8. Case 2: equilibrium paths for the stable model 

~ _ k sincpcosvr [. _1 (. • )-
- 1 I , sm sin cpsin lJf 

dlJf v1-(sincpsinvrr 

. -1 ( . . )] k -sin cpsin 1Jf - sm Sin qJ11 Sin o/11 + 1 , 

~1-(sincpsinvrr (17) 

[sin -t (cos cp cos lJf)- sin -I (sin cp11 cos 1Jf11 ) J = 0 

the equilibrium paths can be calculated. Some examples 
of these solutions are presented in Fig 8. The second 
model presents a stable case (case 2). It is easy to notice 
that the equilibrium paths in elastic range do not exhibit 
any maximal points. 

The histograms of critical load of ideal elastic-plas
tic springs are considered. The following plastic bound 
for rotations cp,. is assumed: 

cp, = 0.20. (18) 

On the basis of 2000 simulations, the histograms of 
the critical load N,, are derived (Figs 9 and 1 0). 

As in case I, the probability distribution of load P 
is assumed. Using the exact formula (1) the following 
reliabilities have been obtained: 

0.14 
0.12 

6' 0.1 
6 0.08 
[ 0.06 

<+-. 0.04 
0.02 

case 2a: R = 0.9629, 

case 2b: R = 0.9340. 

CASE2a: 
NR = 2000 
k2 = l.Oxk1 
mN=0.8736 
DN=0.0713 
R =0.9629 

(19) 
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Fig 9. Case 2a: histogram of the critical load Ncr and the 
probability distribution of load P 
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Fig 10. Case 2b: histogram of the critical load Ncr and the 
probability distribution of load P 
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Fig 11. Histogram of the limit state (case 2a) 
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Fig 12. Histogram of the limit state (case 2b) 
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Alternative versions of reliabilities are also esti
mated. The factors a; (Eq 12) for NR = 2000 gener
ated random values of load P; are calculated. The re
sults are presented in Figs 11 and 12. 

In these cases the reliability values compared to 
those obtained by the 3-level formula show significant 
differences: 

case 2a: R = 0.9645, 

case 2b : R = 0.9340. 

4. Concluding remarks 

(20) 

The limit states and the reliabilities of spatial non
linear stochastic models with two degrees of freedom are 
considered. 

Geometric and material imperfections of elastic and 
elastic-plastic cases are taken in the form of random 
variables. Analytical solutions for such problems are ei
ther unavailable or inefficient. Monte Carlo simulation 
appears to be the only method that can provide satisfac
tory solutions. 

There are two ways to assess the reliability of struc
tural models. 

In the first way a histogram of critical load is cal
culated using Monte Carlo simulation. Then, assuming 
that the probability distribution of the applied load is 
known, the exact formula (1) is used. 

In the second way the probability distribution of the 
applied load takes part in Monte Carlo simulation and 
the limit state histogram is obtained. The reliability of 
the structural model is one of characteristics of this his
togram. The second procedure is more general and can 

be used when there is a combination of applied random 
loads. 

The simulation-based methodology can be directly 
implemented in the analysis of real engineering struc
tures such as masts with elastic-plastic guys. Also, two
dimensional models of structures can be successfully 
analysed [15]. 
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