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Abstract. The two-dimensional finite strain constitutive model for membranes is presented; it incorporates stress-soften­
ing behaviour typically observed in elastomeric and natural or biologically-derived soft membranes subjected to severe 
deformations. It is assumed that the experimentally observed progressive degradation of a membrane stiffness under 
monotonous and cycling loading can macroscopically be modelled by a scalar damage variable. The evolution of this 
variable during the deformation process is specified by the kinetic law of damage growth, which together with the 
constitutive equation for the surface stress tensor and the damage criteria completely determines the presented constitu­
tive model. It is shown that the general constitutive model can be specified for particular classes of problems under 
certain additional assumptions. In particular, a remarkable simplification of the model is achieved assuming that the 
state of strain at membrane points can be characterised by a single scalar variable, the so-called effective (equivalent) 
strain. This assumption is combined with the hypothesis of maximum strain according to which the stress softening in 
the membrane depends only on the maximum previous strain experienced during deformation history. Within these two 
hypotheses the progressive degradation of membrane stiffness is completely described by a softening function which 
determines the current value of damage variable in terms of maximum equivalent strain. Various specific forms of such 
a softening function as well as different definitions of the effective strain are considered. 
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1. Introduction 

Membranes are widely used as structural elements 
in many engineering fields. Fabric (pneumatic and ten­
sion) structures, automobile airbags, parachutes, meteo­
rological balloons are examples. Membranes have also 
their natural appearance, eg soap films and bubbles, bio­
membranes and fluid films. One of the difficulties in mo­
delling membranes is to account for their highly non­
linear elastic and inelastic response to external loading. 

While not a problem of great technological impor­
tance, the inflation of a toy balloon provides a good il­
lustration of a highly non-linear behaviour of elastome­
ric membranes. When a balloon is inflated, its radius 
increases continually until the internal pressure reaches 
a maximum at a relatively small deformation. If the bal­
loon is further inflated, the pressure decreases, and later 
rises again at very large strains. This behaviour of a bal­
loon results from combined effects of geometric and ma­
terial non-linearities and it is also observed in inflating 
balloons of other shapes. Over years, the problem of in­
flation of membranes has been studied by many authors 
under the assumption that the deformation is completely 

reversible. However, the perfect elasticity is often a very 
crude assumption. 

A typical inelastic effect observed in the inflation 
and subsequent deflation of balloons is that of hysteresis 
accompanied by stress-softening (Fig 1). These effects 
are also observed in biological membranes. However, un-

circumferential engineering strain E 

Fig 1. Experimental study of latex balloon inflation/de­
flation [I] 
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like the polymeric membranes, they display highly ani­
sotropic behaviour. Also, stress-softening in such memb­
ranes is anisotropic; a load in one direction does not 
produce the same degree of softening when applied in a 
different direction (Fig 2). 

Fig 2. Biaxial experimental tests on rat bladder wall [2] 

Elastomeric and biological membranes are often mo­
delled as elastic or viscoelastic ones ( eg [3-6]). Howe­
ver, standard elastic and viscoelastic formulations are not 
able to predict the damage-induced stress-softening ef­
fects. In polymeric materials and membranes, this effect 
is originated by internal damage in the form of progres­
sive de bonding of polymer chains. Physical mechanisms 
underlying stress-softening in biological membranes is 
more complex and actually poorly understood ( cf. [2, 7, 
8]). Nevertheless, phenomenological modelling using two­
dimensional constitutive equations is possible and often 
very successful. 

The aim of this work is to develop a constitutive 
model which is capable to capture main effects of dama­
ge-induced stress-softening observed in polymeric and 
biological membranes. This goal is achieved through the 
use of certain concepts from the field of continuum da­
mage mechanics. As a final result, a simple description 
of stress-softening effects is derived through successive 
specification of the general constitutive equations. 

2. Notation and basic equations 

In the coordinate free description (absolute tensor 
notation), the geometry, kinematics and dynamics of 
membranes have been treated in detail in [9, 10]. Be­
low, only basic relations and equations are summarized 
which are needed in the following considerations. 

In the deformed configuration N , assumed to be a 
smooth surface in the space, the equilibrium equations 
at each point y E N are 

div5 N +q = 0, (1) 

where N(y) denotes the surface stress tensor (Cauchy 
type), q(y) is the surface force and div s stands for the 
surface divergence operator [9,10]. Flexible membranes 

have no bending stiffness and hence they cannot support 
transverse shear forces. Therefore, N(y) is the tangen­
tial surface tensor (the linear map of the tangent space 
TYN into itself). Moreover, this tensor is symmetric by 
virtue of the balance law of moments. 

Let m be the unit normal vector to N . The curva­
ture tensor of N is defined by K = - P grad 5 m , where 
P denotes the projection operator (see [9-12]). The differ­
ential identity m • (div

5
N) = N • K may next be used to 

split the equilibrium equations (1) into the scalar equation 

N•K+q=O, q=m•q, (2) 

which represents the equilibrium condition of all forces 
normal to N , and the vector equation in the tangent 
space TYN, 

P(div5 N)+ Pq = 0, (3) 

which represent the equilibrium conditions of all forces 
tangent to N at a given point. 

Relative to a fixed reference configuration M, the 
deformation of the membrane is described by a smooth 
mapping X: M ~ N with the tangential deformation 
gradient F(x)= Grad5 X(x) being the linear map of TxM 
into TYN . This tensor is non-singular and hence it may 
be written as the product of the surface stretch tensor 
U(x) and the tangential rotation tensor R(x) [9-12]. 
Then the tangential Cauchy-Green deformation tensor 
C(x) and the surface Green strain tensor E(x) are given 
by 

2E=C-1, (4) 

where l(x) denotes the unit tensor on TxM. In the de­
scription of deformation relative to M , it is convenient 
to introduce the surface stress tensor S(x) of the second 
Piola-Kirchhoff type, which is defined by 

j == det F = .J det C . (5) 

The basic relations and equations summarized above are 
formally similar to their counterparts in the three-dimen­
sional theory. However, it should be noted that all quan­
tities are defined here on curved surfaces and not in the 
flat Euclidean space. This is seen from the derivation 
leading to the equations (2) and (3). 

3. Constitutive modelling damaged membranes 

In the theory of elastic membranes, the constitutive 
equations relating to surface stresses and strains are typi­
cally formulated in terms of a strain energy function 
which depends on the deformation tensor C alone. How­
ever, inelastic effects are path dependent and their mod­
elling should be based on the thermodynamical theory 
of irreversible processes. In this paper thermal effects 
are not considered but the restrictions implied by the 
principle of irreversibility will be pointed out. 

Stress-softening effects are generally attributed to 
an internal damage of a material. On macroscopic scale, 
this may be accounted for by a scalar damage variable 
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a(x,t) such that a= 0 in the undamaged (virgin) state 
of the membrane. Here t is a time-like parameter. Ac­
cording to the general theory of irreversible processes, 
the complete constitutive model of an inelastic membrane 
requires that an elastic potential (the free energy func­
tion under isothermal conditions) <I> and the stress ten­
sor S are given by appropriate constitutive equations in 
terms of C and a including possibly their surface and 
time derivatives. For the purpose of this paper it will 
suffice to consider the constitutive equations of the form 

<1> = i(c,a,c), S=S(C,a,c) (6) 

together with the following evolution equation for the 
damage variable 

(7) 

Here i , S and 13 are given functions of their common 
arguments. In general, these functions must satisfy the 
principle of irreversibility (the second law of thermo­
dynamics). From this principle the following results can 
be derived: (l) the elastic potential i is independent of 
C , Bt<i> = 0 , (2) the constitutive equation for the stress 
is given by 

s =S(c,a,C)=28ci(c,a)+S*(c,a,c), (8) 

and (3) the following inequality 

s*(c,a,t)•c-(oa<i>(c,a)}x 2: o (9) 

must be satisfied in every deformation process. This in­
equality simply states that the deformation of a mem­
brane is accompanied by the energy dissipation due to 
viscous stresses s* (c, a, t) and the growth of damage 
and thus it is an irreversible process. 

The constitutive equation (8) is general enough to 
account for viscous effects. However, although the stress­
softening process depends on deformation history, strain 
rate dependency often appears to be negligibly small [1, 
7, 13]. Therefore, in the remaining part of this paper it 
will be assumed that the viscous part s* of the stress 
may be neglected. With the assumption that 
s*(c,a,C)=o, the constitutive description of a dam­
aged membrane requires specification of two scalar func­
tions, namely of i(C,a) and 13(C,a,c). Moreover, the 
assumption that viscous stresses can be neglected requires 
that 13 is a homogenous function of degree one with 
respect to C . This condition is satisfied if the evolution 
law (7) is assumed in the special form 

a= 13(C,a,c)= ~(c.~)(;, (10) 

where ~(C,~) is a given constitutive function and 
~=~(C) is the so-called effective or equivalent strain. 

The stress-softening effects illustrated in Fig 1 and 
Fig 2 is a property of a membrane material in which a 
decrease in stress accompanies an increase in strain. This 
is a rather special case of the general damage phenom­
ena for which simplifications of the general constitutive 
equations are possible. 

4. Constitutive modelling stress-softening effect 

If the function ~ in the kinetic law of damage growth 
(10) depends on the deformation tensor C only through 
the effective strain ~=~(C), then this law takes a simple 
form a = ~(~}(; . Moreover, this relation may be integra­
ted to give the damage variable in the explicit form 

a(t)= Z(~(t)), Z@t))= J;(~;~(~(s))d~(s). (11) 

In continuum damage mechanics, various so-called 
equivalence hypotheses are postulated which considerably 
simplify the constitutive modelling of damage phenome­
na. Adopting similar point of view for membranes, it 
may be assumed that 

<i>(C,a)= (1-a)W(C), (12) 

where W(C) denotes a strain energy function of an un­
damaged membrane. Under this assumption, often refer­
red to as the strain equivalence hypothesis, the stress­
strain (8) relation takes the form 

S = (1-a)Oc W(C) (13) 

with a being given by (11 ). Within the assumptions le­
ading to ( 13) and ( 11 ), there remains only to specify the 
damage softening function Z(~) and an appropriate da­
mage criteria. 

An idealized stress-softening membrane may be con­
sidered as an inelastic material having a selective me­
mory of only the maximum previous strain experienced 
during its deformation. With the effective strain being 
defined by ~(t) = ~( C(t)) , the maximum previous strain 
is ~max (t) =max O!>s!>t ~(s) with t denoting current time. 
Moreover, the damage will grow only if ~>~max . Ac­
cordingly, the evolution of damage variable a is given 
by a= Z(~) during loading from the undamaged state 
and a= Z(~max) during reloading from the state of ma­
ximum effective strain. 

5. Isotropic membranes 

Further specifications of various damage models may 
be obtained if the membrane exhibits certain symmetries 
in its mechanical properties. The simplest case is that of 
an isotropy. Elastomeric membranes have this property, 
in which case the constitutive equation for the stress ten­
sor takes the form (see [10-12]) 

S = S(C,a) = h0 (i1 ,i2, a)l + h1 (i1 ,i2 ,a)C (14) 

independently of various hypothesis considered in the pre­
vious chapter. Here h0 and h1 are given scalar func­
tions of the principal invariants of the deformation ten­
sor C . They are defined by 

i1 = trC, i2 = detC. (15) 

The particular form (14) of the stress-strain relations will 
be obtained in the next chapter, where a more general 
situation is considered. Here it is worth to note that in 
the case of isotropic membranes the stress tensor S and 
the deformation tensor C have common principal direc­
tions which are determined by two mutually orthogonal 
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unit vectors u 1 and u 2 . Denoting by A1 and A2 the 
associated principal stretches, the deformation tensor may 
be written in the canonical form 

C=A~u 1 ®u 1 +A~u2 ®u2 . (16) 

Moreover, in the deformed configuration of the memb­
rane the unit vectors along the principal directions are 
determined by A1 v 1 = Fu1 and A2 v 2 = Fu2 . With the 
use of these relations, the constitutive equation (14) may 
be rewritten in terms of the Cauchy type stress tensor 

N = F 1f?.Hho +A~hl~l ®vl +A.Hho +A~h1~2 ®vj(l7) 

Substituting (17) into (2) and (3), the equilibrium equa­
tions are obtained in the form particularly convenient in 
the analysis of general constitutive equations. 

6. Anisotropic membranes 

The isotropy cannot be assumed in modelling bio­
logical membranes. Without this assumption, the elastic 
potential <1> must be considered as an arbitrary function 
of the deformation tensor C and of the damage variable 
a . Its general form is only restricted by the inequality 
(9). However, there are experimental evidence that ma­
ny biological membranes may be modelled as orthotro­
pic ones (see [2, 7, 8]). This kind of an anisotropy may 
be characterised at each point of the membrane by a unit 
vector a along the preferred direction, usually called 
the fibre direction. Moreover, in the case of the orthot­
ropic membranes a and - a are physically equivalent. 
Hence, not the vector a but the tensor A = a® a cha­
racterises this class of membranes. Moreover, it follows 
from the theory of tensor function (see eg [14) that <I> 
depends on C and A through their common isotropic 
invariants, ie 

<I> = <l>(i1, i2 , i3 , a), ( 18) 

consisting of the principal invariants (15) of C and one 
additional invariant defined by 

i3 =A•C=a•Ca. (19) 

Denoting by <1> 1, <1> 2, <1> 3 the derivatives of <I> with res­
pect to the invariants (i1, i2 , i3 ), it is easy to shown (see 
[12]) that the constitutive equation for the stress tensor 
takes the form 

(20) 

where h0 , h1 and h2 are functions of (i1, i2 , i3 ) and a 
given by 

h0 = 2(<1> 1 +i1<I> 2 ), h1 = -2<1> 2 , h2 = 2<1> 3 • (21) 

With <1> 3 = 0, the stress-strain relations (14) follow from 
(20) and (21). In effect, this is a general procedure for 
deriving the constitutive equations for other classes of 
anisotropic membranes, each being completely determi­
ned by certain structure tensors. Such tensors has been 
studied in [14] within the context of plane composites. 

7. Analysis of general models 

The general constitutive model and its various spe­
cial versions derived in the previous chapters may be 

used together with the equilibrium equations (2) and (3) 
in the analysis of stress-softening effects in membranes. 
However, due to path dependent nature of the damage 
process, a numerical integration algorithm is required for 
the evaluation of stresses and damage evolution throug­
hout the entire deformation history. The problem is sim­
plified considerably if the evolution of the damage va­
riable is given explicitly by the relation (11). In the par­
ticular case of the inflation of spherical membranes, the 
resulting equation follows from (17) and (2) while the 
equilibrium equation (3) is trivially satisfied. The pro­
blem is thus reduced to a single algebraic for the radial 
stretch. 

One of the conceptual differences between problems 
of the classical linear elasticity and those of the finite strain 
deformation of membranes is that the specification of 
the form of constitutive relations is generally part of pro­
blem in the theory of membranes whereas in the classi­
cal theory one needs only to specify the material cons­
tants occurring in the generalized Hooke's law. This is 
not a trivial difficulty since the various natural and synt­
hetic membranes which can sustain large elastic and ine­
lastic deformations each behave somewhat differently. 

In the case of elastic membranes, the problem is re­
duced to the identification of material parameters for the 
assumed form of a strain energy function W(C). This is 
still a non-trivial task due to limited number of available 
experimental results and difficulties in the interpretation 
of the results obtained by different authors. This is illust­
rated in Fig 3. The presented analytical solutions were 
obtained for the strain energy function W(C) derived from 
the three-dimensional constitutive equation of Hart-Smith 
[15] for rubber-like materials using the method [12]. 

In the analysis of damage phenomena in general and 
of the stress-softening effects in particular, the problem 
of identification of constitutive equations is even more 
difficult. Even if the strain equivalence hypothesis (12) 
is adopted and if a particular form of the strain energy 
function W(C) is assumed, there still remains to specify 
the effective strain ~ and the softening function Z(~). 
In general, a growth of damage in stress-softening memb­
ranes is only delimited by the inequality (9). Under the 
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Fig 3. Experimental results and analytical solutions for a 
membrane modelled as Hart-Smith material 
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haviour, for polymeric and biological membranes most 
of the available experimental data have been obtained in 
biaxial experiments [1-4, 8, 15]. Although biaxial tests 
alone are not sufficient to derive a three-dimensional 
stress-strain relationships, for membranes they suffice to 
yield the two-dimensional constitutive equations relating 
to the surfaces stresses and surface strains. The general 
results derived in this paper provide the conceptual fra­
mework within which specific forms of constitutive equ­
ations for membranes may be sought entirely indepen-
dently of any three-dimensional theory . 

2.0 3.0 4.0 5.0 6.0 7.0 Acknowledgement. This research was partially supported 
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Fig 4. Parametric study of softening effects 

assumption (12), this inequality takes the form 
W(C)a ~ 0 and since W(C) ~ 0 by virtue of the basic 
results in the non-linear elasticity, we must have a~ 0. 
In effect, the softening in the membrane response incre­
ases with increasing values of the effective strain ~ . Hen­
ce, Z(~) must be a monotonously increasing functions 
of ~. A simple example of such a function is (cf. [13]) 

Z(~) = 1-~ exp( -11(~- ~0 )) , (22) 

where ~ and 11 are parameters characterising growth of 
damage and ~0 is an initial damage threshold. 

In general, Z(~) is given by (11) under the assump­
tion that the constitutive function ~ appearing in the ki­
netic law of damage growth (10) depends on C only 
through the effective strain ~=~(C). It follows then that 
a specific form of the softening function Z(~) is essen­
tially independent of possible material symmetries. In con­
trast, the effective strain is a function of the deformation 
tensor C and thus its specific form should respect parti­
cular material symmetries. 

In the case of isotropic membranes, the effective 
strain may be defined as an isotropic function of C , ie 
as a given function ~ = ~(i1 , i2 ) of the invariants (15). 
For orthotropic membranes, the corresponding general de­
finition would be ~=W1 ,i2 ,i2 ). For illustration only, a 
simple form of such a function may be assumed 

~ = Ji1
2 - 2i2 • (23) 

With the use of the effective strain defined by (23), the 
solutions for different values of the parameters appearing 
in the softening function (22) are shown in Fig 4. It can 
be seen from these simple calculations that various types 
of stress-softening can be modelled by varying only the 
parameters in the assumed damage softening function. Ho­
wever, a complete study of this problem is beyond the 
aim of this paper. 

8. Closing remarks 

While three-dimensional constitutive equations of 
continuum mechanics may be specified for membranes 
and thus they may be used to analyse their inelastic be-

by the Polish State Committee for Scientific Research under 
grant KBN 7 T07 A 021 16. 
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