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Abstract. The adapted plate load optimization problem is formulated applying the non-linear mathematical program­
ming methods. The load variation bounds satisfying the optimality criterion in concert with the strength and stiffness 
requirements are to be identified. The stiffness constraints are realized via residual displacements. The dual mathemati­
cal programming problems cannot be applied directly when determining actual stress and strain fields of plate: the 
strained state depends upon the loading history. Thus the load optimization problem at shakedown is to be stated as a 
couple of problems solved in parallel: the shakedown state analysis problem and the verification of residual deflections 
bounds. The Rozen project gradient method is applied to solve the cyclically loaded non-linear shakedown plate stress 
and strain evaluation and that of the load optimization problems. The mechanical interpretation of Rozen optimality 
criterions allows to simplify the shakedown plate optimization mathematical model and solution algorithm formulations. 

Keywords: shakedown, loading optimization problem, mathematical models of circular plates, mathematical program­
ming theory. 

1. Introduction 

The present paper continues the investigations of 
mathematical programming method applications for per­
fectly elastic-plastic structures in the range of the shake­
down theory [1-12]. The Rozen project gradient method 
[13] is applied to solve the cyclically loaded non-linear 
shakedown plate stress and strain evaluation and that of 
the load optimization problems. The mechanical inter­
pretation of the Rozen algorithm optimality criterions in 
the structural analysis problem was explained in the in­
vestigations [14, 15] based on the application of the 
known in the mathematical programming method Kuhn­
Tucker conditions. The Kuhn-Tucker conditions mean the 
elastic or elastic-plastic structure compatibility equations 
(note that for the current moment such an interpretation 
was not met in scientific publications; these equations 
were applied only to confirm the solution to be the glo­
bal one [12]). The mechanical interpretation of Rozen 
optimality criterions allows to simplify the shakedown 
plate optimization mathematical model and solution al­
gorithm formulations. The applications related to the cir­
cular bendable plate described by the Mises yield condi­
tions are analysed in the paper. 

1 E-mail: Ela.Chraptovic@st.vtu.lt 

2 E-mail: Juozas.Atkociunas@st.vtu.lt 

A perfectly elastic-plastic plate material, geometry, 
load application points are prescribed. The quasistatic va­
riable load is described by the time independent upper 
and lower bounds of variation. The detailed loading his­
tory is not under consideration, as the loading is sloped 
by the above-mentioned variation bounds, being the un­
known variables in the problem to be considered. The 
plate load optimization problem is stated as follows: find 
the load variation bounds which satisfy a prescribed op­
timality criterion, strength and stiffness constraints. The 
dissipative structure stress and strain fields depend on a 
certain unique loading history, therefore to define the uni­
que plate deflections for the given load variation bounds 
is rather difficult or even impossible. Thus, an indirect 
evaluation of all the expected plastic deformation trajec­
tories seems to be the only possibility to solve the real 
problem [7, 16-22]. Consequently, the load optimization 
problem couples two structural mechanics problems. The 
first problem tasks include an evaluation of the statically 
admissible residual plate bending moments corresponding 
to the complementary energy minimum magnitude. The 
first problem solution influences the solution process of 
the second problem, to evaluate the residual displace­
ments bounds as variables being included into the stif­
fness constraints. The Rozen criterion mathematical-me­
chanical interpretation is a connecting value for the abo­
ve-mentioned first and second problems. 
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The investigation material in the paper is presented 
in the following order. The plate discretization by finite 
elements is analysed in the second section, where the 
plate discrete model main equations and relationships are 
characterised in brief. These equations and relationships 
are applied in the third section when formulating the mat­
hematical model aimed at evaluating the residual displa­
cements bounds. The problem optimal solution Kuhn-Tuc­
ker conditions together with those of mathematical-me­
chanical interpretations are given in the fourth section. 
The discrete adapted plate load optimization problem for­
mulations and obtained formulations analysis are de­
scribed in the fifth section. The proposed problem solu­
tion algorithm is presented in the sixth section; the se­
venth section is assigned to numerical applications. 

2. Plate discrete model main equations and relation­
ships 

The circular plate geometry, sandwich cross-section 
dimensions and material are prescribed. A plate 
discretized by means of the equilibrium finite elements 
[23, 24]. An element k (k = 1,2, ... , n; kE K) contains 
three nodal points I = 1, 2, 3 (IE L ). Hence, the vector 
of bending moments due to the applied cylindrical coor­

dinate system is: Mk =(Mp,kl• Me,k!• Mp,k2• 

Me,k2• Mp,k3• Me,k3V = (Mk,, Mk2, Mk3)r. Here 

Mkt = ( M p,kl, M e,kl f . The indices p and 8 define a 
certain type of bending moments with positive directions 
as shown in Fig 1. The bending moments approximation 
functions read: 

Mk(p)=[Nk(p)]Mk. (1) 

Here [N k ( p )] is k-th element internal forces approxi­
mation matrix. 

Fig 1. Plate element 

The functions (I) do not identically satisfy the plate ele­
ment equilibrium equation 

d 2 d 
- 2 ( r M P ) - -Me + r q (p )= 0 or 
dr dr 

[oYi]M(p) = q(p ). (2) 

Therefore the discrete model equilibrium is ensured for 
the plate elements and main nodes. The substitution of 
the relationship (I) by the formula (2) after differentia­
tion results in the following algebraic finite element equi-

librium equation: 

[ Ak (p)] M k = q k (p). (3) 

Here [ Ak ( p ) ] = [01" ][ N k ( p ) ] . For a uniformly distrib­
uted load case, q k ( p ) = q k ; the latter case is to be 
analysed in the paper. The separate elements are coupled 
with the system in order to ensure the bending moments 
M P and shearing forces Q continuity, when formulat­
ing the equilibrium equations for the first and second 
main nodes of separate elements. Taking into account 
boundary conditions the plate m dimension equilibrium 
equations system reads: 

I[Ak ]Mk = F or [A]M =F. (4) 
k 

The plate geometrical equations are formulated applying 
the stress virtual increment principle: 

oFru = L foMr(P )[~]Mk(p)dA. (5) 
k Ak 

An application of the relationship M k (p ) = [ N k ( p ) ] M k 

and that of the equations I[Ak ]Mk = F result in the 
k 

equality: 

Il>Mf[Akr u = Il>Mr [DdTMk. (6) 
k k 

Here k-th element flexibility matrix [Dk] is obtained ap­
plying the formula 

[Dk]= I [Nk(p )t~!!Zi][Nk(p )]dA. (7) 
Ak 

Following the above-mentioned operations, the geometri­
cal equations for the separate element are obtained: 

when coupled with the whole plate discrete model, read 

[Af u-[D]M=O. (9) 

Here [D] is the quasi-diagonal plate elements flexibility 
matrix [24]. The physical meaning of the displacement 
vector components is defined by the order resulted from 
the dual relationship with the equilibrium equations 

[A] M =F. An equilibrium finite elements were applied 
in investigation [25] when analysing the elastic-plastic 
plate subjected by monotonically increasing loading, in 
case of linear yield conditions. 

The plate transition to the plasticity stage is defined 
by the non-linear Mises yield condition 

M ~ - M P Me + M J = M J . The plate limit bending mo­
ment M Ok is prescribed and constant per finite element 
area, ie M Ok =const. The Mises yield condition is veri­
fied for each finite element node: 

Here [cP] is the Misei\ yield condition coefficient matrix. 
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When analyzing the perfectly elastic-plastic plate 
subjected to cyclic load F(t) , it makes sense to describe 
its stress field by means of the elastic Me and that of 
the residual M, bending moments. Applying the known 
formula of structural mechanics for elastic design bend­
ing moments vs external load, F relationship reads: 

Me=[a]F. (11) 

Actually, in engineering practice an elastic internal force 
influence matrix [a] for elastic internal force evaluation 
is applied rarely. When the problem mathematical model 
is formulating, the internal forces influence matrix [a] 
expressively illustrates an interaction of the internal forces 
Me and load F. Due to methodical aspect of the above­
-mentioned the matrix [a] is applied extensively in the 
paper. Let us say that the actual load process is described 
via the time t independent of load variation bounds 

Fsup and Finf ( Finf 5 F(t) ~ Fsup ). Then the certain 
bending moments distribution Me} is calculated for each 
external forces combination j (ie for the vector of loads 
variation bounds components), the all combinations be­
ing coupled with the set j = 1, 2, .... , p , j E J . These vec­
tors represent the polyhedron apexes of the loading pro­
cess M.(t)= [a]F(t) variation field. The total number 

of apexes makes the set j E J . The extreme bending 

moments Mej are linear functions of the load variation 
bounds Finf, Fsup (11). The Mises yield conditions then 
read: 

(Mep,j +M,P )
2 

-(Mep,J +M,p)(Mee,J +M,e )+ 
+(Mee,j+Mril)1 ~(Mo)2. 

The statically admissible bending moments Mr satisfy 

the equilibrium equations [A]Mr =0, ie they are self­
-balanced. The k-th element j-th node yield condition 
reads: 

or 

( M ep,kl,j + M rp,kl )
2 

- ( M ep,kl,j + M rp,kl )(M eiJ,k/,j + 

+M,e,ki)+(Mee,ki,j +Mril,k/)
1 ~ (Mok)

2 

Mkl,j=Mekl,j+M,k/, kEK, lEL, jEJ. (12) 

The geometrical equations (9) read: 

(13) 

Here u, is the vector of residual displacements; 

E> P = ( 8 pkl f is the vector of plastic strains. The vec­

tor 8 P is calculated applying the formula: 

E>pkl=22,.\1,J[<P]Mkl,J' kEK, lEL. jEJ.(l4) 
j 

Note that adapted plate load optimization problem 
mathematical models and numerical experiments in the 

current investigation are provided for linear Kirchhoff 
plate. 

3. Plate analysis mathematical model 

An elastic plate behaviour can be qualitatively rep­
resented after a qualified analysis of the plate load vs 
deflection is provided. The plate behaves elastically if 
the distributed load intensity parameter q does not ex­
ceed the limiting magnitude qr . Then the relationship 
load versus deflection is linear. In case when q > qr, 
the plastic strains leading to the plate stiffness degrada­
tion appear. Then the relationship load vs deflection is 
non-linear. After a certain load parameter magnitude q0 

is achieved, the plate collapses plastically (in case of the 
perfectly elastic-plastic material) or its deflections deve­
lop very fast in case of the elastic-plastic hardening ma­
terial. The perfectly elastic-plastic plate behaviour ana­
lysis is under consideration in the present investigation, 
thus the limit plate state is described by the load para­
meter magnitude q0 . The identification of this magnitu­
de in the structural analysis is known as the limit equi­
librium problem. 

The actual stress and strain field evaluation of the 
plastically deformed plate being in the state prior to the 
plastic collapse is under request of usual structural engi­
neering practice. The plate subjected to the variable load 
Finf 5 F(t) ~ Fsup at the state prior to the plastic collap­
se is the object of shakedown theory investigation. The 
residual bending moments, deflections and strains evalu­
ation is the aim of usual shakedown theory investigation. 
The above-mentioned values are determined by solving 
the plate analysis problem for prescribed load variation 
bounds Fsup and Finf . 

Let us consider the bendable shakedown plate state 
analysis problem in detail. By solving the shakedown pla­
te analysis problem in static formulation the residual ben­
ding moments M, are to be determined. The problem 
static formulation is due to the minimum complementary 
energy principle, reading [2, 4, 5]: 

of all statically possible residual bending moments 
of plate at shakedown is the minimum complementary 
energy corresponding one. 
The problem due to the above-mentioned principle re­
ads: 

find 

( 15) 

subject to 

(16) 
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The analysis problem mathematical model ( I5}-( 17) yield 
conditions 

Cf'kt,j = Ck -(Mekl,J + Mrkl )T[<P) (Mekl,J + Mrkl) 2:: 0 

take into account all polyhedron apexes j E J of elas­
tic bending moments distribution field Me(t)= [a.]F(t). 
Therefore the analysis problem is solved for the 
prescribed limit bending moments 
M 0 = (M01 , M 02 , ... , Mon )T and that of the elastic ben­
ding moments MeJ . The plate shakedown state bending 
moments vector M, is the unknown value of the non­
-linear convex mathematical programming problem (I5)­
(l7). The problem (I5)-(I7) optimal solution is denoted 
as M; . The shakedown of the plate is ensured by the 
existence of the statically admissible residual bending mo­
ments vector M, in contradiction to the minimum com­
plementary energy magnitude [7, 17, 20-22]. The plate 
shakedown state residual deflections and curvatures are 
identified by solving the dual of the (15)-(17) problem. 
The complementarity conditions are incorporated in this 
problem. These conditions do not allow to evaluate di­
rectly an unloading phenomenon (one can meet it when 
for an actual loading process A. i > 0 and cp; > 0 ; i E I ). 

I 
An objective function magnitude 2 tM;dDd M,k at 

unloading can numerically exceed an optimal magnitude 

I ~ *T[ ) • 2 -;Mrk Dk M,k . Consequently, it is impossible to 

define uniquely the plate residual deflections. In this ca­
se the problem (l5}-(I7) and its dual one are to be sol­
ved iteratively following a certain loading history. 

The mathematical model (I5)-(I7) can be rewritten 

simpler. The residual bending moments M, = ( M ~, M: V 
are expressed by means of the force method variables x 
(bending moments M:) applying the known Jordan trans­
formations: 

M,=[Bfx. (I8) 

The matrix [B]= [- [A"Y ( [A'f )-I, [I]] contains sub­

matrices [A'], [A'] being the compound submatrices of 

the matrix [A], (see [Bf = ). The matrix [
- [AT

1 
[A"]] 

[I] 
allows the shakedown circular plate analysis problem 
(15)-(17) to be transformed as follows: 

find 

(19) 

subject to 

k E K , IE L , ) E J . (20) 

The residual bending moments M~ are the unknowns of 
the problem ( I9)-(20). 

4. Kuhn-Tucker conditions and plate analysis prob­
lem 

The cyclically loaded elastic-plastic plate residual 
stresses evaluation problem ( 19)-(20) in terms of mat­
hematical programming theory can be written as follows: 

find 

min {ri7"(x)= ~xr[.5]x I xEZ}. (2I) 

Here Z = {x I cp; (x) 2::0 fori= 1,2, ... , (} is an admis­
sible set of variables x (here equalities h; ( x ) = 0 are 
eliminated). The functions cp; ( x ) 2:: 0 are convex, the 

matrix [.5] is positively defined. The global solution 
x* E Z minimizes an objective function ri7"( x *). The 
Rozen project gradient method [I3] is known as an al­
gorithm for convex mathematical programming problem 
solution. Here the objective function gradient V ri7" ( x ) 
is projected onto the admissible set 5? edge. The vector 
x* is an optimal solution if it satisfies the Rozen algo­
rithm optimality criterion: 

· V ci7"( X*)= 0 , (22) 

([vcp(x·)][vrcp(x*)] r1

[vcp(x·)] 

V ci7"( X*) 2:: 0 . (23) 

Hcre [v~ (x')] " [ a~b· l] Me the grndient> of the 

problem (2I) active constramts (satisfied as equalities, 
ie cpi (x) = 0, i::; 1, 2, ... , (, i E I). The investigations 
[I4, I5] illustrate that the Kuhn-Tucker conditions (22)­
(23) are the strain compatibility equations. An illustra­
tion for the Kuhn-Tucker conditions is presented in Fig 2. 

The vector of gradient objective function - V <2#( x * ) 

can be located inside in respect of cones being spanned 

by the gradient Vcp 1(x*), Vcp 2(x*) of the active const­

raints cp 1 ( x * )= 0, cp 2( x * )= 0. The plastic multipliers 
correspond to the relationship (23) in the above-mentio­
ned equations group, namely: 
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A.~O. (24) 

The plastic multipliers are related to the yield conditions 

q>;(x)~ 0 (these are the conditions (20) of the mathemati­

cal model (19)-(20)). 

L---------------------------------~-.x. 

Fig 2. Illiustration for Kuhn-Tucker conditions 

The plastic multipliers of the non-active yield con­
ditions are equal to zero, therefore the mathematical pro­
gramming complementarity conditions xrcp(x*)= 0 are 
satisfied. The relationship (23) corresponds to the strain 
compatibility equations [14]: 

[B11 ]0P =[B,]M, 

where [Be]=UA"V([A'Y)-1
,- [1]]. 

[B, ]= -[A"Y ([A'Y )-• [D']+ [D"]. 
Therefore, when applying the vectors x* and A., the du­
al problem variables can be obtained at once: 

and 

(25) 

(26) 

(27) 

The section is ended by presenting the plasticity the­
ory full equations system related to plates. 

The full equations system contains all constraints 
(20) of the primary problem (19)-(20) in concert with 
the Kuhn-Tucker conditions (22)-(23) of the problems 
( 19)-(20) optimal solution: 

{ T ")T ( <flki,J = Ck -\Mekl,J +[BkJl M, (<I>] Mekl,J + 

+[BkifM~)~o. 

M,=[BfM~; kEK, lEL, jEJ. (28) 

Xj<p1 (M1 )=0. 

The vectors M~ and X are unknowns of the problem 
(28). The plastic strains vector 0 P is not an indepen­
dent variable as it is obtained by the formula (14): 

epkl = 2L,..\i)<P]Mkl,J , 
j 

kE K, /E L, jEJ. 

5. Adapted plate load optimization mathematical 
models 

The adapted elastic-plastic plate is under considera­
tion. The vector of limit bending moments M 0 is presc­
ribed. An elastic-plastic plate shakedown state is investi­
gated. The quasi-static load is described by time t inde­
pendent load variation bounds Fsup, Fin/ (the load ap­
plication points are fixed). The certain loading history is 
unknown but it is sloped by the load variation bounds 
Finf ~ F(t) :=; Fsup . Then the adapted elastic-plastic pla­
te load optimization problem reads: 

find the load variation bounds Fsup , Fin/, satisfy­
ing the prescribed optimality criterion max 

{ Tf'up Fsup + Ti~f Fin/} in concert with plate strength and 
stiffness requirements. 
Here Tsup , Tin/ are the optimality criterion weight co­
efficient vectors. 

The adapted plate is safe in respect of plastic col­
lapse but possibly cannot satisfy certain maintenance con­
ditions (as, for instance, the stiffness requirements). The­
refore the strength requirements in concert with stiffness 
constraints are to be included into constraints of the adap­
ted structure load variation bounds optimization mathe­
matical model. The plate stiffness requirements include 
the residual strains e r (t) and displacements u r (t) de­
pendable upon certain loading history. When the certain 
loading history is unknown, one can only define the sha­
kedown state residual displacements variation bounds 
ur,itif. :=; u,(t):=; ur,sup of the plate. Thus the adapted pla­
te load optimization couples two main problems. The first 
problem aims to find the plate shakedown state ensuring 
residual bending moments M,. The problem is realized 
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by solving the plate analysis problem (15)-(17). The se­
cond problem aims to verify the plate stiffness const­

raints ur,min::;: ur,inf, ur,sup::;: ur,max · Here ur,min, 

ur,ma.x are the prescribed codified plate deflections (fi­
xed to ensure certain requirements for residual deforma­
tions). Therefore the residual deflections variation bounds 
ur,inf, ur,sup evaluation problem needs to be solved 
[14]. It is obvious that plate load optimization problem 
at shakedown is not a classical mathematical program­
ming problem. Note that the objective function 

max { T[,,P Fsup + T;~J Finf} magnitude identification pro­
blem combines both the above-mentioned related pro­
blems, namely the plate analysis problem ( 15)-( 17) and 
that of the variation bounds ur,itif, ur,sup identification. 
Therefore the problem solution is rather complicated. 

The mathematical model formulation for the certain 
adapted construction load optimization problem is direc­
tly influenced by the method to evaluate the residual ben­
ding moments M,. This paper investigates two optimi­
zation problem formulations. The analysis problem (15)­
( 17) in the first formulation is presented as the convex 
non-linear mathematical programming problem (21) or 
(19)-(20). Then the load optimization objective function 

max { T[uP Fsup + T;~J Finf} is linear. The equations and 
relationships are stated according to the plasticity theory 
full equations system (28) in the second formulation of 
the load optimization problem. In this case the optimiza­
tion problem objective function is non-linear, namely: 

max { T{up Fsup + Ti~J Finf -7X~cp J (M 1)} · 
According to the cyclic load definition 

Finf ~ F(t) ::::: Fsup . In most cases the vectors F;tif and 
Fsup components are positive and negative respectively. 
For convenience it is assumed that Finf ~ 0 and Fsup ~ 0 
in our investigation. The latter assumption is applied 
when calculating the plate energy magnitudes and that 
of the plate stresses and strains both for elastic and plas­
tic stages. 

5.1. First formulation of the problem mathematical 
model 

The first formulation is based on the problem ( 19)­
(20) solution. The actual adapted state residual bending 
moments M; and optimal load variation bounds F;up , 

F;;y. are identified by means of the following problem 
solution: 

find 

subject to 

mm (30) 

when 

cpkl · = Ck- Mkrl .rcp]Mkl ~ 0 C - (M )2 
,J ,J L ,; • k - Ok ' 

kEK, IEL, jE J. 

and 

0 r,min::;: u, =[He] eP::;: ur,ma.x. (31) 

The vectors Fsup, Finf, M~ are the unknowns of the 
problem (29)-(30). The plastic strains 8 P are identi­
fied by solving the problem (30). The satisfaction of the 
inequalities (31) ur,min::::: [He]E>P ::O:ur,ma.x means that 
the adapted plate stiffness conditions are valid. As it was 
mentioned above, the vectors ur,min, ur,max are known 
prescribed residual displacements variation bounds. The 
inequality (31) contains the residual displacement influ­

ence matrix [H6 ]=([A][Dr1 [Aft [A][Dr1
. The plas­

tic strains e p = ( e pkl y including the formula (31) are 
calculated applying the formula: 

epkl = 2L.Ak,,J[lP]Mki,J 

).k/,j ~ 0, kE K' IEL, jEJ. (32) 

As a result, the problem (29)-(31) contains the direct 
unknowns Fsup , Finf, M~ and that of the indirect un­
known - the plastic multipliers vector X . The last vec­
tor can be calculated by the formula (24). Having iden­
tified the plastic multipliers J.. 1 ( j E J ), the residual dis­
placements u, from the formula (31) are calculated ap­
plying the relation u, =[H]X. 

Note that during the plastic deformation process an 
unloading phenomenon of the cross-sections is possible. 
The unloading phenomenon means that at some defor­
mation stages a yield condition is satisfied as equality, 
ie cpki,J = 0 for j-th cross-section, in later deformation 
stages it changes to inequality cpkl,J > 0 and vice versa. 
For the real deformation process cpki,J = 0, 
Aki,J cpki,J = 0, ).ki,J > 0 and the plastic multiplier mag­
nitude ).ki,J > 0 remains unchanged up to the loading pro­
cess end. Unfortunately, the analysis problem mathema­
tical model (19)-(20) does not enable to represent direc­
tly the deformation process per time t . It is obvious 
that the mathematical programming complementarity con­

dition (26) X r cp( M*) = 0 does not allow to evaluate the 
unloading phenomenon. Taking into account the possibi­
lity of unloading, the inequality (31) should be transfor­
med to: 

u,i,min ::;: min [H; ]X= u,.i,inf' 
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max [Hi]~= uri, sup~ uri. max' 

i = 1, 2, ... ,m. (33) 

Here the index i is related to the deflection vector u 
components u1, u2 , ... , um. It is clear that the number of 
constrained displacements should be less than the num­
ber m. 

An evaluation of residual displacement bounds 
ur,if!l' ur,sup is a rather complicated problem [14, 15]. 
In this paper the bounds uri, sup, uri,i'!f' are identified by 
solving the problem: 

find 

(34) 

subject to 

(35) 

During the structural shakedown process the energy is 
dissipated. The upper bound of the dissipated energy 
magnitude Dmax can be calculated by the Koiter's sug­
gested formula [7]. The fictitious structure method pro­
posed in the investigation [14, 15] allows to evaluate 
more exactly the energy dissipation bound magnitude 
jjmax ( ~ notation is compatible with notation jjmax ). 
An extended investigation of the problem (34)-(35) is 
presented in [ 14]. 

The problem (19)-(20) can also be used for the 
stress and strain field evaluation during the real plate 
deformation process. Then the problem (30) is solved 
via iterative procedures for each objective function (29) 
increment ~W (for further details concerning the algo­
rithm the reader is referred to Section 6). But note for 
the latter case the displacement bounds ur,inf' ur,sup 

evaluation problem (34)-(35) solution is necessary. 

5.2. Second formulation of the problem mathematical 
model 

The optimization problem second formulation is sta­
ted by applying the plasticity theory full equations sys­
tem (28) and reads as follows: 

find 

subject to 

cpk1,1 = ck -Mf/,j [ct>]Mki,J:::: o, ck = (Mok )2
, 

and 

E>pkl =2L.\i,)ct>]Mki,J, 
j 

(38) 

The vectors Fsup, Finf, M~ (taking into consideration 
T " Mr = [B] Mr) and ~ J are the problem of (36)-(38) 

unknowns. 
In investigation [26] the complementarity conditions 

were proposed to include into objective function of the 
optimization problem. Then the rewritten adapted plate 
load optimization problem (36)-(38) reads: 

find 

max 

(39) 

subject to 

'Pk!,J =Ck-ML[ct>]Mki,J :2:0, ck =(M0k) 2
, 

and 

epkl = 2L.\i)ct>]Mkl,J , 
j 

kEK, IEL. }EJ; 

(40) 

(41) 

(42) 

The vectors Fsup , Finf, M~, ~ 
1 

are the unknowns of 
the problem (36)-(38). By analogy with the problem 
(29)-(31) case it is necessary to take into account the 
possible unloading when solving the problem (34)-(35). 

6. Algorithm for solution of the load optimization 
problem 

An algorithm for solving of the optimization prob­
lem first formulation (29)-(31) is to be presented in de­
tail. The algorithm statement is based on the Rozen 
project gradient method and its mechanical methods 
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optimality criterions interpretation, already described in 
Section 4. The problem (29)-(31) solution is replaced 
by means of the three different problems solution in a 
consecutive order. The solution process is iterative. 

The first problem is the optimal load variation 
bounds F;up , F;:1 determination for plastic collapse. The 
mathematical model of this problem reads: 

find 

subject to 

(44) 

<pkl · = Ck- MkTI · [<P]Mkt · ~ 0 
,) ,} ,) ' 

kE K, /E L, jEJ; 

(45) 

The load variation bounds Fsup , Finf and residual bend­
ing moments M, (or after application of the relation­
ship (18), the M~) are the unknowns of the problem 
(43)-(45). Although the objective functions of the prob­
lems (29)-(31) and (43)-(45) are similar, one must find 
that the physical meaning of the optimality criterion co­
efficients Tsup , Tinf is different. The coefficients in the 
objective function (43) mean the extreme magnitudes of 
residual displacements rates. Thus the objective function 
(43) means the work of external forces per time unit, ie 

F* F* the power of external loads W. The bounds sup, inf, 

being identified by solution of the problem ( 43)-( 45), 
correspond to the cyclic plastic collapse case. At the mo­
ment, just before the cyclic plastic collapse moment, the 
plate shakedown state of residual deflections magnitudes 
do not satisfy the stiffness constraints (31 ). It is obvious 
that the more strict constraints (33), resulting from the 
problem (34)-(35) solution, would fail. The limiting 
magnitudes of residual displacements ur,min, ur,max en­
suring the maintenance conditions cannot exceed the mag­
nitudes to be reached just before the plastic failure. The 
each problem ( 43 )-( 45) v -th solution stage duration is 
limited by the external forces power magnitude ~Wv. 
The load variation bounds at the end of the v -th stage 
are denoted via F;~f. The load vectors F:UP , F;:if are 
applied when solving the problem to identify the residual 
bending moments M~ . It is necessary because of the 
existence of the other distribution of residual bending 
moments resulting from the less magnitude of the objec­
tive function (15) in respect of the magnitude 

1 ~ vT[ ] v 2 "1 M,k Dk M,k . This phenomenon will be de-

scribed in detail. 
The second problem is an analysis of shakedown 

state residual bending moments M~ by means of the 
problem (15)-( 17) or the problem (19)-(20) solution. 

Note that the problem is to be solved for the each v -th 
stage load magnitudes F:O,P , F;~f. An admissible solu­
tion of the analysis problem (19)-(20) is received by 
means of the simple application of the problem (43)­
(45) v-th stage optimal solution. The problem (43)-(45) 
v -th stage solution F:up , F;~f and M~ belongs 
to the admissible set of variables x, ie: 

.2'= {xI cpi (x) ~ 0 for i= 1,2, ... , ( }. The vector M;v 

is the analysis problem optimal solution. The plastic mul­
tipliers X *v are calculated applying the Rozen optimality 
criterion formula (24). The plastic strains e~v and plas­
tic multipliers are related via formula (14): 

e;t=2IA;r,j[<P]M~L, kEK, /EL jEJ. 
j 

The third problem is that of the verification of the 
plate stiffness conditions (31) 

ur.min ~ [He] E>;' ~ ur,max. When these conditions are 
satisfied, the following v -th step of the problem (43)­
(45) is executed. When the conditions (31) are not satis­
fied, the increment of objective function (43) ~Wv is 
reduced and the problem (43}-(45) is resolved. Follo­
wing the above-mentioned procedures the satisfaction of 

all constraints ur,min ~ [H] E>;' ~ ur,max is achieved and 

the vectors F;~ , F;',if are said to be the rational solu­
tion of the problem (43)-(45). 

However, verification of the stiffness conditions 
ur,min ~ [H]E> P ~ ur,max in the cyclic load case can be 
insufficient. When identifying the plate stress state, one 
must evaluate the possible unloading phenomenon du­
ring the shakedown process. Therefore instead of the ve­
rification of the conditions (31) the more strict verifica­
tion (33) is introduced. To ensure such a verification, 
the problem (34)-(35) is to be solved. Only then an op­
timal adapted plate loads rational variation bounds F;up , 

F;:1 are to be obtained. The problem (29)-(31) solution 
algorithm scheme is presented in Fig 3. An algorithm 
application is illustrated via numerical examples of Sec­
tion 6. 

The feature of the presented algorithm is that the 
stiffness conditions are verified only at the v -th stage 
end of the bounds F;up , F;:f search. This feature is pre­
determined by the load optimization mathematical mo­
del formulation as the load optimization problem mathe­
matical model second formulation (39)-(42). Variables 
are not only the Fsup, Finf, M~ but also the X. This 
feature can be ignored when determining the rational so­
lution F;u~ , F;:/ by means of the above-mentioned for­
mulation. But find that the complicating solution factor 
in this case is the non-linearity of the compatibility equa­
tions. Note that by analogy with the problem (29)-(31) 
case, the solution of the problem (39)-( 41) requires to 
verify the stiffness conditions via solution of the (34 )­
(35) problem. The problem (39)-(42) solution algorithm 
scheme is presented in Fig 4. 
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Preparing input data 

Increment objective f. L1 W v selection 

Load optimization problem (29)-(30) 

max {T.~P Fsup +T;~ Finf }= LL1Wv solution 
v 

Finding: F ;~ , F;;;{ , analysis problem (30) admissible point M r 

Admissible 
increase limit 

Problem (30), (31) solution for known F;:P , F;;;{. Finding: M;" , A. *V , u;" 

Objective 
function step 
conditioned 

by increment 

Linear programming problem 
(34)-(~5) inp..:t matrices 

formatiOn: lH], [B;,] 

no 

Next 
increment 

v = v+l 

Problem (34)-(35) solution 

F. di v v jv 1v 
m ng Uri, sup • Uri,inf • ll.i,sup' ll.i,inf 

no 

yes 

L1Wv 

Reducing 

L1Wv 

yes 

* * Optimal solution Fsup , Fin/ 

Fig 3. Solution algorithm of the problem (29)-{31) 

7. Numerical examples of the plate load optimization 
problem 

The shakedown plate load optimization problem is 
realized via the mathematical model first formulation 
(29)-(3I ). The presented examples are simple and dedi­
cated only to illustrate the proposed solution method. A 
perfectly elastic-plastic circular radii R plate is under 
consideration (Fig 5). The hinge-fixed plate is subjected 
to the uniformly distributed of intensity q load. The load 
intensity magnitude q =I results in the following elastic 
bending moments: 

Me= [0.20625 0.20625 0.19366 0.19883 0.15469 

O.I7656 O.I5469 0.17656 0.09023 0.13945 0.0 

0.08750] r_ The plate limit bending moment M 0 =canst 
is prescribed, the Poisson's ratio is equal to 0.3. The equi­
librium finite elements are applied for discretization. 

First, the load q maximum variation interval max 

(qsup+qinf) is identified by solving the problem (43)­

(45). The alternating plasticity collapse results in magni-

tudes qsup =-qinf =4.8485 M 0R-2
• The result practi­

cally coincide with the J. Konig's received analytical 
solutions [7] when the plate is discretized by I 0 equilib­
rium finite elements ( k = 0 ). 
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Preparing input data 

Load optimization problem (39)-(42) 

~· l T[., F,., +T,!if F,,1 ~ 7). 1~ 1 (M J )ro!•tioo 

· · F* F* M* '* * Fmdmg: sup ' inf ' r ' A ' U r 

Linear programming problem (34)-(35) input 

matrices formation: [B0 ], [B,] 

Problem (34)-(35) solution 

Finding: u,;,sup =max [H; ]~, 
u,i,inf =min [il; ]i. Ii,sup. Ii,inf 

Corrected stiffness 
constraints (42) 

v < [H ]r.- < v 0 r,min- e 0 p- 0 r,max 

Fig 4. Solution algorithm of the problem (39}-(42) 

q 

qifUJJ lS* f f f f t f '1 
IE R "IE R ,j 

6.5120 

6.4235 

Fig 5. Plate design 

An alternating plasticity case allows the existence 
of many different statically possible plate residual bend­
ing moments distributions. If qsup = -qinf, the residual 
bending moments M, = 0. The problem max qsup, 

for 0 ~ q ~ qsup and p = 1 solution results in 

q sup = 6.512 0 M 0R-2 
• The equilibrium finite elements 

are sufficiently accurate [24], therefore the only by two 
elements discretized plate solution results in the load limit 

qsup = 6.4235M0 R-2 when deflections were not limited 

up to the cyclic plastic failure. Such a type of problem 
is often used to test the discretization programme and 
methods. For more details of the mathematical program­
ming methods application to calculate the structures af-

yes 

fected by the cyclic loading, the reader is referred to 
the investigations [1, 2, 5, 7, 9, etc] of the reference list. 

Example 1. The plate shakedown state is under con­
sideration. The load optimization problem max q sup is 
realized via the mathematical model (29)-(31 ). An ad­
missible plate deflection in the centre is 
uri max = 1. 80 M 0R I dX , the stiffness condition (31) is 
fo~ulated as 0 ~ ur1 ~ ur1 max . The residual deflection 
bound url,sup evaluation m~thod will be presented in de­
tail, providing the solutions for the case k = 2 (find that 
the larger number of finite elements significantly increases 
the linear programming problem (34)-(35) dimensions­
see Table I). The plate discrete model parameters are: 
s = 6 nodes with total degree of freedom m = 8 . 

As it has been noted in Section 6, the problem (29)­
(31) solution is iterative and followed by solution of the 
three problems in the consecutive order for each stage. 
The problem (43)-(45) first stage v = 1 solution results 
in the magnitude ql/=1 = 5.5853 M 0R-2

. Due to the prob­
lem (29)-(31) solution algorithm block-scheme (Fig 3) 
the second problem solution is to be followed further. 

The second problem - the plate shakedown state 
analysis problem (30) (or (15)-(17)) now is solved for 
the previously identified load parameter load 
qv=l = 5.5853 M 0R-2 . A stage v =I solution of the 
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Table 2. u,.!,sup calculation problem qv=! = 5.5853 M 0R-

Table 1. Structure of the problem (34)-(35) Av 
I A.{ Av 

3 
Av 

4 
Av 

5 
Av 

6 
1.9992 -0.3652 -0.0845 0.1094 0.2434 - 0.7316 

[sJi =[B,]M; - 1.7027 -0.3380 0.4372 0.9734 - 1.9633 

0.0730 

1.0 

- 1.0 

-A ::;o 

J..TC ::;Dmax 1.0 1.0 

maxu,.-[H]A. Objective f. 0.7325 0.3500 

~..· uri,sup 0.1549 1.1392 

problem results in the actual distribution of residual 
bending moments M;~~'=' : 

M,P M,e 

-0.1523 -0.1523 

-0.1229 -0.0728 

-0.0521 0.1307 

-0.0521 0.0443 (46) 

-0.1499 0.0632 

0.0 0.0157 

and that of the vector of plastic multipliers 
~·v=! = [0.1549 1.1387 0.0725 0.0 0.0 o.oY. The 
zero magnitude plastic multipliers are related to the non­
active yield conditions. The yield conditions are satis­
fied as equalities in the 1, 2, 3 nodes. For the v -th stage 

Dmax =(~•vt C=l.3661 M~RidX. The second and 
third problems are related via the plastic multipliers vec­
tor ~·v. 

The third problem is verification of the stiffness 
conditions (31) 0::; u,1 ::; u,.1,max . The residual displace­
ment magnitude u,1 = 0.5295 M 0R I dJ(' is obtained 

from the vector u;~~'=' = [H] ~ *~~'= 1 = [ 0.5295 0.5683 

0.2635 0.6473 0.2485 0.2555 -0.0155 0.4366 f. 
The obtained results yield the satisfaction of stiffness con­
dition (31) 0 ::; 0.5295 ::; 1.80 . 

If the unloading phenomenon appears, the stiffness 
condition (31) cannot be satisfied. Therefore the stiff­
ness condition (31) is changed by a more strict one 

0::; u,., sup::; 1.80. The upper deflection bound u I .,..... r ,sup 

when C = C is calculated applying the mathematical 
model (34)-(35), which is graphically presented in 
Table 1. The plate deflection bound u,1,sup e~aluation 

problem is presented in Table 2. The vector ~v is the 
unknown of the problem. The model includes the com-

patibility equations [B .JXv = [B,. ]M;v=l, containing an 
optimal solution (46) of the analysis problem (15)-(17). 

- 1.5062 0.1092 0.2433 - 0.0261 
0.6245 0.1664 1.0088 0.0015 

< 0.0 

< 0.0 

- 1.0 < 0.0 

- 1.0 < 0.0 

- 1.0 < 0.0 

1.0 < 0.0 

1.0 1.0 1.0 1.0 < 1.3661 

0.2410 0.2131 0.1025 0.0620 Objective f. 

0.0727 0.0023 0.5303 

The objective _function of the problem is 
u,1,sup =max [H,] ~v=l. An extended form of the objec-

tive function [H,] A:v=l = 0.7325 xr + 0.3500 X~+ 

+0.2410X~ +0.2131X% +0.10255:5 +0.0620X6 is lo­
cated in the one of the bottom lines of Table 2. The 
bottom line of Table 2 contains the vector of plastic 
multipliers 

x•v=l = [o.1549 1.1392 o.o121 o.oo23 o.o o.oY 
and that of the objective function optimal magnitude 
u,1,sup = 0.5303 M 0R I dX respectively. As the prob­
lem (34)-(35) is not degenerated u 1 = u 1 and the r r ,sup 
first stage is finished by identification of the u 1 mag-
nitude. r ,sup 

After a certain number solution iterations the prob­
lem (29)-(31) convergates to the optimal solution reading 

as follows: q':uP =6.0512M0R-2
, ~· =[0.1523 1.1392 

o.oo73 o.oo23 o.o o.oY, u; = [1.7374 1.8419 
1.0739 2.0350 1.0056 0.8107 0.0599 1.7079 f. 

Example 2. The previously investigated circular 
plate is subjected to the cyclic uniformly distributed load 
q ( 0 ::; q ::; q sup ) and that of onto the outer contour ap­
plied uniformly distributed bending moment M 
( 0::; M::; M sup) (Table 5, scheme a). The extreme load 
variation bounds qsup and Msup are to be determined 
taking into account the plate middle point deflection limi-

tation: u,1 ::; u,I,max = 0.84 M 0R I ciX'. The problem is 
solved applying the mathematical model (29}-(31). The 
solution process is iterative following the three problems 
in a consecutive order solutions. The first problem (43)­
(45) yield conditions are verified for all ( p = 3) elastic 
stresses polyhedron apexes. The pseudoelastic bending 
moments Me1 , Me2 , Me3 result from the load combi­
nations q ; M ; q and M , separate or simultaneous 
actions respectively. 

Then the elastic plate solutions are denoted via 
M1 =M.1 +M,., M 2 =M.2 +M,, M3 =M.3 +M,. 
For instance, the first node yield conditions applying the 
(12) formula read: 
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or 

(Me,ll,J + M,,11 f [<l>](Me,ll,J + M,,11 )~ (M 01 )
2

, 

j = 1, 2, 3. 

Fig 6. Yield conditions for the Example 2 problem 

Applying the elastic bending moments Mel, Me2 , 

Me3 , presented in Table 3, the first node yield condi­
tions read: 

( 0.20625q + M rp,ll )2 - (0.20625q + M rp,ll )(0.20625q + 

+Mrll,II)+(0.20625·q+Mre,11 )
2 ~ (M0)

2
, 

( -l.OM +M,p,ll)2 -(-l.OM + M,p,ll)(-l.OM + M re.11 )+ 

+(-l.OM+M,8•11 )
2 ~ (M0)2, 

( 0.20625q -l.OM + M rp,ll )2 - (0.20625q -!.OM+ 

+ M rp,ll )( 0.20625q -l.OM + M r8,11 )+ (0.20625q -l.OM + 

+Mrllll)2 ~ (Mo)2. 

The end of first stage ( v = 1 ) solution results in the val­
ues: qV=1 = 5.3881 M 0R-2

, MV=1 = 0.8882 M0 . 
The vector of residual bending moments reads: 

Table 3. Vectors Mel, Mez, Me3 

Mel Me2 

MP Me MP Me MP 

0.20625q 0.20625q -l.OM -l.OM 0.20625q -l.OM 

0.19366q 0.19883q -l.OM -l.OM 0.19366 q- l.OM 

0.15469q 0.17656q -l.OM -l.OM 0.15469q-l.OM 

0.15469q 0 17656q -l.OM -l.OM 0.15469q-l.OM 

0.09023q 0.13945q -l.OM -l.OM 0.09023 q - !.OM 

O.Oq 0.08750q -l.OM -l.OM O.Oq-l.OM 

M,P M,e 
-0.1112 -0.1112 

-0.0744 -0.0417 
M*V=I = 

r -0.0461 0.0019 

-0.0461 0.0461 

-0.1151 0.0576 

0.0 0.0 

All 18 yield conditions of the discrete plate model will 
be verified. Only the first node yield condition is satis­
fied as equality. Consequently, the actual residual 
bending moments magnitudes M,p,ll = 0.1112, 
M ,8,11 = 0.1112 are fixed only in this cross-section. The 
whole structure actual residual bending moments are iden­
tified by solving the analysis problem, stated applying a 
complementary deformation energy principle. 

The second- the plate state analysis problem (15)­
(17) is realized applying the previously obtained values 
q~:; =5.3881M0R-2 , M;:; =0.8882 M0 . The solution 
of the analysis problem results in the actual distribution 
of the plate residual bending moments: 

M,P Mre 

-0.1112 -0.1112 

-0.0789 -0.0376 
M*V=I = 

r -0.0283 0.0918 

-0.0283 0.0239 (47) 

-0.0081 0.0343 

0.0 0.0087 

The plate analysis problem (15)-(17) was realized apply­
ing the computer programme "ELROZEN", stated on the 
basis of the Rozen project gradient method application. 
The optimality criterions mathematical-mechanical inter­
pretation (22)-(23) resulted in the following vector of 
plastic multipliers: 

"* = [ 0.1064 0.6300 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.or. 

Table 4. Matrix [v cp] structure 
r ' 

Me3 zl<~>1 JMu.1 
Me zl<~>2 JMu.1 

0.20625 q - l.OM ... 

0.19883 q -!.OM ... 

0.17656 q - l.OM zl<~>1 JMk,,l 
O.I7656q -!.OM zl<~>2 ]Mk,,I 
0.13945 q- !.OM 

0.08750 q - !.OM 
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The third problem aims at verifying the plate stiff­
ness conditions (31) 0::; uri ::; u,l,max. The residual de­
flection magnitude u,1 = 0.2985 M 0R I Q/( is obtained 

from the vector u;=l = (H] X*v=l = ( 0.2985 0.3204 

o.r4o6 -o.35o2 o.t345 o.t382 -o.oo84 o.2362V. 
The stiffness condition is satisfied but one must take 

into account the possible unloadings of the cross-sec­
tion. Therefore, the stiffness constraint (31Z) is changed 
to the more strict one: 0::; u,l,sup ::; 0.84 . 

The upper bound of the deflection is calculated 
applying the mathematical model (34)-(35). The bend­
ing moments ( 4 7) are located on the right side of com­
patibility equations [BdXv = [B, ]M;v. The matrix [BA] 
is calculated applying the formula [Bt..] = [B8 ][vq>]. Table 
4 illustrates the structure of the matrix (V <p]. An opti­
mal solution of the problem (34)-(35) are the vectors: 
x· = [0.1064 0.6301 0.0 0.0 0.0 o.or' 
u,l,sup = 0.2987 M 0 R I Q/{" . 

The residual displacement bound u,1,sup for highly 
reliable structures is calculated applying the mathemati­
cal model (34)-(35), stated for the fictitious plate. The 

Table 5. Numerical solution of load optimization problem 

Desi2n scheme Design conditions/results 
a) 0 :S q :S q sup , 0 :S M :S M sup Plate point deflection 

limitation: 

uQ:+ f I I I I J t
9

J f I I f f I sQu u,i,max = 0.84M oR I dil 

Optimal solution: 
R R 

u;i = 0.84M 0 RI Q){", 
Plate discrete model: •v -2 
k=2,m=8 qsup = 5.7716M 0R , 

M;:P =0.8091 M 0 • 

b) 0 $ q $ q sup , 0 :S F :S Fsup Plate point deflection 
limitation: 

/!l,~bkJf,, '''! 
u,i,rnax = 3.4M oR I Q)( 

!' Optimal solution: 
~ 

R R u;i =3.09M 0 RIQ){", 

Plate discrete model: •v -2 
qsup=6.750lM 0R , 

k = 8, m = 32 
Fs:~ = 0.0456 Mo. 

c) O:Sq:Sqsup• O:SF:SFsup Plate point deflection 
limitation: 

/,,,~II If.,,!!! u ri,rnax = 0.1 M oR I g){" 

!' Optimal solution: 
~ -

R R u;i = 0.09M 0 RI oX, 

Plate discrete model: 
*v -2 

qsup=5.7472M 0 R , 
k = 8, m = 32 

Fs:~ = 0.0290 M 0 . 

d) 0 $ q :S q sup , 0 :S M :S M sup Plate point deflection 
limitation: 

q M M u,i,rnru: = 0.73M 0 R I Q/i 

~~I I :®t I I; I I I~ Optimal solution: 

u;i = 0.73M 0 RI Q){", 

Plate discrete model: 
•v R-2 

k = 8, m = 32 qsup =5.701IM 0 , 

M;;P =0.1481M 0 . 

fictitious plate yield constants vector M0 is formulated 
by following the criterion stating that all nodes yield con­
ditions must be satisfied as equalities. Then the problem 
(34)-(35) becomes degenerated. 

The dissipated energy amount Dmax = 0.7372 is 
identified by solving the analysis problem (29)-(31) for 
the degenerated structure. As the compatibility equations 
remain the same, the magnitude ..J!rl,sup is c~lculated ap­
plying the ratio of magnitudes Dmax and Dmax. 

Finally, the main problem (29)-(31) optimal solution 
in terms of the following vectors reads (Table 5): 

q;:P =5.7716M0R-2
, M;:P =0.8091 M0, X* =[0.1802 

1.8157 0.2990 0.0 0.0 o.of, u;=[o.8403 0.9000 

0.4481 -1.0843 o.4t64 o.42so -o.o26o -o.73t3Y 
More numerical applications are presented in Table 5. 

8. Conclusions 

The complementary slackness condition of the math­
ematical programming theory does not allow to evaluate 
plate cross-section unloading phenomenon during the 
shakedown process. Therefore the dual mathematical 
programming problems cannot be applied directly when 
determining actual stress and strain fields of plate (the 
strained state depends upon the loading history). As a 
result, the load optimization problem at shakedown is to 
be stated as a couple of problems solved in parallel: the 
shakedown state analysis problem and the verification of 
residual deflections bounds. 
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