
132

ISSN 1392-3730

JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT
http:/www.vtu.lt/englishleditions

2003, Vol IX No 2. 132-/38

ON GRAPH-BASED DESIGN OF FLOOR LAYOUTS

Adam Borkowski1, Grzegorz Chas2 and Quoc Thanh Nguyen3

1 University of Information Technology and Management, ul. Newelska 6, 01-441 Warsaw, Poland.
E-mail: abork@wsisiz.edu.pl

2• 3Jnstitute of Fundamental Technological Research, Polish Academy of Sciences, Swi~tokrzyska 21,
00-049 Warsaw, Poland. 2£-mai/: gchas@ippt.gov.pl; 3£-mai/: nthanh@ippt.gov.pl

Received 08 Jan 2003; accepted 13 May 2003

Abstract. Knowledge-based tools assisting the designer in engineering represent further improvement of expert systems.
The present paper shows how such software can be developed in the particular domain of floor layout design for
buildings. The recently developed paradigm of hierarchical graphs is taken as the knowledge representation scheme. The
user of the system is encouraged to undertake the search for rational solution at two levels. First, an analysis of
functionality requirements for the designed object is performed. This results in a graph capturing main functions and
relations between them. Further, this graph is mapped onto another graph depicting the floor layout in terms of areas
and rooms. Both graphs produced by the user are checked against the constraints resulting from the requirements of the
relevant code of practice. The final result is converted into the format accepted by a commercial CAD-tool in order to
proceed with the detailed design.

Keywords: knowledge-based design, hierarchical graphs, graph transformations.

1. Introduction

Following up the popularity of MYCIN numerous
expert systems were developed in the area of engineer­
ing design [1]. Unfortunately, their acceptance by prac­
titioners was very low. The main cause of that was too
stiff nature of the first generation expert systems. They
forced the designer to follow a fixed path preventing him/
her from coming up with innovative solutions. Thus the
attempt to help designer by means of computer-based
"experts" yielded similar negative effect as the attempt
to standardise architecture by promoting the so-called
"typical projects".

It is commonly agreed nowadays that knowledge­
based design assistants who replaced expert systems
should stimulate search for innovative solutions. This can
be achieved by encouraging the designer to perform thor­
ough conceptual analysis of the design task before plung­
ing into details as well as by relieving him/her from the
tedious check of the code of practice compliance of the
project. The aim of the present paper is to demonstrate
that both goals can be achieved within the frame of graph­
oriented knowledge representation.

The theoretical framework of this representation was
laid out by E. Grabska [2]. She introduced the composi­
tion graphs (CP-graphs), the realisation schemes and,
later, the new model of hierarchical graphs [3]. This
methodology belongs to the theory of graphs and graph

transformations - a domain in Computer Science that
undergoes vivid expansion in recent years (compare, eg,
[4]). Graph grammars that constitute an important part
of this theory can be seen as part of the linguistic ap­
proach to world modelling proposed by N. Chomsky in
the 1970s [5). The core idea in this methodology is to
treat certain primitives as letters of an alphabet and to
interpret more complex objects and assemblies as words
or sentences of a language based upon the alphabet. Rules
governing a generation of words and sentences define a
grammar of the concerned language. In terms of engi­
neering design such a grammar generates a class of ob­
jects that are considered plausible. Thus, grammars pro­
vide very natural knowledge representation formalism for
computer-based tools that should aid the design.

Since G. Stiny [6] developed the shape grammars many
researchers showed how such grammars allow the architect
to capture essential features of a certain style of the build­
ing (eg Victorian houses or Roman villas). However, the
primitives of shape grammars are purely geometrical which
restricts their descriptive power. Substantial progress was
achieved after the graph grammars were introduced and
developed. Graphs are capable to bear much more informa­
tion than linear strings or shapes. Hence, their applicability
for CAD-systems was immediately appreciated [7].

In 1997-99 the formalism developed by E. Grabska
was adopted for developing several intelligent design-as­
sisting tools [8, 9]. In the present paper we report further

A. Borkowski, et a/ I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX, No 2, 132-138 133

extension of that model. It turned out that by introducing an
additional graph one can conveniently reason about the func­
tionality of the designed object. Similar approach has been
proposed in [10]. The advantage of this methodology lies
in allowing the designer to distract himself from details and
to consider the functionality of the designed object, the con­
straints and the requirements to be met and the possible ways
of selecting optimum alternatives.

Our aim is to develop prototype software that will as­
sist an architect in the design of the layout of buildings.
Contrary to conventional expert systems proposed previ­
ously, like [11], our system can be seen as a conceptual pre­
processor for an architecture-oriented CAD tool. It allows
the user to specify functional requirements for a building in
terms of graphs, generates a proper graph grammar and trans­
lates the result into the input file for the commercial CAD­
system ArchiCAD [12]. The architect obtains a draft layout
of the building that can be visualised and presented to the
investor. Further detailed design is performed in a usual way
in the environment supplied by the CAD tool. The previous
steps in developing the present system were reported in [13].

2. Graphs and graph transformations

In order to reason automatically on graphs one needs
a proper tool called graph rewrite system. Several sys­
tems of that kind are available at present, mostly as non­
commercial software. Due to a long-term cooperation
with the RWTH Aachen, we have access to the system
PROGRES developed at that university [14]. A compre­
hensive description of PROGRES as knowledge repre­
sentation tool for conceptual design can be found in [15].
In the sequel we restrict ourselves to informal explana­
tion of the graph-oriented methodology.

Consider a simple graph shown in Fig I.

Fig 1. Attributed graph

The nodes of this graph carry labels and attributes.
In the UML-notation [16] they correspond to the descrip­
tions of classes. The edges are also labelled and attrib­
uted. They describe relations between particular classes
of objects.

The PROGRES system can be used as a specifica­
tion language. A PROGRES specification consists of two
parts: the schema part and the transaction part. The first
one captures static knowledge about a considered world.
Here abstract classes like PARCEL, BUILDING or
ROOM are defined together with specific node types like
SHOP or KITCHEN.

Types of edges are defined for each abstract class
separately. They describe relations like contains,

is_ adjacent _to or is_ accessible Jrom that are applicable
to any type of object belonging to the given class.

The transaction part captures dynamic knowledge.
Within a transaction several productions and/or tests can
occur. A production transforms graph A into graph B:

A~B.

Here A is the left hand side and B is the right hand
side of the production. When the production is performed,
PROGRES searches in the transformed graph for all sub­
graphs that match A and replaces them by B.

A test in PROGRES specification allows us to check
whether certain requirements are fulfilled. Productions
and tests can be combined into transactions having pre­
scribed order of execution. Thus complex applications
can be built using this graph rewrite system.

The experience gained so far with ordinary graphs
manipulated by PROGRES showed that such single-level
knowledge representation is insufficient in many appli­
cations. Hence, we intend to employ in the future a hier­
archical graph model proposed in [3]. According to this
model, the hierarchical graph is a pair (V. E) where V is
a set of nodes v = (i, B, C) and E is a set of edges con­
necting those nodes. The i-th node has a set of bonds B
and a set of children C.

, ,------------ --cevef o?
,' A b ,'

' a
.t I ~ \

," c c ,' ' \

'
'

L~--------------f----+--J~.t

----- ~ --------~-----~------
,'' /,' D '-Cv~I ~./

, I ' ' "
' I E1

'
I 'I

' '' ,' F ,~.' , ------~r L------------------ -'

Fig 2. Hierarchical graph

As shown in Fig 2, nodes of the hierarchical graph
represent subgraphs that can be nested to a certain depth.
Such model is much more expressive than an ordinary
graph. On the other hand, it requires more evolved defi­
nitions of productions and tests. At present PROGRESS
does not work for hierarchical graphs. A new graph re­
write tool suitable for such graphs is under development.

3. Functionality analysis

Prior to designing any kind of artefact one has to
know exactly what is intended for this object. In archi­
tecture this primacy of function over form was stated by
the Bauhaus school in Weimar (1919-34) and later fol­
lowed by many famous designers like L. Mies van der
Rohe.

Functional requirements for a new building are usu­
ally determined by interviewing the investor. Question­
naires and forms used for this purpose can be found, for
example, in [17]. The Unified Modelling Language pro-

134 A. Borkowski, eta/ I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX, No 2, /32-/38

a)

b)

c)

(

dependency

C dependenc1•

Driver \ - PetroiPump 't.)
pay (c:CashDesk) \ pumpFuel (d:Driver) \

\ count()
\ I

dependen<:\'J\)
\ I

Clerk -4 CashDesk

Driver

association

Shop

getFuel (p:PetroiPump)
calculatePayment()

Air Pump

pump (d:Driver)

+-- c_ :p~l:/:1'_--,
cependenc:v l

CashDesk ;:::. ~ Driver _I

calculatePayment (d:Driver) (-.buy (s:Shop)
\pay (c:CashDesk)

Clerk
dependency

Fig 3. Use cases for petrol station: a) getting fuel; b) check­
ing pressure in tyres; c) buying light bulb

vides use case diagrams as a convenient tool for captur­
ing functions of the designed object.

Let us take a refuelling station as an object by which
we will explain the proposed methodology. Fig 3 shows
three typical situations that may occur at such a station:
the user fills the tank of his car with fuel, adjusts the air
pressure in the tyres or buys a spare part. The use case
diagram shows the actors (the driver, the clerk), the ob­
jects (the petrol pump, the air pump, the cash desk) and
the relations between them.

Based upon the use cases the designer can deter­
mine the list of functions that the considered object has
to deliver. The refuelling station, taken as an example,
should allow the customer to acquire fuel, to perform
small maintenance of the vehicle (cleaning, checking air
pressure) and to buy newspapers, food and spare parts.

The results of this analysis can be depicted in func­
tionality graphs. The nodes of such graphs bear the names
of particular functions, whereas the edges carry the la­
bels of relations that exist between them. Fig 4 shows
one functionality graph for the refuelling station. It deals
with its main function - selling petrol - and includes the
subordinate functions coming into play. The edges of this

:getFuel :pay
I I

I

: goToPetro/Pumfi;
Go ToCashDesk:

Fig 4. Function getFue/

graph depict the relation followed_by that describes the
sequence of events in time.

Similar graphs can be built for the remaining func­
tions of the refuelling station. The UML provides a rich
variety of visualisation formats. For example, the
synchronisation of events in time can be analysed by
means of Petri nets, Gantt diagrams or Pert charts. We
restrict ourselves to rather simple function graphs in or­
der to keep the system user friendly.

4. Mapping functions on objects

After the functionality analysis has been completed,
the designer is in the position to think about the layout
of the object. Usually the process of spatial arrangement
goes in a top-down manner: firstly a parcel is selected
and acquired for the object, then the object is situated
on the parcel and finally an internal layout of the object
is determined. The management of land is currently done
within the format of Geographic Information System
(GIS). Graphs and graph transformations can be very
useful when solving urban design problems. The devel­
opment of software tools for that purpose is under way
in our research group. In the present paper we restrict
ourselves to the problem of finding internal layout of
the object situated already on the parcel.

The top-level nodes of functionality graphs corre­
spond to the main functions required by the object speci­
fication. It is reasonable to begin the layout design by
dividing the entire area of the object into zones devoted
to the main functions. In the case of refuelling station
these would be the RefuellingZone, the SeljServiceZone
and the CustomerServiceZone (Fig 5 a).

The relations between those zones are twofold: on
the one hand each of them should be accessible, on the
other hand the zones should be spatially separated (mainly
for fire security reasons). Let us introduce an Communi­
cationZone between each pair of the main function zones.
This leads to the simpler graph shown in Fig 5 b. The
edges of this graph depict accessibility relations.

Having set the main zones, the user starts thinking
about the components of the designed object that bear
subordinate functions. In the present prototype this is ac­
complished by means of a manually drawn URL class
diagram. In the future this part of planning will be per­
formed by means of hierarchical graph.

A. Borkowski, et a/ I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX No 2. 132-138 135

a)

b)

RefuellingZone

accessihlility

separability

SeljServiceZone

accessihlility

separability

CustomerServiceZone

Refuel/ingZone

accessihlility

CommunicationZone

accessiblility

SeljServiceZone

accessiblility

CommunicationZone

accessihli/ity

CustomerServiceZone

Fig 5. Main zones of refuelling station: a) general require­
ments; b) spatial separation

A unit occupying certain region of the zone is called
Compartment. In particular, this can be a room of the
building but we treat open spaces, like access roads or
parking lots, as compartments as well. Usually, a com­
partment carries a single function and thus belongs to a
single zone. Multifunctional compartments are also pos­
sible. They lead to partial overlapping of zones on the
floor layout. The present software prototype deals with
single-floor objects only. The later releases will allow
the design of multi-storey buildings.

Let us take our illustrative example. Fig 6 shows
the compartments present at the refuelling station. The
user has decided that there should be three Petro/Pumps
in the RefuellingZone. The CustomerService zone should
contain CashDesk, Shop, StoreRoom and WC. The
compartments belonging to the SeljService zone are Com­
pressor, VacuumC/eaner and ParkingLot. The Commu­
nication zone consists of a single AccessRoad compart­
ment.

In our opinion, a fully automatic assignment of func­
tions to the compartments is neither rational nor neces­
sary. The software developed by us allows the designer
to reason about the decomposition of the building into
functional units prior to the detailed design phase. Graph
editors supplying pictures like Fig 5 or Fig 6 enable the
user to gain clear understanding of the functionality re­
quirements and their fulfilment in the designed object.
They facilitate also the dialog between the investor and
the architect.

5. Positioning zones and compartments

After having considered the general layout of the
object, the designer needs to assign the positions and
the dimensions of particular compartments. This work is
tedious and even a semi-automatic procedure would en­
hance the efficiency of the design process.

We developed a software module called
ObjectAdjuster that fulfils this task. The main assump-

~
Parking

Air _pump

SeljServiceZone Vacuum_cleaner

/ Petrol _pump_/

Refuel/ingZone Petrol _pump_ 2

~ Petro/_pump_3

Access_road_l CommunicationZone ~

Access_road_:Z

/ Cash_desk

" CustomerServiceZone~ Shop ;::

~

~ Store_room ~ ·:::
we

Fig 6. Decomposition graph: zones and compartments

tion is that the outer contour of the designed object is
given. Additionally, each object that has to be placed
inside the contour possesses the following attributes:

0 priority - an integer number belonging to the inter­
val [0. 10] that describes relative importance of this
object;

0 min_ area, max_ area - a pair of real numbers de­
fining the interval of admissible values for the area
of the object;

0 constraints - a link to the rule base containing other
restrictions that should be satisfied by the object.

The main idea of the ObjectAdjuster is to display
the contour of the designed object and to ask the user to
position approximately the objects that should fit inside
the contour. Knowing the attributes of each object, the
module tries to find the best fit and displays the result.
Usually the user has to correct manually this layout. He
is also encouraged to call a Checker module before the
result is accepted.

The Checker has access to the graphs describing
functionality of the object, as well as to the rule base
containing the domain knowledge (the code of practice
rules, the regional regulations, the internal rules of the
design bureau, etc). Based on this knowledge, the mod­
ule performs the check and informs the user whether the
proposed layout conforms to all necessary requirements.
If any violation is detected, a new loop of the design
refinement is opened.

Let us illustrate the procedure by the example of
petrol station. The first stage is the positioning of zones
on the parcel. The contour of the parcel is shown by the
double line in Fig 7 a. The icons of zones are visible on
the screen. Dragging and dropping them inside the con­
tour by the mouse the user selects approximate positions
of zones (Fig 7 a). The dash line rectangles indicate the
minimal area of each zone. In general case, these rect-

136

a)

A. Borkowski, et al I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX No 2, 132-138

a)

b)

i------
! Self
:Service
: Zone
I
.. _____ _

Self
Service
Zone

-~--

0
m
m
uZ
no
; n
c e
a 1
t r·-------.
i 1 Refuelling:
0 : Zone 1

_n ___ ~-------J

c
R 0

m e
m ,
u u n
; e
c I
B I
t i ;
0 n
n g
z z
0 0
n n e
1 e

~
m
m
u
n
;
c
B
t
;
0
n
z
0
n
e
2

·c··-.
0
m
m
u z
n o
1 n
c e
a 2
t
;
0

... !! •••
r·c-u'SiO',;;;;·
: Service
: Zone
'-----------·

Customer
Service
Zone

Fig 7. Adjusting zones: a) rough positioning; b) final
positioning

angles will not necessary be disjoint as shown in the
figure: they may overlap and even cross the contour.

Next the user pushes the adjust button and the mod­
ule tries to fill the contour. If the maximal area has not
been specified for a particular zone, then it is determined
by the program as a part of the total area corresponding
to the priority of the zone. Hence, the priorities play
double role: they determine the expansion sequence of
zones and, if necessary, allow the adjuster to evaluate
the maximum area for each zone. The final result of zone
adjustment is shown in Fig 7 b.

Now the designer may begin the second stage -
adjusting compartments inside zones. It is done similarly
to the first stage. The only difference is a bigger number
of objects that need to be positioned. According to Fig 6,
these are: the petrol pumps 1 to 3, the air compressor,
the vacuum cleaner, the parking lot, the shop, the cash
desk, the storeroom, the rest room and the two access
roads.

Fig 8 a shows the approximate positions chosen by
the user. The templates of compartments are displayed
as dashed rectangles, whereas solid lines mark the con­
tours of zones. Note that, contrary to the contour of par­
cel, they can be adjusted when necessary. Pushing the
adjust button first time leads to the layout depicted in
Fig 8 b. All area available was consumed but there is a
fault in the accessibility of the storeroom: it should be
accessible from the shop (compare relevant relation in

b)

~--··-····:
!Parking!
~--------.1

[":4i;"!
! pump i
\.

I
I
I
I
I

Parking :
I
I
I
I
I

-------------~
I

Air :
pump 1

I
I
I

Vacuum I
cleaner I

I
I
I

A
c
c
e
s
5
r
0
a
d
1

: p p :
I e U I

: t m:
I r I
I 0 PI I
I I I

~------1
I p I

: e P :
I t U I

: ,m:
I 0 p I
I I 2 I

~------1
: p p :
I I U I

: :m :
lo§l
I I I
I I

"'""""
A
c
c
e
5
s
r
0
I
d
2

~--···

A
c
c
e
s
s
r
0
a
d
2

I
I
I

: , rs;~-,~·-;
1: Cash : ! room :
:: desk ! ~ :
.......... : [~:~:!

I
I

:·--------··:
i Shop l
: : . .
...................... J

: Store
I Cash room
1 desk i
: ! we ~

Shop

Fig 8. Adjusting compartments: a) rough positioning;
b) intermediate positioning

Fig 6). The Checker discloses this inconsistency and the
user obtains a proper error message. He must return to
the previous step and move the we rectangle slightly to
the right.

This allows the automatic adjuster to connect the
StoreRoom with the Shop. After minor adjustments by
hand the final layout shown in Fig 9 is obtained.

The final product of the ObjectAdjuster is the sketch
of layout. It is accompanied by the data like the areas of
compartments, their priorities and functions. In order to
perform a detailed design the architect needs to transfer
this information into a commercial CAD tool. The next
section deals with this problem.

pp
eu

Parking
:m Cash Store we
0~ desk room

A ~ A
c

pp
c

c c
e eu e
s tm s

Air s ~~
s

pump r r
0 I 0
a t-- a Shop
d pp d

Vacuum 1 'u 2
tm

cleaner fg

Fig 9. Adjusting compartments: final result

A. Borkowski, et at I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX No 2, 132-138 137

6. Linking to ArchiCAD and visualising

In this section we describe a XML-based mecha­
nism for translating results obtained by the GraCAD into
the ArchiCAD - one of several professional CAD-sys­
tems available at present. XML is a good choice as it is
a standard data representation format and it can be eas­
ily adopted for different environments. XML documents
are produced for communication between ArchiCAD and
other applications in two ways. For graph visualisation
purposes, the XML document contains all information
about a graph. For graph updating, another XML file
contains information about changes that have been made
to elements in ArchiCAD or transformations that should
be made on a graph.

Graphs can be easily represented by XML. It suf­
fices to define a collection of tags representing nodes,
edges and transformations of a graph, as well as basic
construction elements such as WALL, DOOR and WIN­
DOW that are present in the CAD-system. We need them
in order to visualise adjacency and accessibility relations.
A tag for node or construction element contains a list of
attributes-value pairs. Typically, such list includes the
identifier, the label, the type and several geometrical at­
tributes. A tag for edge has a list of all nodes linked by
that edge. A tag for graph transformation includes a list
of subgraphs which the transformation should apply to.
A part of the XML-file describing functionality graph is
given in Fig I 0.

In the ArchiCad environment the user can either
visualise the decomposition graph or the layout itself. In
the first case, the user can modify the graph by adding
new node, deleting existing node, changing geometrical
attributes of a node and then
start the adjustment process. The
XML document describing the
graph is updated automatically
after each change of the graph.
In the second case, the XML
document contains the descrip-
tion of the final project.

In the ArchiCAD environ­
ment, XML documents are inter­
preted by a DLL-module - an
add-on implemented in C and
linked to the system. This add­
on defines a class of objects
called COMPARTMENT that is
able to visualise a node of the
decomposition graph. The object
COMPARTMENT is linked to
the basic elements of the
ArchiCAD library of primitives:
walls, windows, doors, etc.
COMPARTMENT objects can be
created, moved, changed or de-

<Zones>
<Zone id='RefuellingZonel'

label='RefuellingZonel'
type='O'/><Zone id='SelfServiceZonel'
label='SelfServiceZonel'
type='l'/
<Zone id='CustomerServiceZonel'
label='CustumerServiceZonel'
type='2'/>

<Zone id='CommunicationZonel'
label='Communicationzonel' type='3'/>

<Zone id='CommunicationZone2'
label='Communicationzone2' type='3'/>
</Zones>

<Relations>
<ZoneAccess

zonel='RefuellingZonel'
zone2='CommunicationZonel' />

<ZoneAccess
zonel='SelfServiceZonel'
label='CommunicationZonel' />

<ZoneAccess
zonel='RefuellingZonel'
zone2='CommunicationZone2' />

<ZoneAccess
zonel='CustumerServiceZonel'
zone2='CommunicationZone2' />
<!Relations>

Fig 10. XML tags of the functionality graph

leted. After each operation of
this kind the add-on generates Fig II. Petrol station - final solution

138 A. Borkowski, et a/ I JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT- 2003, Vol IX. No 2, 132-/38

the XML document, translates it into an internal format
of the ArchiCAD and allows the user to visualise the
project. Fig II presents the final solution for petrol sta­
tion.

The main obstacle that has to be overcome when
connecting graph-oriented software to commercial CAD­
systems is the discrepancy in the granularity of knowl­
edge representation. Most CAD-systems work with primi­
tives that are far lower in abstraction than functionality
graphs, decomposition graphs or UML-diagrams. In par­
ticular, the ArchiCAD uses WALL as the basic primitive.
Placing two adjacent rooms on the layout according to
the graph-oriented description would result in duplicate
walls in the ArchiCAD. Therefore, a special method was
implemented in the add-on. It merges a pair of duplicate
walls into a single one and, moreover, allows us to in­
troduce virtual walls, like those separating
CommunicationZone from SelfServiceZone,
RefuellingZone and CustomerServiceZone.

7. Conclusions

Graph-based knowledge model is expressive enough
for the floor layout problem in Civil Engineering. Its
applicability in other areas, like Machine Building or
Electrical Engineering, seems to be worth consideration.
Graph rewrite tools available today allow us to develop
flexible design assistants. Thus it seems that the barrier
of "frozen knowledge" precluding wider applicability of
conventional expert systems has been overcome. Further
research is needed in the area of hierarchical graphs in
order to exploit fully their potential capabilities.

References

I. Coyne, R. D.; Rosenman, M. A.; Radford, A.D.;
Balachandran, M.; Gero, J. S. Knowledge-based design
systems, Addison-Wesley, Reading, 1990.

2. Grabska, E. Graphs and designing. In: Schneider H. J. and
Ehrig H., editors. Graph transformations in computer sci­
ence, LNCS 776, Springer-Verlag, Berlin, 1994, p. 188-
203.

3. Grabska, E.; Palacz, W.; Szyngiera, P. Hierarchical graphs
in creative design, Machine GRAPHICS & VISION, Vol 9,
2000, p. 115-122.

4. Corradini, A.; Ehrig, H.; Kreowski, H.-J.; Rozenberg, G.
(Eds.). Proceedings of the I 51 international conference on

graph transformations (ICGT'02), October 2002, Barcelona,
Spain.

5. Chomsky, N. Aspects of theory of syntax, MIT Press, Cam­
bridge, 1965.

6. Stiny, G. Introduction to shape and shape grammars,
Environment and planning B. Planning and design, 7,
1980, p. 343-351.

7. Gottler, H.; Gunther, J.; Nieskens, G. Use graph grammars
to design CAD-systems! In: Rozenberg G., editor, Proc.
4th International workshop on graph grammars and their
applications to computer science, LNCS 532, Springer­
Verlag, Berlin, 1991, p. 396-410.

8. Borkowski, A.; Grabska, E. Converting function into ob­
ject. In: Proceedings of the 5th EG-SEA-AI workshop on
AI in structural engineering, ed by I. Smith, Ascona, July
1997.

9. Borkowski, A.; Grabska, E.; Hliniak, G. Function-struc­
ture computer-aided design model. Machine GRAPHICS
& VISION, 8 (1999), p. 367-383.

I 0. Cole, E. L. Jr. Functional analysis: a system conceptual
design tool. IEEE Trans. on aerospace & electronic sys­
tems, 34 (2), 1998, p. 354-365.

II. Flemming, U.; Coyone, R.; Gavin, T.; Rychter, M. A gen­
erative expert system for the design of building layouts -
version 2. In: B. Topping, ed., Artificial intelligence in
engineering design, computational mechanics publications,
Southampton. 1999, p. 445-464.

12. ArchiCAD 6.5 Reference guide, Graphisoft, Budapest,
2000.

13. Szuba, J.; Grabska, E.; Borkowski, A. Graph visualisation
in ArchiCAD. In: Nag! M., Schurr A., Munch M., editors.
Application of graph transformations with industrial rel­
evance, LNCS 1779, Springer-Verlag, Berlin, 2000, p. 241-
246.

14. Schurr, A.; Winter, A.; Zundorf, A. Graph grammar engi­
neering with PROGRESS. In: Schafer W., Botella P., edi­
tor. Proc. 5th European software engineering conference
(ESEC'95), LNCS 989, Springer-Verlag, Berlin, 1995,
p. 219-234.

15. Kraft, B.; Meyer, 0.; Nag!, M. Graph technology support
for conceptual design in civil engineering. In: Schnellen­
bach-Heldt M. (Ed.). Proc. of 91h Int. Workshop on intel­
ligent computing in engineering, Darmstadt, August 2002.

16. Booch, G.; Rumbaugh, J.; Jacobson, I. The unified model­
ing language user guide. Addison Wesley Longman, Read­
ing, 1999.

17. Neufert, E. Bauentwurfslehre. Vieweg & Sohn, Braun­
schweig-Wiesbaden, 1992.

