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Abstract. Knowledge-based tools assisting the designer in engineering represent further improvement of expert systems. 
The present paper shows how such software can be developed in the particular domain of floor layout design for 
buildings. The recently developed paradigm of hierarchical graphs is taken as the knowledge representation scheme. The 
user of the system is encouraged to undertake the search for rational solution at two levels. First, an analysis of 
functionality requirements for the designed object is performed. This results in a graph capturing main functions and 
relations between them. Further, this graph is mapped onto another graph depicting the floor layout in terms of areas 
and rooms. Both graphs produced by the user are checked against the constraints resulting from the requirements of the 
relevant code of practice. The final result is converted into the format accepted by a commercial CAD-tool in order to 
proceed with the detailed design. 
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1. Introduction 

Following up the popularity of MYCIN numerous 
expert systems were developed in the area of engineer­
ing design [1]. Unfortunately, their acceptance by prac­
titioners was very low. The main cause of that was too 
stiff nature of the first generation expert systems. They 
forced the designer to follow a fixed path preventing him/ 
her from coming up with innovative solutions. Thus the 
attempt to help designer by means of computer-based 
"experts" yielded similar negative effect as the attempt 
to standardise architecture by promoting the so-called 
"typical projects". 

It is commonly agreed nowadays that knowledge­
based design assistants who replaced expert systems 
should stimulate search for innovative solutions. This can 
be achieved by encouraging the designer to perform thor­
ough conceptual analysis of the design task before plung­
ing into details as well as by relieving him/her from the 
tedious check of the code of practice compliance of the 
project. The aim of the present paper is to demonstrate 
that both goals can be achieved within the frame of graph­
oriented knowledge representation. 

The theoretical framework of this representation was 
laid out by E. Grabska [2]. She introduced the composi­
tion graphs (CP-graphs), the realisation schemes and, 
later, the new model of hierarchical graphs [3]. This 
methodology belongs to the theory of graphs and graph 

transformations - a domain in Computer Science that 
undergoes vivid expansion in recent years (compare, eg, 
[4]). Graph grammars that constitute an important part 
of this theory can be seen as part of the linguistic ap­
proach to world modelling proposed by N. Chomsky in 
the 1970s [5). The core idea in this methodology is to 
treat certain primitives as letters of an alphabet and to 
interpret more complex objects and assemblies as words 
or sentences of a language based upon the alphabet. Rules 
governing a generation of words and sentences define a 
grammar of the concerned language. In terms of engi­
neering design such a grammar generates a class of ob­
jects that are considered plausible. Thus, grammars pro­
vide very natural knowledge representation formalism for 
computer-based tools that should aid the design. 

Since G. Stiny [6] developed the shape grammars many 
researchers showed how such grammars allow the architect 
to capture essential features of a certain style of the build­
ing (eg Victorian houses or Roman villas). However, the 
primitives of shape grammars are purely geometrical which 
restricts their descriptive power. Substantial progress was 
achieved after the graph grammars were introduced and 
developed. Graphs are capable to bear much more informa­
tion than linear strings or shapes. Hence, their applicability 
for CAD-systems was immediately appreciated [7]. 

In 1997-99 the formalism developed by E. Grabska 
was adopted for developing several intelligent design-as­
sisting tools [8, 9]. In the present paper we report further 
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extension of that model. It turned out that by introducing an 
additional graph one can conveniently reason about the func­
tionality of the designed object. Similar approach has been 
proposed in [10]. The advantage of this methodology lies 
in allowing the designer to distract himself from details and 
to consider the functionality of the designed object, the con­
straints and the requirements to be met and the possible ways 
of selecting optimum alternatives. 

Our aim is to develop prototype software that will as­
sist an architect in the design of the layout of buildings. 
Contrary to conventional expert systems proposed previ­
ously, like [ 11 ], our system can be seen as a conceptual pre­
processor for an architecture-oriented CAD tool. It allows 
the user to specify functional requirements for a building in 
terms of graphs, generates a proper graph grammar and trans­
lates the result into the input file for the commercial CAD­
system ArchiCAD [12]. The architect obtains a draft layout 
of the building that can be visualised and presented to the 
investor. Further detailed design is performed in a usual way 
in the environment supplied by the CAD tool. The previous 
steps in developing the present system were reported in [ 13]. 

2. Graphs and graph transformations 

In order to reason automatically on graphs one needs 
a proper tool called graph rewrite system. Several sys­
tems of that kind are available at present, mostly as non­
commercial software. Due to a long-term cooperation 
with the RWTH Aachen, we have access to the system 
PROGRES developed at that university [14]. A compre­
hensive description of PROGRES as knowledge repre­
sentation tool for conceptual design can be found in [15]. 
In the sequel we restrict ourselves to informal explana­
tion of the graph-oriented methodology. 

Consider a simple graph shown in Fig I. 

Fig 1. Attributed graph 

The nodes of this graph carry labels and attributes. 
In the UML-notation [ 16] they correspond to the descrip­
tions of classes. The edges are also labelled and attrib­
uted. They describe relations between particular classes 
of objects. 

The PROGRES system can be used as a specifica­
tion language. A PROGRES specification consists of two 
parts: the schema part and the transaction part. The first 
one captures static knowledge about a considered world. 
Here abstract classes like PARCEL, BUILDING or 
ROOM are defined together with specific node types like 
SHOP or KITCHEN. 

Types of edges are defined for each abstract class 
separately. They describe relations like contains, 

is_ adjacent _to or is_ accessible Jrom that are applicable 
to any type of object belonging to the given class. 

The transaction part captures dynamic knowledge. 
Within a transaction several productions and/or tests can 
occur. A production transforms graph A into graph B: 

A~B. 

Here A is the left hand side and B is the right hand 
side of the production. When the production is performed, 
PROGRES searches in the transformed graph for all sub­
graphs that match A and replaces them by B. 

A test in PROGRES specification allows us to check 
whether certain requirements are fulfilled. Productions 
and tests can be combined into transactions having pre­
scribed order of execution. Thus complex applications 
can be built using this graph rewrite system. 

The experience gained so far with ordinary graphs 
manipulated by PROGRES showed that such single-level 
knowledge representation is insufficient in many appli­
cations. Hence, we intend to employ in the future a hier­
archical graph model proposed in [3]. According to this 
model, the hierarchical graph is a pair ( V. E) where V is 
a set of nodes v = (i, B, C) and E is a set of edges con­
necting those nodes. The i-th node has a set of bonds B 
and a set of children C. 
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Fig 2. Hierarchical graph 

As shown in Fig 2, nodes of the hierarchical graph 
represent subgraphs that can be nested to a certain depth. 
Such model is much more expressive than an ordinary 
graph. On the other hand, it requires more evolved defi­
nitions of productions and tests. At present PROGRESS 
does not work for hierarchical graphs. A new graph re­
write tool suitable for such graphs is under development. 

3. Functionality analysis 

Prior to designing any kind of artefact one has to 
know exactly what is intended for this object. In archi­
tecture this primacy of function over form was stated by 
the Bauhaus school in Weimar (1919-34) and later fol­
lowed by many famous designers like L. Mies van der 
Rohe. 

Functional requirements for a new building are usu­
ally determined by interviewing the investor. Question­
naires and forms used for this purpose can be found, for 
example, in [ 17]. The Unified Modelling Language pro-
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Fig 3. Use cases for petrol station: a) getting fuel; b) check­
ing pressure in tyres; c) buying light bulb 

vides use case diagrams as a convenient tool for captur­
ing functions of the designed object. 

Let us take a refuelling station as an object by which 
we will explain the proposed methodology. Fig 3 shows 
three typical situations that may occur at such a station: 
the user fills the tank of his car with fuel, adjusts the air 
pressure in the tyres or buys a spare part. The use case 
diagram shows the actors (the driver, the clerk), the ob­
jects (the petrol pump, the air pump, the cash desk) and 
the relations between them. 

Based upon the use cases the designer can deter­
mine the list of functions that the considered object has 
to deliver. The refuelling station, taken as an example, 
should allow the customer to acquire fuel, to perform 
small maintenance of the vehicle (cleaning, checking air 
pressure) and to buy newspapers, food and spare parts. 

The results of this analysis can be depicted in func­
tionality graphs. The nodes of such graphs bear the names 
of particular functions, whereas the edges carry the la­
bels of relations that exist between them. Fig 4 shows 
one functionality graph for the refuelling station. It deals 
with its main function - selling petrol - and includes the 
subordinate functions coming into play. The edges of this 

:getFuel :pay 
I I 

I 

: goToPetro/Pumfi; 
Go ToCashDesk: 

Fig 4. Function getFue/ 

graph depict the relation followed_by that describes the 
sequence of events in time. 

Similar graphs can be built for the remaining func­
tions of the refuelling station. The UML provides a rich 
variety of visualisation formats. For example, the 
synchronisation of events in time can be analysed by 
means of Petri nets, Gantt diagrams or Pert charts. We 
restrict ourselves to rather simple function graphs in or­
der to keep the system user friendly. 

4. Mapping functions on objects 

After the functionality analysis has been completed, 
the designer is in the position to think about the layout 
of the object. Usually the process of spatial arrangement 
goes in a top-down manner: firstly a parcel is selected 
and acquired for the object, then the object is situated 
on the parcel and finally an internal layout of the object 
is determined. The management of land is currently done 
within the format of Geographic Information System 
(GIS). Graphs and graph transformations can be very 
useful when solving urban design problems. The devel­
opment of software tools for that purpose is under way 
in our research group. In the present paper we restrict 
ourselves to the problem of finding internal layout of 
the object situated already on the parcel. 

The top-level nodes of functionality graphs corre­
spond to the main functions required by the object speci­
fication. It is reasonable to begin the layout design by 
dividing the entire area of the object into zones devoted 
to the main functions. In the case of refuelling station 
these would be the RefuellingZone, the SeljServiceZone 
and the CustomerServiceZone (Fig 5 a). 

The relations between those zones are twofold: on 
the one hand each of them should be accessible, on the 
other hand the zones should be spatially separated (mainly 
for fire security reasons). Let us introduce an Communi­
cationZone between each pair of the main function zones. 
This leads to the simpler graph shown in Fig 5 b. The 
edges of this graph depict accessibility relations. 

Having set the main zones, the user starts thinking 
about the components of the designed object that bear 
subordinate functions. In the present prototype this is ac­
complished by means of a manually drawn URL class 
diagram. In the future this part of planning will be per­
formed by means of hierarchical graph. 
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Fig 5. Main zones of refuelling station: a) general require­
ments; b) spatial separation 

A unit occupying certain region of the zone is called 
Compartment. In particular, this can be a room of the 
building but we treat open spaces, like access roads or 
parking lots, as compartments as well. Usually, a com­
partment carries a single function and thus belongs to a 
single zone. Multifunctional compartments are also pos­
sible. They lead to partial overlapping of zones on the 
floor layout. The present software prototype deals with 
single-floor objects only. The later releases will allow 
the design of multi-storey buildings. 

Let us take our illustrative example. Fig 6 shows 
the compartments present at the refuelling station. The 
user has decided that there should be three Petro/Pumps 
in the RefuellingZone. The CustomerService zone should 
contain CashDesk, Shop, StoreRoom and WC. The 
compartments belonging to the SeljService zone are Com­
pressor, VacuumC/eaner and ParkingLot. The Commu­
nication zone consists of a single AccessRoad compart­
ment. 

In our opinion, a fully automatic assignment of func­
tions to the compartments is neither rational nor neces­
sary. The software developed by us allows the designer 
to reason about the decomposition of the building into 
functional units prior to the detailed design phase. Graph 
editors supplying pictures like Fig 5 or Fig 6 enable the 
user to gain clear understanding of the functionality re­
quirements and their fulfilment in the designed object. 
They facilitate also the dialog between the investor and 
the architect. 

5. Positioning zones and compartments 

After having considered the general layout of the 
object, the designer needs to assign the positions and 
the dimensions of particular compartments. This work is 
tedious and even a semi-automatic procedure would en­
hance the efficiency of the design process. 

We developed a software module called 
ObjectAdjuster that fulfils this task. The main assump-
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we 

Fig 6. Decomposition graph: zones and compartments 

tion is that the outer contour of the designed object is 
given. Additionally, each object that has to be placed 
inside the contour possesses the following attributes: 

0 priority - an integer number belonging to the inter­
val [0. 10] that describes relative importance of this 
object; 

0 min_ area, max_ area - a pair of real numbers de­
fining the interval of admissible values for the area 
of the object; 

0 constraints - a link to the rule base containing other 
restrictions that should be satisfied by the object. 

The main idea of the ObjectAdjuster is to display 
the contour of the designed object and to ask the user to 
position approximately the objects that should fit inside 
the contour. Knowing the attributes of each object, the 
module tries to find the best fit and displays the result. 
Usually the user has to correct manually this layout. He 
is also encouraged to call a Checker module before the 
result is accepted. 

The Checker has access to the graphs describing 
functionality of the object, as well as to the rule base 
containing the domain knowledge (the code of practice 
rules, the regional regulations, the internal rules of the 
design bureau, etc). Based on this knowledge, the mod­
ule performs the check and informs the user whether the 
proposed layout conforms to all necessary requirements. 
If any violation is detected, a new loop of the design 
refinement is opened. 

Let us illustrate the procedure by the example of 
petrol station. The first stage is the positioning of zones 
on the parcel. The contour of the parcel is shown by the 
double line in Fig 7 a. The icons of zones are visible on 
the screen. Dragging and dropping them inside the con­
tour by the mouse the user selects approximate positions 
of zones (Fig 7 a). The dash line rectangles indicate the 
minimal area of each zone. In general case, these rect-
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Fig 7. Adjusting zones: a) rough positioning; b) final 
positioning 

angles will not necessary be disjoint as shown in the 
figure: they may overlap and even cross the contour. 

Next the user pushes the adjust button and the mod­
ule tries to fill the contour. If the maximal area has not 
been specified for a particular zone, then it is determined 
by the program as a part of the total area corresponding 
to the priority of the zone. Hence, the priorities play 
double role: they determine the expansion sequence of 
zones and, if necessary, allow the adjuster to evaluate 
the maximum area for each zone. The final result of zone 
adjustment is shown in Fig 7 b. 

Now the designer may begin the second stage -
adjusting compartments inside zones. It is done similarly 
to the first stage. The only difference is a bigger number 
of objects that need to be positioned. According to Fig 6, 
these are: the petrol pumps 1 to 3, the air compressor, 
the vacuum cleaner, the parking lot, the shop, the cash 
desk, the storeroom, the rest room and the two access 
roads. 

Fig 8 a shows the approximate positions chosen by 
the user. The templates of compartments are displayed 
as dashed rectangles, whereas solid lines mark the con­
tours of zones. Note that, contrary to the contour of par­
cel, they can be adjusted when necessary. Pushing the 
adjust button first time leads to the layout depicted in 
Fig 8 b. All area available was consumed but there is a 
fault in the accessibility of the storeroom: it should be 
accessible from the shop (compare relevant relation in 
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Fig 8. Adjusting compartments: a) rough positioning; 
b) intermediate positioning 

Fig 6). The Checker discloses this inconsistency and the 
user obtains a proper error message. He must return to 
the previous step and move the we rectangle slightly to 
the right. 

This allows the automatic adjuster to connect the 
StoreRoom with the Shop. After minor adjustments by 
hand the final layout shown in Fig 9 is obtained. 

The final product of the ObjectAdjuster is the sketch 
of layout. It is accompanied by the data like the areas of 
compartments, their priorities and functions. In order to 
perform a detailed design the architect needs to transfer 
this information into a commercial CAD tool. The next 
section deals with this problem. 
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Fig 9. Adjusting compartments: final result 
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6. Linking to ArchiCAD and visualising 

In this section we describe a XML-based mecha­
nism for translating results obtained by the GraCAD into 
the ArchiCAD - one of several professional CAD-sys­
tems available at present. XML is a good choice as it is 
a standard data representation format and it can be eas­
ily adopted for different environments. XML documents 
are produced for communication between ArchiCAD and 
other applications in two ways. For graph visualisation 
purposes, the XML document contains all information 
about a graph. For graph updating, another XML file 
contains information about changes that have been made 
to elements in ArchiCAD or transformations that should 
be made on a graph. 

Graphs can be easily represented by XML. It suf­
fices to define a collection of tags representing nodes, 
edges and transformations of a graph, as well as basic 
construction elements such as WALL, DOOR and WIN­
DOW that are present in the CAD-system. We need them 
in order to visualise adjacency and accessibility relations. 
A tag for node or construction element contains a list of 
attributes-value pairs. Typically, such list includes the 
identifier, the label, the type and several geometrical at­
tributes. A tag for edge has a list of all nodes linked by 
that edge. A tag for graph transformation includes a list 
of subgraphs which the transformation should apply to. 
A part of the XML-file describing functionality graph is 
given in Fig I 0. 

In the ArchiCad environment the user can either 
visualise the decomposition graph or the layout itself. In 
the first case, the user can modify the graph by adding 
new node, deleting existing node, changing geometrical 
attributes of a node and then 
start the adjustment process. The 
XML document describing the 
graph is updated automatically 
after each change of the graph. 
In the second case, the XML 
document contains the descrip-
tion of the final project. 

In the ArchiCAD environ­
ment, XML documents are inter­
preted by a DLL-module - an 
add-on implemented in C and 
linked to the system. This add­
on defines a class of objects 
called COMPARTMENT that is 
able to visualise a node of the 
decomposition graph. The object 
COMPARTMENT is linked to 
the basic elements of the 
ArchiCAD library of primitives: 
walls, windows, doors, etc. 
COMPARTMENT objects can be 
created, moved, changed or de-

<Zones> 
<Zone id='RefuellingZonel' 

label='RefuellingZonel' 
type='O'/><Zone id='SelfServiceZonel' 
label='SelfServiceZonel' 
type='l'/ 
<Zone id='CustomerServiceZonel' 
label='CustumerServiceZonel' 
type='2'/> 

<Zone id='CommunicationZonel' 
label='Communicationzonel' type='3'/> 

<Zone id='CommunicationZone2' 
label='Communicationzone2' type='3'/> 
</Zones> 

<Relations> 
<ZoneAccess 

zonel='RefuellingZonel' 
zone2='CommunicationZonel' /> 

<ZoneAccess 
zonel='SelfServiceZonel' 
label='CommunicationZonel' /> 

<ZoneAccess 
zonel='RefuellingZonel' 
zone2='CommunicationZone2' /> 

<ZoneAccess 
zonel='CustumerServiceZonel' 
zone2='CommunicationZone2' /> 
<!Relations> 

Fig 10. XML tags of the functionality graph 

leted. After each operation of 
this kind the add-on generates Fig II. Petrol station - final solution 
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the XML document, translates it into an internal format 
of the ArchiCAD and allows the user to visualise the 
project. Fig II presents the final solution for petrol sta­
tion. 

The main obstacle that has to be overcome when 
connecting graph-oriented software to commercial CAD­
systems is the discrepancy in the granularity of knowl­
edge representation. Most CAD-systems work with primi­
tives that are far lower in abstraction than functionality 
graphs, decomposition graphs or UML-diagrams. In par­
ticular, the ArchiCAD uses WALL as the basic primitive. 
Placing two adjacent rooms on the layout according to 
the graph-oriented description would result in duplicate 
walls in the ArchiCAD. Therefore, a special method was 
implemented in the add-on. It merges a pair of duplicate 
walls into a single one and, moreover, allows us to in­
troduce virtual walls, like those separating 
CommunicationZone from SelfServiceZone, 
RefuellingZone and CustomerServiceZone. 

7. Conclusions 

Graph-based knowledge model is expressive enough 
for the floor layout problem in Civil Engineering. Its 
applicability in other areas, like Machine Building or 
Electrical Engineering, seems to be worth consideration. 
Graph rewrite tools available today allow us to develop 
flexible design assistants. Thus it seems that the barrier 
of "frozen knowledge" precluding wider applicability of 
conventional expert systems has been overcome. Further 
research is needed in the area of hierarchical graphs in 
order to exploit fully their potential capabilities. 
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