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Abstract. A deformed state of parabolic shape suspension cable subjected to asymmetric loading is under consideration.
The cable kinematic nature of vertical and horizontal displacements, resulted from complementary asymmetrically dis-
tributed load are investigated, the expressions for their maximum values are derived. The deformability of suspension
cable versus its curvature increment is investigated. The possibilities to stabilise the primary parabolic shape of suspen-
sion cable subjected to an asymmetric load are examined. Numerical simulation results are presented.
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1. Introduction

The suspension flexible cable as the main carrying
member of complex structure is successfully applied in
design of large span bridges, roofs of various buildings
[1-12]. A long-term service experience has shown that
idiosyncratic and unwished feature of the loaded suspen-
sion cable is a large deformability [4, 6, 8, 9, 12, 13].
The deformability is conditioned by the appearance of
the elastic and non-straining (kinematic) displacements.
The elastic displacements are caused by large tensile inner
forces, resulted from maximal symmetric loads and those
of inelastic (kinematic) kind — by primary parabolic shape
cable changes, resulted from asymmetric or local loads
[4-9,13—18]. In actual design of structures the deforma-
bility limit state constraints become dominating:

Wmax < Wyim > (])

(x)"max < (Oulim 5 2

where Wy (A)"max are the the n}aximal displacement
and its second derivative; Wy, Wlim are the maximal
admitted displacement and its admitted second deriva-
tive (curvature change). i

The accuracy, when evaluating gy, Wmax In
design process, directly influences the cable structures,
supports both coverings maintenance reliability and their
technical-economical efficiency. One can list many in-
vestigations devoted to suspension cable deformable
behaviour analysis and its general (elastic and kinematic)
displacements evaluations [4, 8, 13, 15-23]. One must

note that the simplified engineering methods are most
often employed to evaluate the general (total) vertical
displacements of suspension cable [4, 7, 13—15, 17, 18].
The latter methods are based on superposition principle,
when splitting the actual loads to the symmetric and asym-
metric ones. The superposition principle employed for
suspension cable, responding to loading non-linearly, re-
sults in certain mistakes when evaluating its strain state.
The investigation [17] is referred to the estimation of
errors, that appear when calculating the general displace-
ments of suspension cable subjected to an asymmetric
load. The equivalent symmetric load concept is proposed
to reduce the error in the investigation [4, 19]. One must
note that the list of investigations devoted to kinematic
displacements analysis of asymmetrically loaded suspen-
sion cable is small enough. The more exact kinematic
displacements evaluation methods should give closer to
the actual behaviour results as well as to help clarify the
application bounds of simplified engineering methods.
The present investigation is devoted to the develop-
ment of suspension parabolic shape cable kinematic ver-
tical and horizontal displacement calculation methods. The
expressions for maximal displacement magnitudes are
derived. The possibilities to stabilise the primary para-
bolic shape of suspension cable subjected by asymmetric
load are examined. The analysis of the above cable dis-
placement evaluation errors, obtained by employing the
widely applied engineering methods, is provided. A com-
parison of displacement numerical evaluation by engi-
neering and that of proposed methods is presented.



278 A. Juozapaitis, A. Norkus / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2004, Vol X, No 4, 277-284

2. Deformed state of asymmetrically loaded flexible
suspension cable

Consider the deformed state of an inelastic flexible
suspension cable subjected to the primary constantly dis-
tributed load g and the supplementary constantly distrib-
uted load p, applied to the left half span (Fig 1). The
considerations are to be provided in respect of the ele-
ment inelastic kinematic displacements, ie taking the elas-
tic displacements to be negligibly small (EA - 0)
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Fig 1. Cable vertical and horizontal displacements versus
asymmetric load p

The primary geometrical shape of the structure, sub-
jected to loading g corresponds to quadratic parabola,
the primary sag being fq in the half span. The applica-
tion of the supplementary asymmetric load p changes the
equilibrium form.

The primary shape function of the suspension cable
subjected by the load p corresponds to the quadratic
parabola equation:

2
2(x) = MHOEX) = f(,@“llﬁ— H‘%@ 3

where Mg(X) — a bending moment resulting from the
symmetric load g, Hg — the thrusting (tensile) inner force
of the cable.

Divide artificially the cable into the left part sub-
jected to the complementary load p and the right part
subjected only to the primary load ¢g. Then the deformed
cable axis function can be described by the equation [24]:

when x<1/2 ,

MI (X) - 1:1 0
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Sl
ax? ax?

when |/2< x<1,
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where M,1(X), Hj; are the bending moments and the
tensile force of the left loaded by (gq+ p) cable part,
respectively; M (X), H,q are the bending moments and
the thrusting force of the cable right part, respectively;
fy = fg + Afy is the cable deflection in the middle span
(x=1/2) after application of the supplementary load;
Afy is the inelastic (kinematic) cable middle span de-
flection (Fig 1); y= p/q is the ratio of asymmetric and
symmetric loads intensities.

An analysis of the equations (4) and (5) shows the
axial curvature function of the cable left part to be the
"sum" of two parabola functions, the cable left part cur-
vature function corresponding to the "sum" of parabola
and line functions. The maximal deflection location is
identified applying the deflection function z (X) =0 de-
rivative:

D= ! d2+3v/2) (©)
4~ (1+y)

Analysing the expression (6) one can find the maxi-
mal deflection location to be dependent on the loads ratio
Y. Varying the Y magnitude from 1 to 10, the maximal
deflection location varies in inside of bounds
x7=0,4371 - 0,386l . The result proves the maximal de-
flection to be insignificantly deviated from the middle
span.

3. Cable left part vertical kinematic displacements

In order to satisfy the design requirements (1), (2)
when designing the cable structures, one must identify
the maximal general (total) as well as its very significant
component — kinematic vertical displacements. The lat-
ter for cable left part can be determined by the follow-
ing expression:

@ (x) = 21(x) = 20(x). (7)

where 7(X) — cable primary shape function; z4(x) —

cable left part shape function after application of load p.
Applying (7) and combining (3) and (4), one ob-
tains:

()= x_ 4 x_ 42
A=y gl 2 T2

¢ X 4x? )
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It is obvious that for the middle span (x<|/2)
w (x=1/2)= fy - f, = Afy. )

An analysis of (8) and (9) expressions concludes
that the kinematic displacements Wj(X) can be identi-
fied only when f; or Afy are already known. To iden-
tify the latter values, apply the deformed suspension cable
length expression:
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Having solved the equation (10) and combining (3)
and (4), one obtains:

8 f,?
=1+, (11)
S 3 v
where
_ 1+y+y?/a (12)
1+y+5y2/16

Write the inelastic cable (EA - [) length expres-
sions § =& for its states before and after loading by

p. The latter expressions allow to identify the cable
middle span deflection:

f = oy (13)
From (12) and (13) relations analysis one can obvi-
ously find P <10, meaning that f; < fj.
Employing the f; expression, one can find the cable
kinematic (inelastic) middle span displacement:

A = folVw -1) - (14)

From expression (14), taking into account (12), one
can find the value Af, always to be of a negative mag-
nitude. Thus, one can conclude that the suspension cable
responses to asymmetric load by middle span displace-
ment directed up, and this lifting displacement magni-
tude is in direct proportion to loads ratio Y magnitude.
For example, when Y=1, Af, =-0,0136f,, when y=3,
Af,, =—-0,0422f. The absolute Afy magnitude is in di-
rect proportion to the cable sag fg.

One must note that engineering cable analysis meth-
ods employing the superposition principle lead to the zero
magnitude of kinematic displacement independently from
y magnitude [4, 7, 13, 15, 19].

Having identified the cable deflection f;, one can
determine its left part vertical displacements by:

oq(x)—%% @g mz? @ (15)

where

£ =\1+y+5y2/16- (16)

As one can find from (15), the kinematic displace-
ments are directly dependent on the cable sag. The in-
crease of the loads ratio y results in the increase of the
W (x) magnitudes. The obtained expression (16) is con-
venient for usage, as it does not include f;. It is obvi-
ous that kinematic displacement in the middle span

(x<1/2) is o (x)=Afy.

In practical design one must identify maximal de-
flection and its location point. This point can be identi-
fied having equaled to zero the deflection function first
derivative () (x)=0)- Then the distance from the left
support to the maximal deflection point is:

O = 1 (2+3y/2-2¢) (17
4 (1+y-¥)

The analysis expression (17) proves the maximal
deflection of the cable left part to be outside of the fourth
quarter xH=1/4, in contradiction to [4-8, 13-19].
When increasing the loads ratio y, the latter distance
decreases. By applying the expression (17) it was proved
that increasing the loads ratio y from 1 to 10, the maxi-
mal deflection location point varies insignificantly, ie

—(O 9568-0,889)I /4. One must note that size of
max1mal displacements calculations via relations (15) and
(17) are of a rather large size. Taking xT=1/4 from
(15), one obtains the approximate formula for loaded part
displacement evaluation:

Q(X)-fogw 19 (18)

The above formula is rather compact and does not
require complicated and large calculations. Analysis of
the formula (18) proved that it produces insignificant
errors when compared with the formulae (16) and (17),

for instance: 0,14 %, when Y=1; 1,56 % when y=10.

4. Cable right part vertical kinematic displacements

Kinematic displacements of the cable right part,
being free of loading, were under investigation in [4-8,
13-19], stating them to be of absolute magnitude as these
of the cable loaded part.

Let us identify the cable unloaded part vertical dis-
placements employing the expression analogous to (7):

@ ()= 21() - z0(x). (19)
where z(x) — the primary cable shape function;

z.1(x) — the cable right part shape function after appli-

cation of the asymmetric supplement load p.
The general solution of the expressions, (3) and (5),
(19) results in displacements calculation formula:

gl
oot

Taking into account (13), one can derive from (20):

Q’r(x)—fO%A»X o @g o YB- % @

oé&o |
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The formula (21) is analogous to the (15) expres-
sion. One can find from relation (21) that the vertical
kinematic displacements of the unloaded right part are
in direct proportion to the cable sag and the load ratio y.

Having equalled the first derivative of the expres-
sion (21) to zero, one can identify the location point of
the maximal displacement of the right part:

m_3 €-v/4-1) 22)

4 (£-2)

Analysis of the expression (22) shows that varying
y from 1 to 10, the xIJ variation bounds are close
enough. As o, x™H) magnitudes inside of the above
bounds differ insignificantly, we take them fo be analq-
gous to w of the left part, ie @ pa =0 (XED:3I /43.
Then from equation (21) one can obtain the simplified
formula to calculate the maximal displacements of the
considered cable part:

3 1 y O

="t %%—1H+—7- (23)
RS o %H

The formula (23) application error does not exceed

2 % considered y variation range when compared with
the formula (21).

Analysing the left part displacement () max and that

X

of the right part G ma , one can find that the unloaded

part displacements are larger in absolute magnitudes
when compared with the ones of the cable loaded part.
It is proved that when increasing the loads ratio y — the
difference between these values in absolute magnitudes
increases as well. One can state that the unloaded cable
part displacements are the governing ones, when design-
ing the cable structures in respect of the stiffness re-
quirements (limit state conditions). Besides, the negative
cable displacements can be dangerous for floorings or
partitions.

5. Curvature change of asymmetrically loaded cable

The main maintenance requirement of suspension
cable, being the main carrying structural element, is the
primary equilibrium form stability. It is the value being
an inverse to deformability. Cable displacements
stabilisation according to (1) is necessary for usual rigid
structures too, but the limitation of the load increments
due to (2) is applied for more "flexible" structures. The
suspension cable reacts to the asymmetric load by its
shape change, leading to significant curvature changes.
The latter influence is directly connected with the conti-
nuity and tightness of floorings and partitions. Although
structural design codes, valid in Lithuania [25], do not
regulate admissible curvature increments, these magni-
tudes can be obtained when analysing the known con-
struction of flooring and partitions by theoretical or ex-
perimental methods [26].

The curvature equation for cable part subjected by
supplement asymmetric load can be obtained from the
expression (4):

s =%§_1ﬂﬂ_ (24)

! 12 g

Analysing the formula (24), one can find the curva-
ture change to be dependent on the cable sag and span
magnitude as well as on the asymmetric loads intensities
ratio. A larger asymmetric load induces larger curvature
increment in the load activity zone.

The right unloaded part cable curvature change is
calculated by the formula:

w, =8 10

12 B &H

An analysis of the unloaded cable part curvature

changes shows that the relative increase of asymmetric

load the cable results in the "straightening" of this cable

part. Having compared the curvature changes of the

loaded and unloaded cable parts, one can obviously find

the curvatures to be larger in absolute magnitudes in the

unloaded cable part, in contradiction as stated to be
equal ones in the known investigations [4-8, 13—19].

(25)

6. Horizontal kinematic displacements

The induced by asymmetric load vertical kinematic
displacements are accompanied by the horizontal ones.
Consider separately the horizontal displacements of the
left and right cable parts.

Identify the horizontal displacement of the left part
at the middle span (x=1/2) point applying the follow-
ing simplified expression:

Ah =(S1-So), (26)
where §g, §;1 — the cable left part lengths prior and
after the deformation (the loading by load p), respec-
tively.

Combining the (3), (4) and (10) equations one can
obtain:

_afd E(1+ By/4+ Ty /16)_ 15
3 H (L+ v+ 5y2/16) H

Analysing this relation one can find that the hori-
zontal displacements as well as the vertical displacements
of the loaded (by complementary asymmetric load part)
are directly proportional to loads ratio y and the cable
sag fg.

Combining the (3), (4) and (10) equations in an
analogous way, one can obtain the horizontal displace-
ment of the right cable part for the middle span
(x=1/2) point:

Ah 27

_afd E(1+ 3y/4+3y?/16) 18

& 3 H(1+ v+ 5y2/16)

(28)
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Analyzing the expressions (27) and (28) one can find
that displacement of left and right cable parts are equal
in absolute magnitudes, ie [Ahy|=|Ah,|. One must note
that the unloaded part cross-sectional displacements of
the cable, subjected by asymmetric load p, move left, ie
in direction of the loaded cable part. The horizontal sus-
pension cable displacements of the remaining part can
be identified via the expression (26), having compared
the lengths of the cable parts prior and after loading the
cable by asymmetric load.

7. Primary equilibrium form stabilisation of suspen-
sion flexible cable

One of the most unfavourable loading cases for a
suspension cable that results in maximal kinematic dis-
placements, is the asymmetric loading (Fig 1). The sus-
pension cable primary form stabilisation becomes the
main task of the cable-structure design. The maximal
kinematic displacements analysis shows these to be di-
rectly dependent on the cable sag fy and asymmetric
and symmetric loads intensities ratio Y. The formulae
(18) and (23) show that the satisfaction of the require-
ment (1) can be achieved by reducing the cable sag fj
in case of a constant Y. But one must note that the
reduction of the cable sag causes large tensile inner forces

_ M (x=172) _ M, (x=1/2)
foW forW

that reduce (result finally in) the technical-economical
efficiency of the cable structures (leading to enlargement
of support equipment mass in order to resist the in-
crease of thrusting forces). The analysis of (18)—(23) for-
mulae yields the kinematic displacements to be zeroes
in case of sag absence (or fg=0), ie when it serves as
a tie. In the latter case the kinematic displacements should
be conditioned by elastic deformations only.

The kinematic displacements induced by the fixed
asymmetric load p can be stabilised by enlarging the
symmetric load size, ie by reducing the ratio Y. But the
latter eventual design instrumentality leads to a general
load size enlargement, resulting in an enlargement of
thrusting forces (29). These forces grow faster as kine-
matic displacements diminish and proves it to be not an
efficient instrumentality. For example, having enlarged
the symmetric load ¢ twice, ie when Y is reduced from
2 to 1 magnitude, the displacement decreases approxi-
mately by 26 %; when Y is reduced from 4 to 2, the
displacement is reduced approximately by 16 %. The
relation displacement versus load magnitude ¢ is the non-
linear one and it is proved by the above illustration.

One must note that the cable vertical displacements
are in direct relationship with horizontal displacements.
It is obvious that aiming to reduce vertical displacements,
one must reduce the cables possibility to deform hori-
zontally. From formulae (4) and (5) one can find that
when reducing the middle span cross-sectional displace-

Hig

=Hin (29

ment in horizontal direction (eg having introduced hori-
zontal link), the cable left part loaded by complemen-
tary asymmetric load will response to loading as inde-
pendent suspension cable. The span of the latter cable
will be /2, and the load p will influence the cable as
a symmetric one. No kinematic displacements are induced
in such a cable. This method for reducing kinematic dis-
placements is rather efficient as it does not enlarge the
thrusting forces in the considered cable. The latter in-
strumentality is successfully applied for primary stability
form stabilisation of bridge structures, when connecting
the cable in the middle span with stiffness beam [9, 21]
serving as horizontal link. The analogous technical solu-
tions are employed in roof cable structures of buildings [6].

8. Numerical experiments

Numerical simulations have been carried out in or-
der to perform an analysis of asymmetrically loaded sus-
pension cable response in terms of kinematic vertical and
horizontal displacements and to fix the errors obtained
when applying the known engineering methods to evalu-
ate the above displacements. The 200 m span flexible
suspension cable subjected to symmetric and asymmet-
ric loads p (Fig 1) is under investigation. The cable sag

fg, the ratio of symmetric ¢ and asymmetric p loads
Y have been varied for displacement analysis.

An analysis of provided simulations proved the ki-
nematic vertical and horizontal displacements to be di-
rectly dependent on the cable sag fy. When increasing
the cable sag fg, vertical displacements increased lin-
early proportionally. When varying the cable sag fg in-
side the bounds fg=1/4=50m till fo=1/10=20m,
the left cable part maximal displacement magnitude var-
led from @) pa =1442M t0 W) max =3,605m in case
of the constant (fixed) ratio of loads y=1. It is obvi-
ous that aiming to reduce the vertical components of ki-
nematic displacements under the constant load ratio Y,
one must reduce the cable sag fj.

It has been proved that an increase of the load ratio
Y results in an increase of the maximal vertical displace-
ments O max and W max of the left and right cable
parts, respectively. One must note that vertical kinematic
) max and Wy max displacements versus the load ratio
Y relation is the non-linear one. When varying Y val-
ues in the interval 1-10, an increase of vertical displace-
ments in the first loading stages is relatively large for
small Y. But gradually increasing the Y values, one can
fix the tendency to reduce vertical displacements (the
graph of Fig 2). The latter result shows the cable to be
sensitive to the asymmetric load p in the first stages
of loading. For instance, under y=1, and for

fg=1/10=20m the left part of vertical displacement
is W max =L442m but for the triple its magnitude, ie
for y=3, the magnitude of the above displacement in-
creases approximately by 1,566 and is equal to
) max = 2,258 m . Having increased the ratio Y magni-
tude by six times (Y=6), the considered displacement
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Fig 2. Cable maximal vertical displacements (in m) of left and right parts and middle span versus load ratio y

reaches the magnitude W) ma =2,588 m, ie it increases
approximately 1,795 times (the graph of Fig 2).

One must note, that the maximal displacement mag-
nitudes ) g and Gy ma are independent of the cable
span value. It has been determined that varying xT in
maximal kinematic displacement oy o zone, its mag-
nitudes change insignificantly. Taking approximately the
maximal kinematic displacement ) gy to be located in
the cross-section x™0=1/4, and the maximal displace-
ment w; m to be located in the cross-section
x'=31/4, their values, calculated by expressions (18)
and (23), do not exceed 2 % error. The provided nu-
merical experiment proved the kinematic displacements
in absolute values of loaded (left) cable part to be less
in comparison with those of the unloaded (right) part
(Fig 2). This, looking to be a paradoxical result, is con-
ditioned by negative middle span displacement Af} , ie
the displacement moves up from its primary position. The
analogous distribution of displacements was mentioned
briefly in the investigations [17]. Besides, the cable
middle span displacement Af) , as well as the maximal
cable displacements @y max > W max increase faster when
increasing the loads ratio Y magnitudes. It was found
that varying Y from 1 to 10, Af, changes from —0,272 m
to —1,538m under fp=1/10=20m. Taking
fo=1/5=40m, the Y variation from 1 to 10 results in
the Afy changes from —0,544 m to —3,076 m. One must
note that the application of engineering methods always
results in the middle span displacement Af, =0, for
y=20.

Having compared the loaded (left) cable part dis-
placement &y g Wwith the one of the unloaded (right)
part Wy max , one can find the latter to be larger in per-
centage (graph of Fig 3). For instance, when y=1, the
O max 1S approximately by 28 % larger than the 0 max,
and when Y=5, the Wy ng is approximately 70 %
larger than the «y g - When y=10, the difference be-
tween displacements increase up to 85,7%.

Aw

90 %
80 %
70 % y
60 %

-
50 % A
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30 %
20 %
10 %
0 % > v

Fig 3. Relative difference graph of vertical displacements
corresponding to cable left and right parts

It was numerically found that the maximal curva-
ture change of asymmetrically loaded cable is located in
the unloaded right part. In other words, the right part,
free of asymmetric complementary load p, is relatively
more "straightened" then "curved" the left part, subjected
by the complementary load p. Fig 4 shows that in case
of y=1 the curvature change of the unloaded cable part
is approximately by 8,73 % larger compared with the
one of the loaded part; when y=10, the curvature
change difference of both parts increases up to 22,2 % .

Ao
25%

20 %

15 % A
//
10 %
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0 % Y
1 2 3 4 5 6 7 8 9 10

Fig 4. Relative difference graph of cable curvature
changes, corresponding to cable loaded and unloaded parts
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It has been proved by calculations that widely ap-
plied engineering methods, based on superposition prin-
ciple, result in errors when evaluating vertical kinematic
displacements. These errors do not depend on the cable
sag fg, but are sensitive to the load ratio; they increase
for the larger Y. When Yy=1, the engineering methods
result in the 15,5 % error when calculating @y gy ; for
Y =5, the error of the latter value increases up to 42 %,
and for y=10, Wy may the error is of 52 % (Fig 5). The
analogous errors are obtained when calculating the ver-
tical displacements of the unloaded right part Wy max
(Fig 5).

A
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20 % o
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0% " > ¥

1 2 3 4 5 6 7 8 9 10

Fig 5. Relative error graph of cable vertical displacements
obtained via engineering methods

It is obvious that aiming to satisfy 5 % tolerance con-
straint, when evaluating vertical displacements of sus-
pension cables, the engineering methods can be employed
only when the asymmetric and symmetric loads ratio
magnitude satisfy y<1.

9. Conclusions

The parabolic suspension cable (free of elastic de-
formations) behaviour versus asymmetric load was in-
vestigated. The obtained analytical expressions (15, 21)
ensure a more accurate evaluation of kinematic nature
vertical displacements of the left and right cable parts.
The analysis of the cable behaviour versus loading has
shown that an increase of the asymmetric p and symmet-
ric loads ¢ ratio Y results in the increase of the vertical
kinematic displacement &} may, Gy max Magnitudes. The
above displacements relation versus the loads ratio is the
non-linear one, the even increase of Y results in the rela-
tive reduction of vertical displacements.

It has been determined that the kinematic vertical
displacements of the asymmetrically loaded cable part
W) max larger in absolute magnitudes than the ones of
the unloaded part O max - A larger loading ratio Y re-
sults in a larger difference between displacements of both
parts.

The cable curvature analysis proved that the right
cable part is relatively more "straightened" than "curved"
the left loaded cable part. The curvature change increases
when load ratio Y increases, analogously to kinematic
displacements.

The obtained analytic expressions for horizontal
displacement evaluation allowed to identify that the
middle span cross-section horizontal displacement moves
in the loaded cable part direction. This displacement as
well as vertical displacements depend on the cable sag
and the loading ratio. One can state, the above displace-
ments to be the related ones. Thus, aiming to reduce the
vertical displacements, one must reduce the cable sag
and increase the symmetric load intensity. Besides, an
efficient method to reduce vertical displacements would
be the cable horizontal displacements constraining via
technical tools.

The presented numerical simulations clearly proved
that the errors when estimating kinematic displacements
via widely applied engineering methods, based on su-
perposition principle, in case of asymmetric and sym-
metric loads ratio Y>1 exceed by 16 %. Therefore the
engineering methods are recommended to be applied only
in case of y<1.
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