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Abstract. An actual design of light-weight structures must evaluate strength, stiffness and stability constraints as well as
the nature of external loading. A designed structure must satisfy optimality and safety criterions per prescribed mainte-
nance period. One faces the known difficulties when trying to implement several from the above-mentioned require-
ments into optimization problem for further successful numerical realisation. A method to formulate the optimization
problem, incorporating all above described criterions, the mathematical model and algorithm to solve it numerically,
taking into account the stochastic nature of external loading, are presented for elastic-plastic truss-type structure.

Keywords: elastic-plastic structure; optimization; stiffness and stability constraints; stochastic loading process, finite

element discrete model.

1. Introduction

The aim of structural design is a creation of a struc-
ture to satisfy optimality and safety criterions in respect
of maintenance (strength, stiffness, stability) requirements.
It is important to note that stiffness and stability con-
straints often dominate versus strength conditions in ac-
tual design of optimal structures. When solving the limit
equilibrium problem [1-3], the structural parts deforma-
tions or nodal displacements can exceed the fixed ad-
missible magnitudes and/or fail due to stability loss.
Actually, the structure is designed for a certain period
for prescribed reliability level. Therefore one must also
seek to evaluate the loading process peculiarities (peri-
ods of activity and absence of separate loads when com-
bining their common influence on structural response per
reference period of time) in the practical design. An
employment of elastic-plastic structural behaviour model
allows to evaluate the residual response effects. The ap-
peared self-equilibrated internal forces allow to adapt the
prescribed reliability level optimal structure to variable,
random in general, process of external loading [4]. Such
an approach allows to evaluate the alternating plasticity
case and thus the structure fail mode due to low-cycle
fatigue. This failure case is the actual one in structural
analysis and design [5, 6].

Thus, the main optimal structural design problem is
to be stated as the structural optimization problem under
presence of stiffness, stability requirements and gener-
ally, the stochastic process of loading.

The designed optimal structure is in the state prior
to plastic failure, resulting from stiffness and stability

constraints. During the optimization procedures the truss-
type discrete structure tensile members are assumed to
be loaded up to the yield limit, the compressive mem-
bers — up to the critical limits, combining yielding and
buckling modes, the stiffness constraints are represented
via the nodal displacements restrictions in prescribed
directions. The problem solution realises the certain op-
timization cycles, in each cycle employing the set of
members limit forces, identified in the previous one. The
optimization cycles are continued until a certain conver-
gence.

The structure limit states represent strength, stiff-
ness and stability loss failure modes. The total structure
failure probability P; is a union of the above modes.
Taking the structure physical and geometrical properties
to be described as random values, the structure B; evalu-
ation (reliability analysis) problem is rather complicated
even applying the constant random loads and evaluating
strength conditions only (ie limit states correspond to
different plastic collapse mechanisms modes) [7, 8]. The
reliability evaluation problem, stated as the mathemati-
cal non-convex mathematical programming problem, so-
lution process results in the selection of the most reli-
able plastic mechanisms, corresponding to local
extremums, in order to calculate P; versus plastic col-
lapse (note that different plastic mechanisms can be se-
lected in each optimization cycle). The number of plas-
tic mechanisms (failure modes) increases considerably
with the number of redundancy.

An additional evaluation of displacement limitations,
that of stability loss limit states in concert with stochas-
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tic process of loading makes the main optimal struc-
tural design problem rather complicated even for the el-
ementary structures and is more interesting in theoretical
versus practical usage.

Let the physical and geometrical properties of struc-
tural members and the loading application points repre-
sent as determinate ones. The actual variation of carry-
ing structural members properties in principle must be
low, therefore under certain restrictions can be taken as
determinate ones, fixed with sufficiently high reliability
level. Then the actual elastic response of elastic-plastic
structure (in terms of internal forces and displacements),
subjected by stochastic loading process can be stated as
the above extreme (due to certain reliability per refer-
ence period of time) values identification problem. After
when these identified values are fixed as determinate
ones, the main optimization problem of the structure in
terms of determinate values is to be solved. The similar
approach, taking into account only strength conditions,
was applied [4].

A direct application of the mathematical program-
ming method [9] for optimization problem solution does
not ensure the obtained extremum to be the global one.
The way to overcome the latter lack is an application of
mathematical programming theory in concert with ex-
treme energy principles. The obtained optimization prob-
lem, containing the complementarity condition, is the
multi-extremum one, as its solution results in a certain
number of discrete points. Incorporation of the comple-
mentarity’s condition into the objective function of opti-
mization problem [10-12] ensures the admissible set to
become the convex one in case of convex yield condi-
tions, having the unique optimal solution. But one must
note that problem numerical solution via mathematical
programming methods is very complicated and in some
cases unavailable.

The task of the present investigation is further de-
velopment of the reliability-based optimization under
presence stiffness and stability constraints problem solu-
tion methods, applying the extreme energy principle [2,
12] in concert with certain optimization procedures for
elastic-plastic truss-type structure (eg truss), subjected by
stochastic process of loading.

2. Truss optimization problem mathematical model
and algorithm

The truss optimization problem under the presence
of stiffness, stability constraints and stochastic process
of loading consists of 3 principal parts of optimization
cycles (iterations):

1. Determining truss variation bounds of elastic forces
Se. S; and displacements u}, ug per time pe-
riod T, satisfying prescribed safety reliability
Fs=1-FRy.

2. Defining the actual stress and strain state (SSS) of
the structure, prior to plastic collapse, correspond-

ing to fixed variation bounds of internal forces and

displacements (analysis problem).

3. Optimizing the areas of members (conditioning the
limit Sy and that of critical S, forces) to satisfy
strength, stiffness, stability and constructional con-
straints.

Each of the parts consists of separate problems, to
be solved individually one after another during each
optimization cycle and continued until certain conver-
gence. The iterative optimization procedure is conditioned
by the circumstance that elastic forces and displacements
from one side and limit and critical forces from the other
side depend on the actual cross-sectional areas of bars,
being as input and output data of optimization cycle parts
1 and 3.

2.1. Evaluation of elastic forces and displacements
caused by stochastic loading process

Let the loading process to be described by action
of individual loads E(t) = (El (t), IEZ (t), - Em (t))T. Then

the j-th elastic axial force and the i-th elastic displace-
ment of the truss are expressed, respectively, by:

§e,j t)= §el,j 1)+ §e2,j )+..+ gem,j (t)=
Vi1 F, () + Vj2 P (t)+ ...+ Yim [Fn(t)

m ~
Zyji |:F|(t), j =1,...,n,
i=1

Ug; (£) = Ueg j (£) + Ueg; () + ...+ Uen; ()
Sil D:]_(t)+'ai2 |:Fz(t)+ ...+'8im EFm(t) =
mo (1)
> 9i R (),

i=1

where Yjn and 9, are the truss finite element method

discrete model j-th elastic axial force and i-th elastic
displacement influence determinate coefficients versus
m-th load process Fm(t), respectively.

To identify the maximum and the minimum magni-
tudes of processes (1) per reference period of time
T due to prescribed design safety reliability
Pg =P =1-PB; for all internal forces, selected into
the vectors

Se :(Sg,i)T

(S0, St E0)

s; =(5;) =(a1. e Sen)

and that of nodal displacements
+ _ |+ .+ .+ +
Ue - (Ue‘i)T = (Ue,l,ue’z,..., Ue‘m)T s

S FERES)
Ue =Uei) = Ue1rUe2s-sUem) >
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one must solve the following problem:
ESQ sS(t)sS;;H
PO~ _ = P> ()
Hiz suwsu;

t=[o0,T].

An application of the exact methods (eg random
crossing theory) for processes combination (Eqn (1))
problem seems to be rather complicated one, dealing with
multiple convolution integrals calculation problems to
build the above values distribution and density func-
tions. The latter are required for elastic response extreme
magnitudes identification due to fixed design probabil-
ity By [13, 14]. The number of such processes, to be
investigated, is equal to n + m, ie to the total number of
components of internal forces and displacement vectors
(2). The number of these operations (recalculations of
the above-mentioned elastic response magnitudes, pro-
vided in the first part of each optimization cycle), also
depends on the successful problem solution starting point,
chosen for faster convergence of the main optimization
problem.

Thus, the exact evaluation methods of extreme elas-
tic response values seems to be more interesting from
the theoretical point of view, being in contradiction when
applying them for practical usage to solve real main struc-
tural optimization problems.

Taking into account peculiarities of the investigated
problem, the loading process approximation (load com-
bination) problem useful approach would be the selec-
tion of process finite number time points, to define the
extreme influence of loading to structure elastic response
values. The Turkstra's load combination rule, applied for
mutually independent load processes, proposes the num-
ber of such points to be equal to the number of indi-
vidual loads processes. The employed rule, being imple-
mented in design codes of several countries, provides
sufficient lower bound probability evaluation to identify
the extreme magnitudes of considered values. But one
must note that the Turkstra's rule accuracy is also lim-
ited by certain features of loads processes to be com-
bined [15].

Following the Turkstra's rule idea to solve the prob-
lem (1) numerically, the aim is to represent the loading
process by certain number of individual loads determi-
nate magnitudes combinations, sufficient to identify the
extreme loading influence to all structural elastic response
values. The identified combinations of individual loads
in terms of determinate magnitudes must be selected to
the loading matrix (matrixes), being constant during all
iterative optimization procedures. The loading matrices
represent the possible loading states — combinations of
individual loads magnitudes, corresponding to prescribed
reliability level and time period under consideration.

Let all the individual loads be mutually indepen-
dent, stationary processes. Applying the Borges-

Castanheta load model, the load process is approximated
as a sequence of rectangular pulses of fixed duration T,
taking into account probability of load absence during
the pulse. Then the load distribution function for pulse
reads:

Dp +q P (F), when F >0,

Pe, D q P-(F), when F <0, 3)
0 p g =1,

where P (F) is the load distribution function during
its activity period; p* — the load absence probability
during pulse .

The load magnitude, corresponding to certain prob-
ability P: ;. is found from Eqn (3), taking into account

the load absence probability, ie:

o )
EP51§&+®E when 0< P (F)<q P (0)
q

o - [O when g P: (0)< Pe, (F)< p” +q"P: (0) @
' BPFr( ) p H
o "H o f

P (F)st

Then the load extreme magnitudes distribution func-
tions per reference period 7 read:

when p’ +q’ P (0)<

Praxe (F) = (P, (F))",
v=T/rT.

Pringe (F) =1-(1=(Pe.(F))",

6))
The Turkstra's rule does not limit the number of
loads when combining their extreme effect, but usually
it is enough to evaluate three time-variable forces (when
required, the preliminary reliability investigation of com-
mon activity periods of more variable loads must be
provided). Then the extreme, for instance, internal force
(Eqn (1)) magnitude with required By per reference
period 7, is achieved, analysing the following loading
process time points:
-1 —
Pd(strgl(Sei) (Prd,ekstr )"‘
2

ekstrSelT rdekstr)+ PekstrSel ,(0,5) ekstrsel,, (0’ )
). (6)
ekstrSel 7l )’

aaekirsel 7

where T, > T, > 1T,.
When calculating determinate maximum and mini-
mum magnitudes, it is proposed to select the quintiles

by:

( 5
DDekstrSelT ( rd,ekstr )+ PekslrSel » (0,5)+ PeksIrSEl . (0’5

( )+ Pekstrseﬂ (Prd ekstr) ekstrSel » (0’5

(05)

5)+ Pe;étrselyﬂ (0!5) PekstrselT ( rd,ekstr

Prd = Prd(max) - Prd(min) (7)
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and 0,5, as it fit sufficiently with magnitudes, identified
by exact, random crossing methods [16, 17].

When applying the described loading process ap-
proximation method to evaluate all extreme elastic re-
sponse values, the loading matrices, selecting the required
loads determinate magnitudes combinations, (eventual
loading process extreme states) are:

TR0 ) RO RO D
Fl-meet) R0 k0 R0
e ) ) maxF ) mec

(®)
EjnnFl(t) mnF,0) RO F6)5
Fltinmt) R0 mor) 0]
HT;'an3t n;lilnrlzs(t) n;ianS(t) n;mI:Z(t)E

where determinate values correspond to extreme P,

P, d(min) (Eqn (7)) and 0,5 quantiles.

Note, that taking into account Eqns (4) and (5),
the extreme magnitudes per considered period of time
are calculated by improved design probabilities:

Py —P H_ 2 l(rmax)
ETE ( )
mmF(t) Fe _P:élﬂ% Fl( r(mn))

T

maxF(t) Fr —P

V= for 7; >1,

Loi=1230 )

Find that the quantiles, resulting the different sign ex-
treme magnitudes of loads (Fig 1), are constrained by

P (me) > Ep* +q Pe (O)Q for maxF; (t)>0,

and  P;(nin) <El—(1—q* BF(O)E/ for minF, (t)>o0.

The vectors of extreme elastic response magnitudes then
are formed from obtained elastic solution in terms of
matrices

(10)
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[si)=bltF 41 bet
SEAIERE

el =l {o e
HEENIEERES

by selecting certain extreme magnitudes from correspond-
ing matrices lines.

The above elastic response influence matrices are
split to the ones, consisting of positive and zero or nega-
tive and zero magnitudes [2], to satisfy:

=blb] ana Bl=pls] a2
Note, that matrices (8) in coordinate space of indi-
vidual loads represent the convex polyhedron (created
according to fixed reliability By ) outer surface apexes,
corresponding to stochastic loads possible common ac-
tion states. An assemblage of these apexes to matrix
[F] provides all possible extreme structural response
causing loading cases:

[s]=[MEA and [u]=[slA . a3

Then the extreme elastic response magnitude vec-
tors are formed by selecting certain extreme magni-
tudes from corresponding above matrices lines. This ap-
proach versus to that of Eqn (11) requires more efforts
when selecting all apexes and is applicable for less
number of individual forces cases, when their action is
prespecified by non-alternating direction processes, other
cases.

(11)

2.2. Mathematical model of analysis problem

The structure is subjected to the known external
loading, the areas and physical-geometrical properties of
structural members are fixed. The structure, prior to plas-
tic collapse, SSS evaluation problem is realised by the
following mathematical model [12, 18] for discrete truss-
type structure finite element model:

find
~LaT el 2l [dh, - EaT [o]n, +aT (s+—s )+
2 1 1 1 2 2 2 2 1 e 0

A (—s;—scr)q max

(14)

The quadratic programming problem (14) contains
the following values:

st = (8] = (St 8o SEn) -

extreme positive axial forces;

subject to A 20, Ak, 20.

vector of structural
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P,
1,0

1-(1-qP(0)
b p*

b q*P-(0)

b (q-P+(0))”

~ A
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1-(1-(p*+ g+ P-(0)))

pr+arPH(0) §

p* 4

(P*+q*P(0))”

F P:(F) 0

Fig 1. Distribution functions for extreme load magnitudes

(Sg,i)T =(Sg1, S;z,...,sg,n) - vector of structural

extreme negative axial forces;

S =
M= ()\1, j)r — vector of Lagrange multipliers of comple-
mentarity conditions for tensile bars, reading

A (S +S2-S0)=0; (15)

S} — the j-th finite element (bar) residual force in the
running optimization cycle; i~ j-th finite element
limit axial force (yielding force), Sp; =0, Aj, Oy —
the material yield limit, A; — j-th finite element area,
arbitrarily fixed or identified via previous optimization
cycle; Ay = (A, i) — the Lagrange multipliers of comple-
mentarity's conditions for compressive bars, reading

Aoy (S-S5 -Su )= 0, (16)

where S, j — j-th finite element limit buckling-yielding
axial force, arbitrarily fixed or identified via previous
optimization process; [G] — constant per optimization
process structure finite element discrete model (nxn)-
dimensional influence matrix for residual internal forces,
reading

[e]=[8 [RI 1A KIEr <] an
Here: -

]
I ma-
]

trix of structural elements j = 1, 2, ..., n ((n — total

[K] — tension-compression diagonal stiffness

number of bars; E, | j — the material elasticity modulus
and the j-th bar length, respectively); [K] — the struc-
ture finite element (mx m) -dimensional discrete model

global stiffness matrix, where m — number of global dis-
placements;

[B] - (n x 6n) -dimensional configuration matrix, contain-
ing either zero elements or configuration submatrices for
internal forces

[B,]=(b;) k=6i-56i-4,..6i, (18

expressed via direction cosines in the global coordinate
system:

[B,-]:(o 0 0 cosa; cosf; cosy, ); (19

|_IZJ— quasidiagonal (6n><6n)—dimensi0nal matrix, con-
taining j-th space finite element stiffness diagonal
submatrices

en k] -kl
Ki|=—"0'7 50
MISRED R
in the global coordinate system, where:
[tos?a

[IZJ-]= %:osﬁjcowj cos®;

(20)

COSa[COSf8; COSa;COSY; E

cosf;cosy; %(21)

H

[R] - (6n>< m) dimensional configuration matrix of local
and global displacements, containing unit and zero com-
ponents.

Note that introducing the above finite element dis-
crete model notations, the internal force and nodal dis-
placement influence coefficients y and 4 in (1) are
obtained from the matrices

b=ld. =g 18K B e

BZOS]/J-COSOCJ- COSyCOS f3 COSzyj
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The solution of the quadratic programming prob-
lem (14) yields the Lagrange multipliers A, and A, mag-
nitudes. The components of residual internal forces

s, =(s, ) =(s%. 55, 5,) and that of residual

displacements u, = (ur’i)r = (uryl, Ur oy oo ur,m)T are de-
termined by

S, =[Gl —22) u =[] -2,).  23)
Note, that one cannot state the above obtained re-
sidual structural response values to be the actual ones.
Generally, the exact distribution of residual values de-
pends upon the loading history, observed/simulated from
individual loads processes [19]. Actually, in case of sto-
chastic loading, the loading history prediction practically
is unavailable. Thus, an employment of mathematical
model (14) yields only the possible distribution of re-
sidual structural response values, ensuring adaptation of
optimal structure to most dangerous eventual stochastic
loading states corresponding to prescribed reliability level
per reference period of time.
Having identified the above-mentioned values of
residual response, the extreme magnitudes of internal

forces and displacements are obtained by
S'=S,+S;, S =-S, -S;; (24)
ut =u, +ug, u =-u, -u,.

2.3. Mathematical optimization model of structure
bars cross-sectional areas

The structure bars cross-sectional areas optimization
mathematical model under stiffness and stability con-
straints consists of:

1. Axial strength conditions expressed via areas of
optimised bars;

2. Strength conditions versus buckling of bars;

3. Displacements limitations constraints;

4. Constructive limitations for bars areas.

The structure optimality criterion expresses total
material minimum weight of the bars.

Thus, the structure optimization model under pres-
ence of all the above-mentioned conditions is as follows:

No NK
find W:pZAk er ~ min
= r=

subject to
_O'y Ak,j S_S;-,
_Ucr Ak,] SSJ_, k:1,2,...,n0,
n STOS; O
UI:Z%'JSUIW,
= E A ’
0 STOS, (25)
— . J —
uy=») —— 22Uy, £=1, 2, ..., m,
t 4 EAk,j tmn mt

Ak 2 Ak,min1

where: A
k-th group of bars; n, is the number of bars in k-th

is the optimized cross-sectional area of the

group; |, is the total length of bars, corresponding to
k-th group; m +n, +..+n, =n; Ny is the number of
optimized parameters — ie the number of different group
of bars; p is the structure material density; Oy, O
are material yield and critical stresses for tensile and
compressive-buckled members, respectively; U, is the dis-
placement, being constrained along the certain direction
t; m is the number of constrained displacements;
Umax >0, Ugmin < 0 are the upper and the lower
bounds for displacement magnitudes to be constrained;
A min 1s the lower bound of cross-sectional area A,
magnitude (constructive limitation).
Applying the virtual displacement principle, the dis-
placement U, can be expressed by
ot e
U = N Bl Da’j mj )

2, EA,

(26)

where S@jt is j-th bar total internal force, corresponding
to loads combination, resulting in the maximal (minimal)
displacement U; magnitude; S, j isj-th bar internal force
caused by unit force applied onto the node along the
direction of nodal constrained displacement U; of the
truss, being in the state prior to plastic collapse.

The structural member design stress versus buck-
ling due EN3 [20] is calculated by:

Oy =XOy,

where X is certain bar reduction coefficient, depending
on compressive member dimensionless slenderness A .
The dimensionless slenderness is prescribed by ratio:

N=MAg.

27

Here the unit slenderness is defined by A =1, /i , where
I, is an actual length of the buckled member, i is the

™E

radius of gyration, A = |[—— is the Euler's slen-

y
derness. For example, the tube cross-sectional reduction
coefficient analytically is described by the relation
1

SN

with a being the variance coefficient (eg a =0,21 for

<1, where ¢ :%[1+a(X—0,2)+X2],

hot laminated pipes, a =034 for cold laminated pipes).

The truss-type structural members cross-sectional
areas optimization problem is the non-linear mathemati-
cal programming problem, having one extremum. Two
solutions cases due to possible admissible sets of vari-
ables are shown in Figs 2 and 3 in case of two opti-
mized parameters.
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A2

Wi,

Admissible set

Optimal solution
A'=(A1, A2)
LRI .

f2S" 5, So, Sr, A2)=0

0 As(ut, w, w)=0 A1

f1(S* S So, S, AL)=0

Fig 2. Piecewise-linear admissible set

The Fig 2 presents an optimal solution in the case
when the displacement constraints are not activated. The
optimization process is preconditioned by strength/sta-
bility constraints.

Fig 3 presents the case when the optimal solution is
preconditioned also by stiffness constraints. In consid-
ered case the optimal solution contains the satisfied as
equality leastwise one strength/stability condition in con-
cert with stiffness constraint. It is obvious that the opti-
mal solution objective function for the case results the
more structural weight magnitude, when compared with
the obtained one, presented in Fig 2.

Analysing the above Figures, one can obviously find
that the optimization process converges to unique solu-
tion in both possible cases.

2.4. Analysis and optimum design algorithm main steps

The structure stochastic load combination problem
in terms of created, constant per optimization process
matrices/matrix, to predefine structural elastic response
extreme values, is already provided. The minimum weight
elastic-plastic truss-type structure optimization consists
of the following eight steps:

1. Create the configuration matrices [B] and [R]

2. Determine the limit axial forces Sy and S .
(Choose primary cross-sectional areas of bars for
the start of optimization procedures, introduce the
new ones, corresponding to the previous iteration
optimization result, for the running optimization
iteration).

3. Create structure discrete model quasidiagonal stiff-

ness matrix for tensile-compressive elements [K]
(Eqn (20)) and global stiffness matrix [K] .

4. Determine S}, S; and u}, u; (Eqns. (11) or
(13)), applying the loading matrices or matrix.

W(A1, A2)=const.

f1(S" S So, S, A)=0

min ///////////////

Admissible set

\)

tirpal sglutipn
L A=(AL A2)/
iy

“

<

0 fa(u, u, w)=0 A1
f2(S" S’ So, S, A2)=0

Fig 3. Non-linear admissible set

5. Create influence matrix of residual internal forces
[G] (Eqn (17)).

6. Solve the SSS evaluation quadratic programming
problem to find residual structural response values
(problem (14)).

7. Solve structure bars areas optimization problem
under the presence of strength, stiffness and stabil-
ity constraints (problem (25)).

8. Check the optimization problem prescribed conver-
gence criterion in respect of previous iteration re-
sult. When it is not satisfied, repeat steps 2—8. The
prescribed criterion can be the fixed admitted toler-
ance of structure weight function, that of the bars
areas (both criterions are correlated).

Note, that the number of iterations of optimization
problem solution depends on successful starting point (ie
chosen for 2-nd step primary input data (bars areas)).
They can be chosen arbitrarily, solving eg the constant
loading problem, or any similar one, being naturally close
to actual constraints of the problem under investigation.

2.5. Numerical example

Consider the space steel structure of 25 bars (Fig 4),
subjected to 3 different mutually independent stochastic
load processes.

The first load Fi(t) is applied to the 1-st node (di-
rection cosines in respect of structure global axes x, y, z
are: cosa, =0,8146, cosa, =0,2037 and cosa, =0,5431.

The second load F2(t) is applied to the 2-nd node (di-
rection cosines in respect of structure global axes x, y, z:
cosa, =0,8304, cosay =0,2491 and cosa , =0,4983.

The third load F3(t) consists of simultaneous (fully cor-

related) action of two loads, being parallel to the axis z
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and applied to the 3-rd and 6-th nodes, respectively. All
three loads are prespecified by non-alternating direction
processes (no direction changes). The load processes are
described by stationary pulses (5). The load distribution
function during activity periods satisfy the Gumbel's law:

|
Pr (F) = exp(-exp(a(F —u ))),
then

D_l 1
P r(F)= u—g(m(—mpr)).

The loads processes are described by the following
parameters:

Fi(t): Ty= 91 day, U= 141,62 kN, a = 1,90kN,

o =0,2493, p; = 0,7507;

F2(t): T,= 91 day, Uy= 115,69 kN, ay= 2,10 kN;

4 =01032, p,= 0,8968;

PR

_ Fa(t) -
1 @ F®

508cm

Fig 4. Truss design scheme

Fa(t): T3= 026 day, Uz= 19,82 kN, ag= 1,23 kN;

45 =0,0039, ps= 0,9961.

The truss service term is taken 7 = 50 years, design prob-
ability By =Rs=1-Rs =0,999.

Taking into account the problem features (direc-
tion nature of loads, design probability magnitude, ser-
vice term, duration of pulses and probabilities of activ-
ity per pulses) the stochastic loading combinations
(apexes) of polyhedron, describing the loads common
action possible set, can be described by the following

five combinations. Theses apexes of polyhedron, indi-
cated by solid lines in Fig 5, represent the loads pos-
sible variation volume, created due to design probability
Pg. The dashed lines indicate the loads variation bounds
in case of repeated-variable loading in terms of extreme
loads variation bounds. The polyhedron apexes assembled
into the loading matrix, read:

[max Fy (t) 0 0 O
o 7 O
max Fy (t) 0 max F5(t)O
o 7 n 0O
FI'_o o max F, (t) 0 O
O T O
o o max Fo(t) max F(t)U
Q T w O
d o 0 max F5(t)J
B 17 B

(maxTF 1), (maxrf 3(t))

\L/(mCa‘%TFz(t), (max F(1))

Fig 5. Loading process polyhedron

Taking into account loads constant directions, the
fixed by (9) design probabilities are to be chosen as
Py = Pimaxy Lraminy = 0 and the other quintiles to be
equal 0,5 (Eqn (8)). Then applying (11) and (12) to cal-
culate determinate loads magnitudes, the loading matrix
finally reads:

04731 0 0 O
%47,31 o  2010E

FT O
=S 0 12042 0O E-
OO0 12042 20100

B o 0 30008

Eight groups (ie 8 different truss areas) of pipe type
cold laminated bars, (Fig 3) are optimized to ensure truss
minimal weight under presence strength, stiffness, stabil-
ity and constructional constraints. The material proper-

ties are: yield limit 0, =240 MPa, elasticity modulus

E= 207 GPa. Truss nodes 1 and 2 extreme displace-
ments are constrained in directions x and z by 1 cm. The
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constructional requirement introduces minimal bars area
to be 2 cm?.

The optimization process was realized per 13 itera-
tions (see Table). As starting point input data (see row
0 of the Table) was taken an optimization solution of
the considered truss, loaded by the same three loads as-
suming them to be applied as constant values with ex-
treme magnitudes, presented in the above loading ma-
trix, ie: 174,31 kN; 120,42 kN; 30,00 kN for the first,
second and third loads respectively. The starting point
(optimal solution) was obtained in 12 iterations, apply-
ing the same algorithm, for its starting point taking all
areas to be equal to 10 cm? ones.

The stochastical loading process subjected truss
optimal solution was reached in 13 iterations (the last
row of the Table) with 0,017 % tolerance for 3rd and
7th areas and 0 % tolerance for remaining areas and to-
tal weight of the structure.

Some notes on optimal truss behavior, being adapted
to considered loading process. The Ist node reached it
allowable 1 cm extreme magnitude, while the other dis-
placements do not achieve this magnitude. The 4th and
5th areas reached their minimum equal to 2 cm? area
magnitudes. The 1-2, 1-4, 4-9 truss members are loaded
up to the critical values. Critical states for tensile mem-
bers are not achieved. A deformable behaviour compari-
son of the optimized truss with the one, obtained for the
constantly loaded truss (ie with the starting point repre-
senting optimization result — row 0 of the Table). The
constantly loaded truss 1-2, 1-4 members were loaded
up to the critical values. Critical states for tensile mem-
bers were not achieved.

3. Conclusions

1. The performed numerical experiment illustrates
the efficiency of proposed algorithm, when applying the
proposed optimization under presence stiffness and sta-

Optimization problem solutions per iterations

bility constraints method for the truss, subjected to sto-
chastic loading process.

2. The convenient loading approximation method
required for iterative structural optimization to identify
extreme magnitudes of structural response with prescribed
reliability per reference period of time is presented. The
loading process approximation principles can be also
applied for other structural analysis and design cases.

3. The new truss structural optimization model is
presented. The result reliability is ensured by the appli-
cation of the extreme energy principle for analysis prob-
lem to fix the actual structural stress and strain state in
each optimization cycle.The proposed optimization
method principles can be implemented for other types
of structures.

4. The evaluation of stochastic loading process na-
ture, implemented into structural optimization process,
ensures material resources savings, when compared with
the optimal result, obtained when representing the load-
ing process either by repeated variable process or con-
stant loads in terms of extreme magnitudes, achieved in
the considered period of time.
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