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DEFORMABILITY AND PARTIAL STRENGTH ACCOUNTED FOR
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Abstract. The paper summarises the current progress in methods of advanced analysis for design of frames with semi-
rigid joints. The methods presented in the paper belong to general second-order refined plastic-hinge methods that allow
for the combined effects of joint stiffness degradation and distributed plasticity along the member length as well as
across the member sections. The advanced analysis for steel frame design, proposed by the authors, is based on the
spring-in-series model. The effect of joint semi-rigidity and partial strength is taken care of by specifying certain values
of the initial stiffness, ultimate moment and the shape factor of the moment-rotation characteristic for the spring repre-
senting the joint. The effect of imperfections affecting the performance of imperfect structural members in compression
is modelled by the application of a simplified tangent modulus concept combined with the reduction of the initial value
of the elasticity modulus. The effect of residual stresses is taken care of by specifying certain values of the shape
parameter for the moment-rotation characteristic of the spring representing the gradual yielding of the member. It is
dependent upon the cross-section type and fabrication method (ie upon the residual stress pattern resulting from rolling
or welding processes). A case study analysis is presented. Concluding remarks referring to the application of advanced
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analysis in design, pertaining to the study case considered, are drawn.

Keywords: steel frame, semi-rigid joint, advanced analysis, spring-in-series model.

1. Introduction

Over the past 25 years, extensive research has been
made to develop and validate several advanced analysis
methods that can capture the frame ultimate strength
through the geometrically and materially non-linear analy-
sis carried out in such a way that member local and over-
all buckling capacity checks are not required. Second
order plastic-zone, conventional plastic-hinge and refined
plastic-hinge methods may be used in advanced analy-
sis. These methods differ as to the degree of refinements
in representing the plastic yield effects of joints and
members. The plastic zone method allows for the de-
tailed modelling of the gradual yielding effects across
the member sections and along the member length, in
contrast to the conventional plastic-hinge method. The
latter one does not allow for any refinements since a
rigid-perfectly-plastic relationship for the behaviour of
member sections and an elastic-perfectly-plastic relation-
ship for the behaviour of joints are used. The refined
plastic-hinge method is somewhere in between the two
above-mentioned methods but it may be calibrated in such
a way that it reproduces, with the accuracy acceptable
for practical application, the behaviour of real structures
(ie imperfect structures).

Refined plastic-hinge methods for advanced frame
analysis are based on different assumptions used in mod-
elling the stiffness degradation effects. Two methods
gained popularity, namely the method based on a two-
surface degradation model [1] and the method based on
a spring-in-series model [2]. In the former advanced
analysis, two element end springs representing the joint
flexibility are used and combined with the introduction
of two stiffness reduction factors representing the effect
of member inelastic deformations. The reduction factors
are applied directly to flexural terms of the element stiff-
ness matrix. In the latter method of advanced analysis,
two-element end springs are used in order to represent
the effects of joint flexibility and member yielding. This
method is further developed by the authors in order to
account for the effect of imperfections on the behaviour
of structural systems.

A brief summary of the spring-in-series model is
followed by the detailed discussion of issues related to
the influence of imperfections on the frame load deflec-
tion characteristic and the frame ultimate state. The pro-
posed values of model parameters are verified. The ex-
ample of a sway frame is considered in order to show
how the different values of model parameters affect the
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frame load deflection characteristic, the ultimate load
capacity and the magnitude of deflection at the frame
ultimate state. Final conclusions are drawn.

2. Implementation of the spring-in-series model

Let us consider a finite element (FE) of discretised
structure, consisting of the member with two springs at
each node and subjected to flexural deformations only
[2]. The arrangement of components in this finite ele-
ment is depicted in Fig 1. The finite element representa-
tion of the incremental equilibrium equations in the lo-
cal co-rotational coordinates can be summarised as fol-
lows

AQ=(Kjy +Kmy +k +kma +kj2JAq, (1)

where the set of equations (1) is expressed in terms of
internal and external static and kinematic variables, as-
sociated with the member nodes, joint nodes and finite
element nodes. All the node types are given in Fig 1,
with reference to the origin (denoted by 1) and the end
(denoted by 2).

Member
node 2

Member

FE Joint node 1

node 1 node 1 node 2 node 2

\1 i \1/0,: =1/ Member \1 ‘ § Z
\\Member sprlngs//
Joint springs

Fig 1. Finite element with internal degrees of freedom

Joint FE

The incremental nodal forces and displacements in
equation (1) are expressed as follows:
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where Adq,Ad, — finite element degrees of freedom (ex-
ternal DOFs), AQj1,A9j;
dom (internal DOFs), AQy,AQyny — member spring
degrees of freedom (internal DOFs).

The components of the finite element stiffness ma-
trix in equation (1) are expressed as follows:
— the contribution of the joint instantaneous stiffness at
the origin:

— joint spring degrees of free-
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— the contribution of the joint instantaneous stiffness at
the end;
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— the contribution of member imperfections and plastic
zones developing from the origin onward;
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— the contribution of member imperfections and plastic
zones developing from the end backward;
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— and finally, the contribution of the member elastic stiff-
ness with the second-order effects taken into account;
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The terms of the member elastic stiffness component
given by equation (7) are written in the standard form:
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where the member axial load factor
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and: N — the member axial force, L — the element length,
E — Young modulus, I — sectional moment of inertia.
The contribution of the joint stiffness is evaluated
on the basis of joint tangent stiffnesses S (calculated
for the spring placed at the origin) and S, (calculated
for the spring placed at the end). They depend upon the
magnitude of total moments in the current incremental
stage Mﬂ:M1 and M,=M,, respectively. Adopting the
Kishi-Chen power model for the modelling of the stiff-
ness degradation process [1], the joint tangent stiffness
Sj can be expressed as follows:

JDn
j J|n|H Eia‘ 5 (10)

where the joint properties are: SJ i — initial stiffness,
ijRf ultimate moment, n, — shape factor of the mo-
ment-rotation characteristic accounting for the effect of
joint gradual yielding.

The contribution of the member imperfections af-
fecting the flexural behaviour and plastic zones is evalu-
ated on the basis of tangent stiffnesses S (calculated
for the spring placed at the origin) and S_, (calculated
for the spring placed at the end). They depend upon the
magnitude of total moments in the current incremental
stage M =M, and M _,=M,, respectively. In order to
describe this effect, the Kishi-Chen power model is also
adopted, so that the tangent stiffness S can be expressed
in the way similar to equation (10):

M=

N+l

H‘ml:lnm
, 11
Sm = Sm|n|H Eﬁ (1

where the spring properties are: S .. — initial stiffness
representing the effect of geometric 1mperfect10ns M.k~
ultimate moment of the member section (if necessary
reduced in the presence of a non-zero axial force), n —
shape factor of the moment-rotation characteristic ac-
counting for the effect of residual stresses.

Recognising that AMj; =AMy =AM; and
AM j5 =AM =AM, and condensing the set of equa-
tions (1) in order to eliminate internal degrees of free-
dom, the following condensed set of equations for the
finite element, referred from here on to as the finite
superelement (FSE), is obtained:

AQy =K1pAdy , (12)
where the tangent stiffness matrix
-] Ckro11  Krp12O "
To %/mm kT¢22|:| ( )

and the condensed vectors of nodal forces and displace-
ments
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The terms of the stiffness matrix in equation (12) can be
expressed as

(14)
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The fixity factors in equations (15)-(17) are calcu-
lated on the basis of the spring-in-series model. Fig 2
shows the finite superelement after the condensation pro-
cess.

FSE Member Member FSE
node 1 node 1 node 2 node 2
\ Member \l, %
ol 7
0\ Integrated 7
springs

Fig 2. Finite superelement with external degrees of free-
dom

Two springs at each member end are integrated into
one spring that has the integrated spring properties given
by:

— tangent stiffnesses
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— ultimate moments
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By the transformation of the set of equations (12)
in order to express it in the coordinates associated with
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the last known configuration and adding the contribution
of the axial deformations, the final set of finite element
local equations can be established. It has to be noted
that the vectors of nodal forces and displacements of the
final set of equations are referred to the external nodes
of the superelement (nodes of the discretised structure).
This is a set of equations for the element with the single
spring at each node but with the integrated stiffnesses
incorporated as a result of member and joint inelastic
deformations, with the influence of imperfections taken
into account.

3. Adopted solution procedure

Solution procedures for frame non-linear equilibrium
equations can be one of the following:

— incremental-iterative methods that satisfy equilibrium
equations at each incremental step of analysis, thus they
allow to trace the equilibrium path accurately (within the
degree of accuracy made possible by assumptions adopted
in modelling),

— simple incremental methods that do not iterate for the
equilibrium position at incremental steps, hence they pro-
duce a drift-off error in the prediction of the frame load
deflection characteristic.

For practical applications, the simple incremental
method is preferred since it is straightforward, it posesses
the computational efficiency and, what is the most im-
portant, it can be treated as a natural extension of the
linear analysis into the region of structural non-linear
behaviour [1]. The computer implementation of advanced
analysis presented herein is therefore based on the simple
incremental procedure with a prescribed increment of the
applied loads. In this procedure, at each incremental step,
the values of member nodal forces and displacements
are computed as sum of the incremental values. The en-
tries to the stiffness matrix from each superelement are
updated at the end of current increment, and only then a
new load increment is applied. Fig 3 shows how the in-
tegrated spring properties are updated from the incre-
mental step i to the next step (i+1). The tangent
stiffnesses of separate springs Sji and S_; are calculated
on the basis of the total moments Mji: M .= M.. The
stiffness S, of the integrated spring in the step i is calcu-
lated according to (18) or (19), depending on the end
number taken into consideration. The resultant stiffness
S, is kept constant for the incremental step (i+1). The
axial force entry to the superelement stiffness matrix is
also updated and the axial force N; from the step i used
for the prediction of incremental forces and displacements
in the step (i+1). When under the constant load incre-
ment the force state exceeds that resulting from the ulti-
mate moments (20) or (21), depending on the end num-
ber taken into consideration, a suitable scaling scheme
is used to calculate the reduced load increment in order
to avoid plastic hinges from forming within a constant-
stiffness load increment (see Fig 3). Load step sizes less

then or equal to the prescribed constant-stiffness load
increment magnitude are computed directly, since the
relations within the incremental step are linear. This is
combined with a suitable search procedure for the for-
mation of multiple hinges at one incremental step. Plas-
tic hinges may therefore form only after the load incre-
ment.

S:(Sj-1+sm-1)-1

ichrement (i-2)

Mm‘R M

\ ‘./‘hinge \\
1 \
0] \\ \\formanon
(i+1)

\

Fig 3. Constant-stiffness load increment scheme

4. Calibration of model parameters
4.1. Stiffness degradation in compression and tension

The axial force may have a great impact on the flex-
ural stiffness of members. The P-0 effect is taken care
of by the introduction of second-order terms in defining
the flexural stiffness of the member element — see equa-
tions (8). The effect of imperfections on member inelas-
tic deformations, such as residual stresses and out-of-
straightness, is not explicitly reflected in equilibrium
equations summarised in Chapter 3. The concept of tan-
gent modulus was used in [1] for modelling the buckling
behaviour of members in tension and compression. A
similar concept is adopted for the advanced analysis pro-
posed in this paper so that the Young modulus E is re-
placed in equation (13) by the tangent modulus E;. The
tangent modulus is constructed for a hypothetically ideal
member in such a way that in case of compression it
reproduces the behaviour of imperfect strut through the
buckling curves of design specifications. The following
formula is adopted

e
il NQE”

Er = E0-F 20 @3)
B ONROR

where E; — reduced elasticity modulus representing the
effect of geometric imperfections for compression of slen-
der members (for tension members E=E), N, — com-
pression or tension capacity of the section, n — shape
factor modelling the effect of residual stresses 0, on the
stress-strain curve of the axially loaded member.



M. A. Gizejowski, et al / JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT — 2004, Vol X, No 3, 199-208

The tangent modulus given by equation (23) repro-
duces the buckling resistance N=N, through the equa-
tion

Npp _ 1 Er

= 24)
Nk %2 Ep’

where: A — compression member relative slenderness
ratio

a=h [Nr
m\ EgA

and: A — member slenderness, A —

(25)

cross-sectional area.
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Fig 4. Standard residual stress patterns

The shape parameter, reflecting the effect of residual
stresses ©,, depends on the type of the cross-section.
Generally three different types of I-sections and associ-
ated with them standard residual stress patterns are used
(Gr/fy in Fig 4). For sections bent about the stronger axis,
the buckling curve is taken from Table 1[3].

Table 1. Buckling curves for typical I-sections

Technology Heat treatment D/B >1,2 D/B <1,2
Rolled - a b
Welded Not-heat-treated a

Annealed b

An exercise is carried out to find the best-fit shape
parameters n for curves a and b. They are found to be
n=4 and n=3 for curves a and b respectively. The ef-
fect of geometrical imperfections on the stiffness of com-
pression members is approximately taken care of in such
a way that the reduced elasticity modulus is calculated
as the Young modulus divided by the partial safety fac-
tor y, applied to the buckling resistance of slender mem-
bers. In [1] the value 1/y, = 0,85 is suggested. The Pol-
ish code [3] uses for design values of the buckling resis-
tance 1/y, = 0,75. The European pre-code [4] uses
1y, =0,91. If the reference is made do the American
LRFD code [5], one can find out that the value of
1y, =0,8770,85=0,75 is used. This agrees with the
recommendations of the Polish code [3].

It is worth noting that the method of reduced elas-
ticity modulus is a very convenient method to account
for the effect of geometrical imperfections, if compared
with the method of explicit imperfection modelling or
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the equivalent notional load method [1]. If the latter two
methods are used, all the members have the elasticity
modulus E, regardless whether they are under tension or
compression.

4.2. Stiffness degradation in bending

Chen and Chui [2] proposed the following stiffness
degradation relationship for the member spring

Spn=o for M < M (26)
M b
m, pr M m, pr
6El - M " M
Sn="— mly\/rl)r for mer o M <1,
L M _ Mmer Mm, pr Mp, pr

M m, pr M m, pr
27)
where M o plastic moment of the cross section in the

presence of axial force, M, ., — first yield moment, re-
duced in the presence of residual stresses, given by

_ o N
M =B (28)
and: Z — elastic section modulus, fy — yield stress, O, —
maximum value of the residual stress coordinate that
for the standard cases can be taken from Fig 4.

In the computer implementation of the advanced
analysis developed in [2], a very large value of 10*1°
EI/L was assigned in the elastic region — equation (26),
and a very small value of 107! EI/L in the post-yield
region (when M =M o) The model is therefore some-
what complicated smce is based on a discontinuous rela-
tionship, requiring artificial numbers to be used for avoid-
ing numerical difficulties.

A different model is developed for the proposed
advanced analysis. The effect of stiffness degradation in
bending is taken care of by the adoption of equation (10).
The model parameters are calibrated against the Chen-
Chui proposal [2] for the case of pure bending. When
integrating equations (26) and (27), the following sec-
tion spring moment-rotation characteristic is obtained

©=0 for <« Mmer (29)
m, pr Mm, pr
6E| m pr m pr
0
8 M, pr M, pr
M
for —omer o Mg (30)
Mm, pr m, pr
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The average values of section plastic reserve shape
factors a,=S/Z, where S is the section plastic modu-
lus for bending about the strong axis, and the maximum

residual stress factors O, =0, / fy are used in the cali-
bration (Table 2).

Table 2. Parameters used in calibration

Section proportioning
Technology Parameter D/B<1.2 D/B>1.20
Rolled a, 1,10 1,15
o, 0,50 0,30
1
Welded ap 1’20
g, 1,00

The initial stiffness representing the effect of geo-
metric imperfections (both out-of-flatness of sectional
walls and member out-of-plane) are taken into consider-
ation assuming the value of ten times greater than the
stiffness multiplier in equation (27)

60El

Smjni = —_

The lower-bound approximation is used for the calibra-
tion of shape factor n_. It is chosen in such a way that
the section spring moment-rotation characteristic of
present formulation, for larger values of the rotation,
approaches that proposed by Chen and Chui [2]. The
values of n parameter are summarised in Table 3 and
the resultant characteristics are compared in Fig 5 with
those of Chen and Chui [2]. Numbers in brackets refer
to the standard residual stress patterns given in Fig 4.

(31)

Table 3. Shape factors n of the moment-rotation characteristic

Section proportioning
Technol
CeamolsY  I'p/p<i2 D/B>1,20
Rolled 2) 1,25 (1) 1,60
Welded 3) 0,75
1,0

0,8

0,6

0,4 present study
0.2 -——-- from[2]
0,0 L

0 0,002 0,004 0,0006 0,0008 0,001

Fig 5. Comparison of section spring characteristics

4.3. Stiffness degradation of joints

The moment-rotation characteristic of joints adopted
in the present study is of the same nature as the relation-
ship for the modelling of member stiffness degradation
in bending. The stiffness degradation in the adopted
model is described by the continuous function — equa-
tion (9), which appears to be different from the approach
recommended in European standardisation documents [4,
6]. The joint stiffness degradation used in [6] is a piece-
wise continuous function with the points of discontinuity
at the levels of 2/3 of the ultimate moment and at the
ultimate moment itself

Mig 3
jlnlggﬁv
(“‘“)Eig
for ES M <1, 33)
j,R

S =0 for ¥ >, (34)

where: y — parameter equal to 2,7 for end-plate joints

and 3,1 for flange-cleated joints, and the rotation at the
ultimate moment is given by

(34)

R =

i ini
The values of the joint stiffness at the discontinuity points
are given in Table 4.

Table 4. Change in values of joint normalised stiffness

Point Change in Joint type
M/M iR Sj / Sj,ini End-plate Flange-cleated
0,67 from 1,00 1,00
to 0,27 0,24
1,00 from 0,09 0,07
to 0,00 0,00

It can be noted from Table 4 that the parameter
does not have any impact on the stiffness degradation in
end-plate and flange-cleated joints. In order to obtain an
objective evaluation of the shape factor n. of the pro-
posed M-@ characteristic, and to maintain a similar reli-
ability level as used in [6], the areas between the
Sj/S;jni curve from the European code [6] and that
proposed herein are considered. The positive sign A® is
assigned when the proposed curve lies below that from
[6] and the negative sign A®) in the opposite case. By
considering the resultant parameter AA= AM+AO), and
predicting the value of n factor in such a way that
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AA = 0, the best fit solution is obtained. On the average
of end-plate and flange-cleated joints, the value n, = 1,5
is selected. The comparison of the joint M-¢ character-
istic adopted in the proposed advanced analysis and those
from the European code [6] is given in Fig 6.

1,0 —

0.8 //%"e nd-plate-joints"| |
/% 'flangefcleated joints"]
0,6 t
;/\p resent study]
0,4 ]V
0,2

0,0

M/Mjg

¢

0 0,002 0,004 0,006 0,008 0,01

Fig 6. Comparison of joint M-¢ characteristics

The joint physical parameters like initial stiffness
and ultimate moment may be calculated by the compo-
nent method given in [6]. The method requires the iden-
tification of the joint active components, calculation of
the stiffness and strength of each component and finally
the calculation of joint properties for the joint assembled
from components. Since the procedure for calculating the
joint physical properties is generally not friendly for hand
calculations, the use of computer-based calculations is
advisable [1, 7]. The proposed advanced analysis will
be eventually based on the joint type catalogue from
which the type of the joint can be identified and then its
mechanical properties calculated automatically.

5. Computer programme and its applications
5.1. Computer code LILANN

The computer implementation of the proposed ad-
vanced analysis is based on the conventional geometri-
cally linear plastic-hinge programme LILAN that has been
used in engineering education at the Gdansk University
of Technology and the University of Botswana (author
C.J. Branicki [8]). This ensures that the programme
LILANN being developed for the advanced analysis is
of the same complexity as its predecessor. Thus, con-
ventional plastic-hinge solving techniques and their nu-
merical implementations for the geometrically non-linear
analysis remain unchanged and may be applied within
the refined plastic-hinge concept based on the spring-in-
series model. Unlike other commercially available pack-
ages, the LILANN programme can be used with a great
confidence by structural engineers who are familiar with
the concepts and methods used in the programme be-
cause these concepts and methods have been taught dur-
ing the university education.

The research version of the computer programm
LILANN allows for the following analyses:

— LL: geometrically linear (first-order) analysis with bi-
linear joint characteristics,

— NL: geometrically non-linear (second-order) analysis

with bilinear joint characteristics,

— NN: geometrically non-linear (second-order) analysis

with curvilinear joint characteristics of Chen-Kishi type.
The analysis of type NN is to be finally implemented

as advanced analysis for design purposes.

5.2. Frame for case study

In order to illustrate the differences between the appli-
cation of analyses implemented in the research version of
LILANN and the implication of different ways of model-
ling the geometric imperfections, the example of three-
bay six-story frame shown in Fig 7 is considered.

5 kN

»_
21,6 m=|

L6x3,6m

. 8x3m=24m
Fig 7. Frame geometry and loading

The unstiffened extended end-plate beam-to-column
joints are used so that their semi-rigid partial-strength
properties have to be considered in the frame analysis
and design. Sizes of frame members as well as joint end-
plate thicknesses and bolt diameters are taken the same
as reported in [9]. The design was carried out automati-
cally using the commercial package ROBOT Millennium.
The options for elastic second-order analysis, non-linear
joint M-0 characteristic and design according to the Pol-
ish steel code [3] were selected. Fig 8 shows the mem-
ber sizes and the joint types yielding from the design.

IPE 270
! 22 22 22 1
o IPE[330
X |3 —7] T 47 3
&<
213 44 4l4  4]4 3
([S 66 66 66 5
o
S[[5_6]l6 6]6 6l6 5
<
Wils 66  6l6 6]6 5
N . . . .

Fig 8. Member sizes and types of semi-rigid joints

The mechanical properties of beam-to-column joints
are listed in Table 5.
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Table 5. Mechanical properties of beam-to-column joints

Mechanical properties
Joint Connected profiles Iqitial Ultimate
type stiffness moment
[kNm/rad] [kNm]
1 IPE 270 to HEB 180 16100 65
2 IPE 270 to HEB 180 54500 80
3 IPE 330 to HEB 180 25700 83
4 IPE 330 to HEB 180 84500 105
5 IPE 330 to HEB 240 31700 99
6 IPE 330 to HEB 240 79300 112

The classification of beam-to-column joints accord-
ing to stiffness is conveniently done with use of the fix-
ity factors. Fig 9 shows the bar graph for all the joints
listed in Table 5. It is clear that joints have generally to
be considered as semi-rigid. Examining the joint strength
one can conclude that all the joints are of partial-strength.

Rigid joints
1 - ——
nominally rigid joints
_ 08 A
L
1) p
g 06 semi-riglid joints
2
% 04
™
02 A nominally pinned jaints
pinned |joints

1 2 3 4 5 6

Fig 9. Classification of joints according to stiftness

The influence of geometric imperfections is simu-
lated in such a way that three cases are considered using
the following notations for types of analysis:

1) the modulus of elasticity of members with a com-
pressive force is reduced to 0,85E and for members with
a tensile and zero force kept E, while the notional hori-
zontal loads are not added to the applied horizontal loads;

2) the modulus of elasticity of members with a com-
pressive force is kept the same as for members with a
tensile and zero force, and equal to E, while the notional
horizontal loads are added to the applied horizontal loads;

3) the modulus of elasticity of members with a com-
pressive force is reduced to 0,85E and for members with
a tensile and zero force kept E, while the notional hori-
zontal loads are also added to the applied horizontal
loads.

5.3. Results of the analysis of LL type

Fig 10 shows the frame load deflection characteris-
tics (the load factor vs the sway displacement of the frame
top node) LL-1, LL-2 and LL-3, corresponding to three
ways of modelling of geometric imperfections mentioned
in the previous chapter. The results show that the ulti-
mate load factor is the same for all the analyses. The
difference occurs in displacements. The maximum displace-
ment is for the analysis LL3, the smaller for the analysis
LL-2 and the smallest for the analysis LL-1. The history

of plastic hinge formation is shown in Fig 11 for the analy-
sis LL-1, Fig 12 — for LL-2 and Fig 13 — for LL-3.
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Fig 10. Load deflection characteristics for analyses LL
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Fig 11. Plastic hinge formation history for analysis LL-1
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Fig 12. Plastic hinge formation history for analysis LL-2
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Fig 13. Plastic hinge formation history for analysis LL-3
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5.4. Results of the analysis of NL type

Fig 14 shows the frame load deflection characteris-
tics (the load factor vs the sway displacement of the top
node of the frame) NL-1, NL-2 and NL-3, correspond-
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Fig 14. Load deflection characteristics for analyses NL

23
(1,2034)

T 2 21 25
(113739) (1,1888) (2827 (.2479) (1,3073)
“ 4 18 79 2
(1,1454) (1,1999) (1,2013) (1,2050)
2% 4T i 9 7
(1.3674)(.0675) {11360)]  (11178) 1,2302
5 71 iEhi 1 D 16
(1,3655)(1,09B1)  (1,1296) {10257))  (1,3735) (1,1845)
27 2 6] 8] 6 12
| (1,3650)(1.0568)  (1.0878)  (1,0932) (1,3621) (1.1507)
1 I 3 1
(038 (0737 (1L0635)  (11474)

Fig 15. Plastic hinge formation history for analysis NL-1

-~

1 2 200 2
(1,3739)(1,2864)(1,1@4) (1,2655) (1,2339)ﬂ (1.3252)

(1,11238 (1,17(1)2) (ms%s) (1,25%6)
35 7T 14 T EERE
(1,3432)(0086)  (1.0909)|  (1,0749) (1,3428) (1,131)
f 75 8] 4 11 100 30 5]
(1,3348)(1,0306) (1,3442)(1,058)  (1,063%) (1.3735) (1,1155)
2% 2] 3 5] 3 6] 26 o
(1,3307)(0,98e) (1,3425)(1.07)(1, 3427)(1,054)(1,3302) (10629)

29 1T 4 37 3417
(1,3674)(0,9810) (1,0133 (1,0054)|  (1,3442) (11768}

Fig 16. Plastic hinge formation history for analysis NL-2
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ing to three ways of modelling of geometric imperfec-
tions mentioned in Chapter 5.2.

The highest ultimate load factor is for the analysis
NL-1, a lower for the analysis NL-2 and the lowest for
the analysis NL-3. The difference occurs also in displace-
ments. The maximum displacement is for the analysis
NL3, the smaller for the analysis NL-2 and the smallest
for the analysis NL-1. The history of plastic hinge for-
mation is shown in Fig 15 for the analysis NL-1, Fig 16 —
for NL-2 and Fig 17 — for NL-3.

5.5. Results from analysis of NN type

Fig 18 shows the frame load deflection characteris-
tics (the load factor vs the sway displacement of the top
node of the frame) NN-1, NN-2 and NN-3, correspond-
ing to three ways of modelling the geometric imperfec-
tions mentioned in Chapter 5.2. The tendency in the ul-
timate load factor and in the considered displacement is
the same as in the analysis of type NL. The history of
plastic hinge formation is shown in Fig 19 for the analy-
sis NN-1, Fig 20 — for NN-2 and Fig 21 — for NN-3.

6. Summary and concluding remarks

The conclusions drawn below pertain only to par-
ticular frame analysed in this paper. Summary of all the
calculations is given in Table 6. For comparison, the
results from PHINGE R [10] are also provided so that
one can see how the results change when different soft-
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Fig 18. Load deflection characteristics for analyses NN
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Fig 17. Plastic hinge formation history for analysis NL-3
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Fig 20. Plastic hinge formation history for analysis NN-2
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Fig 21. Plastic hinge formation history for analysis NN-3

ware is used. It can be concluded that though all analy-
sis types predict ultimate load within a 4 % accuracy,
the LL analyses predict the displacements that are 60 %
underestimated. Since partial-strength joints are used, the
member inelastic deformations may not be advanced in
structural members so that the difference in results for
NL and NN analyses is not observed. For the frame used
in this study, both types of analysis may be recommended.
When notional forces and the reduced elasticity modulus
for elements with compression are used, the results are
too conservative (results for NN-3 in Table 6). Compar-
ing the results for analyses NN-1 and NN-2 one can see
that the analysis NN-2 leads to the slightly lower load
factor but of the meaningful higher displacements than
the analysis NN-1.

The conclusion is that for achieving the same level
of reliability in advanced analyses using notional loads
or reduced elasticity modulus of structural members, a
higher reduction of the elastic modulus of compression
members is required. The suggestion is that the value
close to that adopted in the American LRFD code [5]
and in the Polish code [3] should be preferred for the
frame considered. It implies that here the value
E, = 0,75E should be used instead of E; = 0,85E, as sug-
gested for advanced analysis [1].

Table 6. Comparison of load factors and sway displacements

Software Analysis Model Load Sway
type type factor [cm]
1 9,6
LL 2 1,384 11,4
3 13,2
1 1,374 16,1
LILANN NL 2 1,344 16,7
3 1,326 18,3
1 1,351 15,1
NN 2 1,336 17,1
3 1,317 20,6
1 1,331 10,8
PHINGE R NN 2 1,341 14,6
3 1,346 17,1

The present study indicates a necessity for further
research in order to calibrate model parameters for the
proposed method in such a way that they reflect better
the behaviour of real structures (imperfect structures).
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